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0 未研究課題．

(i) 中心課題：最近の基礎教育の傾向としての ε–δ 論法の排除，即ち，「実数の公理（連続性）」「極限の定義」「関数の連続性の定義」の
排除が教育上整合的に可能かどうかの検証．（傾向に従うことの可否は議論を要する．そもそも「学生がついてこれないから」とい
う教官側の勝手な理屈で本質的な論法を教育から除外してよいのか？
一応の根拠：一貫した厳密性を要求すると教科書や講義が膨大になり，初等教育に向かない．話が単純な最初だけ厳密にやって，微
妙かつ複雑になるところから検証を省略すると，初学者はだまされた気分になる．また，既存の方法ならば新しい講義録を書く必
要性は薄い．）
証明を全て「気持ち」だけで書くために必要になる「気持ち」（用いる性質）の現時点での一覧．

(a) 実数（数列の極限）
i. lim （最小の上界）は存在を仮定．
ii. 単調数列の場合は無限を含めば当然存在とする．

(b) 収束（関数の極限）
i. 変動幅（上下限の差）が x → a とともに 0 に近づく．

(c) 連続関数
i. f(x) �= c ならばある開区間で f(x) �= c .
ii. 連続関数の一様収束極限は連続．
iii. 閉集合上の連続関数は一様連続．
iv. 開集合の逆像は開集合．
以上は「収束概念の諸側面」として列挙し，相互に証明しない．

(ii)実数の公理に関する論点．
(a) 公理，定義→約束事
(b) 命題，定理→証明のあるもの
と分類するが，定理のうちで証明の面倒なものはひとまず約束事にしてもいいのではないか？特に実数の公理に関して，同値ない
くつかの主張（有界単調列の収束，切断の存在，コーシー列の収束，有界集合の上限の存在）は全て「実数に関する約束事」とし
て掲げてもいいのでは？
そもそもなぜ公理を少なくしたいか？

(a) 多いと矛盾が起きないことを気にしないといけない．（あまりに都合の良い性質を仮定しすぎるとそのような対象がなくなるとい
うこと．）→実数に関しては１世紀前の研究者の研究の結果大丈夫と分かっている，の一言ですます．

(b) 多いと最初にいろいろ覚えないと行けない．→どうせ定理になっても覚えないといけない．実数のこれらの性質はあまりに基礎
的すぎて全て使う．公理扱いにしておけば証明をさぼれる分かえってすっきりする．例を繰り返し，それぞれの性質に都合の良
い例を挙げることで覚える，のを優先してはどうか．

(c) 研究者としては，導出可能な命題を公理と呼ぶのは，その問題に関する洞察力の不足を意味しているので，かっこうが悪い．→
「枯れた分野」だから，「本当は導出可能だ」の一言でいいのでは？どうしても気になるなら appendix．
これらの同値命題を全て約束事とすれば，同値性を証明する部分の記述を削除できる．

(iii) 上下限だけを使うことで ε–δ 論法を見かけ上排除できるか？
(a) lim = sup inf の意味が非常に分かりづらい．特に単調減少数列だと 最初の inf で事実上極限にたどり着き，sup が無内容にな
る，というところがなかなか理解しにくい．だが，それでもやる気のある人にとっては取っつきやすい部分があるように思う．（数
列を追いかけていけるので．）
最初に「何とかして単調数列に翻訳したい」と繰り返し説明すれば分かるかもしれない．

(b) ε–δ を本当に使いたいのは数列の極限ではなく関数（連続変数）の極限．これも上下限の接近で行けるようだ．
但し，補題 9 の証明でやってみると，結局 ε–δ を実質的に使ってしまう．何か補題を入れるなど使いやすくしないといけないか？

(iv) 少し長い証明は常に先ず全体の流れを言う．「次の順序で証明する．」
(v)接線の節は前の講義録では [三宅敏恒] に従ったが，かえって難しいので，普通に，平均変化率の極限としてごまかしておく．
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0 講義の位置づけ．

§1 イントロ．

半年，週１回 90分の数学の基礎の一つ（微積分学）の講義．この小節は半年後にどういうことが分かるよ
うになる（はず）か，を紹介する．

§1.1 講義の構成．

数学基礎１は一言でまとめると１変数関数の微積分学の講義1 ．大きく３つの部分に分けることができる．

(i) 極限．
(ii) 微分．
(iii) 積分．

1 参考までに，後期の数学基礎２は２変数関数（多変数関数）の微積分学の講義．
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いずれも，高校時代に勉強したはずなので，「高校時代と何が違うのか？」が気になるだろう．以下，講義の

問題意識を説明する．

極限． 極限と言われて最初に思い浮かべるのは数列の極限だろう． 数列 {an} とある実数値 α について，

n が大きくなるときに an が限りなく α に近づくならば，

lim
n→∞ an = α

と書いて α を数列 {an} の極限と言うのであった． 極限は，関数の連続性の議論でも出てくる． 例えば関

数 f とある実数値 y について，x が 0 に近づくとき f(x) が限りなく y に近づくならば，

lim
xto0

f(x) = y(1)

と書いた． では，この講義で何が新しく分かるのか？

数の列（数列）の代わりに

fn(x) = 1− nx,(2)

で定義される関数の列

f1, f2, f3, · · · , fn, · · ·(3)

を考える． (1) から， 各 n = 1, 2, 3, 4, · · · ごとに

lim
x→0

fn(x) = 1,(4)

となる． (4) を数列（第 n 項が (4) で表される数列，即ち，1, 1, 1, · · · という数列）とみると，

lim
n→∞ lim

x→0
fn(x) = 1(5)

となる．この式を高校までのしかたで理解すると，n が大きくて |x| が小さければ fn(x) は限りなく 1 に近
づく (?) ことになる．本当だろうか？例えば大きな数として n = 100000000 =１億，絶対値の小さな数（0
に近い数）として x =２億分の１，を fn(x) の定義式 (2) に代入すると，

f１億(
1
２億

) = 1− １億
２億

= 1− 1
2
=

1
2

となって，1 には近くない．この式で「億」を「兆」に変えれば分かるように，n をどこまで大きく，かつ，
|x| をどこまで小さくしても x =

1
2n
とする限り fn(x) は 1/2 のままである！

極限を単純に「限りなく近づく」と理解すると危険である．

そこでこの講義の最初の部分では極限（数列についておよび関数について）ということをきちんと説明して

いく．上にあげた例について，何が起こっているかは講義が終わるまでの諸君への宿題としておく．

微分． 微分は極限を用いて定義される：

f ′(a) = lim
x→a

f(x)− f(a)
x− a .(6)

極限について慎重にならなければならない場合があるとすれば微分についても気をつけるべきことがある．

危険を避けながら，微分を応用する一般公式を作る上で有用な平均値の定理がこの講義の一つの目標となる．
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平均値の定理：導関数 f ′ が a を含むある区間で存在すれば，その区間の各点 x ごとに（但し x �= a）

f ′(c) =
f(x)− f(a)
x− a .

を満たす点 c が a と x の間にとれる．

高校で聞いたかもしれないが，その証明は詳しくやらなかったかもしれない，種々の公式，合成関数の微分

や逆関数の微分，が平均値の定理から一般的に証明できることを講義する．

積分． 積分も慎重にやらないといけない問題がある． しかし，この講義では積分の精密・正確な議論は

深入りせず，高校時代のすなおな延長で，いろんな計算ができることを目標にする．一つの例として∫ ∞

0

e−x2
dx(7)

という定積分がいくらになるかを考える．ここで e = 2.718281828 · · ·は自然対数の低と呼ばれるある定数で
ある．

被積分関数の指数部を x2 を x にしたものは既知であろう．ex の導関数 (ex)′ が ex になることを知って

いれば∫ ∞

0

e−xdx = 1(8)

は容易である2 ．しかし，(7) は (8) と違って難しい．(7) はガウス積分と呼ばれ，その値は

∫ ∞

0

e−x2
dx =

√
π

2

となることが知られている．この不思議な結果を導くところまで講義が間に合えば幸いである．ガウス積分

の値は種々の導き方があるが，数列や極限の考えだけを使って初等的に計算する方法があり，この講義の最

初のほうの内容が用いられる．

§1.2 数学の中の解析学．

数学は，他の社会活動と同様に，現場ではいろんな分野に分かれている．それを大きく束ねて数個ないし

十数個の部門に分類することがある．この講義は解析学と呼ばれる数学の一部門の基礎の入口の講義である．

つまり，解析学にくくられるたくさんの分野のどれを学ぶにも，「これだけは事前に知っておいてもらわない

とどうにもならない」と考えられる共通の基礎の講義である．

解析学は非常に重要な数学の一部門であるが，たくさんの分野を便宜上束ねる言葉なので，その意味はか

なり曖昧である．おざっぱに言うと次のように言えるのではないだろうか．

解析学とは極限と不等式を主要な道具として，関数について調べる数学である，

§1.3 関数．

集合 X , Y に対して f : X → Y が（X から Y への）関数とは，どの x ∈ X に対してもただ一つ Y の

要素が決まっている（対応している）こと．このとき X を f の定義域， Y を値域と呼ぶ．この講義では定

義域 X は実数の集合 R またはその部分集合にとる．

2 講義では別の定義で始めるが，もともと e の値は (ex)′ = ex となるように決められたものである．
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例： f(x) = x2 は実数の集合 R 上の実数値関数 f を定義する．（後期との対比で，R上の関数，という代
わりに 1変数関数とも言う．）

注. f(x)は xを f で写した値．写す対応関係（操作）全体は f で表す．言い換えると，f はグラフ全体， f(x)
はグラフの上の特定の点の y座標の値．（通常は混同して使う．）

関数が出てきたらグラフを念頭におく．

注意１　「ただ一つ」． 例：逆関数． y = f(x) に対して， g(f(x)) = x が全ての x に対して成り立つ g

を f の逆関数と呼び，f−1 と書く．

例えば， f(x) = x2 で定義される関数の逆関数？x = f−1(f(x)) = f−1(x2) . x2 = y とおくと x = ±√y
だから f−1(y) = ±√y . 一つに決まらない！このままでは，逆関数は決まらない，と言わないといけない．
一つに決まるとき逆関数はある，と言う．

元の関数は逆関数がなくても，関数の定義域 (あるいは値域)を限れば逆関数がありえる．例えば，f(x) = x2

で定義される関数を x > 0 で考えれば，逆関数 f−1(x) =
√
x が存在する．元の関数の定義域を限ったこと

に対応して，値域が x > 0 になる．
同様に， f(x) = sinx で定義される関数 (正弦関数)の定義域を −π/2 ≤ x ≤ π/2 に限れば逆関数が存在

する．これを通常 arcsinx と書く．定義域 (逆関数から見れば値域)を 0 を含む区間に限った場合を Sin−1x

と書く流儀もある．

ここでの例： f が単調増加関数ならば逆関数がある．

但し，f が単調というだけでは逆関数の定義域は全実数や区間に取れず，間に定義されない区間があるか

もしれない．例： f(x) = x+ χ[0,∞)(x) の逆関数の定義域は [0, 1) を含み得ない．
連続な関数に限れば逆関数の定義域も素直になる (第 §4.2章)．

注意２　「どの x ∈ X に対しても」． 例： f(x) =
√
x で定義される実数値関数？

定義域 X を正の実数 X = {x ∈ R | x > 0} ととれば f は定義されている．X = R にとると，
√−1 は

実数にならないから実数値関数としては定義できていない．

数学では，「どの · · · に対しても」（全ての），「ある · · · に対して」（存在する），「ただ１つ」，等の言葉
を式や数字と同じくらい厳重な意味で使う．

注. 数学の勉強が先に進むと二つ以上の値が対応する，と考えたほうが便利に見える場合も現れるが，そうい
うときは多価関数と断る．それも定義域を変更して，ここでいう意味の一価の関数ととらえなおすのが数学

の流儀．（複素関数論のリーマン面という概念は最初そのようにして探り当てられた．）

1 極限．

§2 数列，有界，上限，実数．

「どの x ∈ X に対しても」と言えるには，定義域 X （この講義では実数の集合）の中身を正確に知らない

といけないので，実数とは何か？，を知らないといけない．この講義では直感的に知っていることはよしとす

る．例えば，実数の部分集合として以下は既知とする：自然数 N = {1, 2, 3, · · ·}, 非負整数 Z+ = {0, 1, 2, · · ·},
整数 Z = {0,±1,±2, · · ·}, 有理数 Q = n/m | n,m ∈ Z, m �= 0}.
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実数の演算として加減乗除 +−×÷，べき乗 ab，等号と不等号，数の正負，絶対値 | · |，も既知とする．絶
対値を距離として直線と実数を対応させることができる（数直線）．この対応によれば関数はグラフに対応す

る．閉区間を [a, b]，開区間を (a, b)，と書く（{a, b} は 2点 a, b からなる集合）．これらは実数の部分集合．
特に加法の単位元 0，乗法の単位元 1．自然数についてはさらに数学的帰納法，演算として階乗 n! . （微妙
なところでは「直感的に分かっている」ことでも正確に詰めておかないと危なくなるが，標準的な工学部の

学生はそこは数学者に頼ることにする．第 B章 参照．）
実数と有理数の「違い」は解析学の基礎にとって重要なので，詳しく説明する．しばらく実数の定義をしな

いが，実数が何であっても問題にならない言葉の定義（有界，上限）だけなので，「四則と大小関係の分かっ

ている数の集合」と思えば次の小節はかまわない．

§2.1 有界性と上限．

数列． 数の列 a1, a2, · · ·, {an}, an (n = 1, 2, 3, · · ·), などいろんな記号を使う．例：
{1− n−1} = 0, 1, 1/2, 2/3, · · · .

有界，上限，の定義． 実数の定義をするにあたって，有界と上限を定義する．いずれも数列や数の集合の

最大値や最小値のめやすに関する単語である．

上限は数列や無限集合における最大値の「気持ち」を表す量である．上に有界であるとは上限が存在する

ことを（上限自体は求めずに）示す概念である．有界であることを示すのには上限を具体的に求める必要が

ないから，便利である．

有限列や有限集合ならば最大値 max{a1, a2, · · · , an} が存在する．要素が 2個の場合は (10) に定義した．3
個ならば max{a1, a2, a3} = max{max{a1, a2}, a3} と定義すれば要素が 2個の場合に帰着する．以下帰納法
で定義を一般化できる．やっていることは端から順に比べていけば最大値に行き当たるということ．最大値

があるときは（有限集合か無限集合かに関わらず）その集合（数列）は上に有界であり，上限は最大値その

ものである（以下の定義でそれを確認せよ）．

しかし，実数数列や無限集合では上に有界とは限らないし，有界であっても最大値があるとも限らない．例

えば， an = 1− 1
n
, n ∈ N, で定義される数列は n が大きくなると an が下から 1 に近づくので「最大値 1」

と言いたくなる．しかし，どんな n を持ってきても an = 1 にはなり得ないので，「最大値が 1」と言っては
いけない．即ち，

集合 A の最大値 maxA とは， a ∈ A であって，かつ b ∈ A ならば b ≤ a となる a のことである．

有限集合ならば必ず最大値があるが，無限集合は最大値があるとは限らない．

必ずあるとは限らない最大値の代わりとして上限や有界という概念を導入する．上の例では supan = 1（上
限 1）と言う．

定義 1 (有界) 数列が上に有界であるとは上限が存在することを（上限自体は求めずに）示す概念である．

実数列 {an} が上に有界とは，全ての n ∈ N に対して an ≤ c となる（n に関係しない）実数 c が

存在することを言う．

下に有界という言葉も全く同様に定義できる．上に有界かつ下に有界な数列を有界な数列と呼ぶ．

例： an = 1− 1
n
, n ∈ N, で定義される数列は任意の n に対して an ≤ 1 なので，上に有界である．この

証明をするときに「任意の n に対して an ≤ 2 なので，上に有界である．」と書いても正しい（正しい証明は
一通りではない）が，「任意の n に対して an ≤ 0.5 なので，上に有界である．」と書いたら嘘であるし，「任意
の n に対して an ≤ 1 + 1

n なので，上に有界である．」と書いたら，式自体は成り立っていても 1 +
1
n
は n

が変わると値が変わるので有界性を証明したことにならない．

実数の集合 A に対して同様に有界ということを定義する．即ち，A ⊂ R が上に有界とは，実数 c が存在

して全ての a ∈ A に対して a ≤ c となることを言う．下に有界，有界なども同様である．
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定義 2 (上限) 上限は上に有界な数列の「最大値」の気持ちを表す量である．

上に有界な実数列 {an} の上限 sup
n∈N

an とは，次を満たす実数 c のことを言う．

(i)全ての n に対して an ≤ c ,
(ii) b < c ならばある n に対して an > b .

（条件のうち前者だけなら，有界の定義から当然存在する．２つの条件を同時に満たす１つの数 c というと

ころが重要．）

実数の集合 A の上限 supA も同様に定義される：

(i) 全ての a ∈ A に対して a ≤ supA ,
(ii) b < supA ならばある a ∈ A に対して a > b .

数列も実数の集合として扱えるので，sup
n∈Z

an = sup{an | n ∈ N} とも書く．
下限も同様に定義される．

たとえ有界な数列であっても極限は存在するとは限らない．例えば an = (−1)n．だから何かの量を定義す
る度に，その量が本当にいつでも存在するのかどうか確かめないといけない．

実数の集合 R は上に有界な集合に上限（実数値）が必ず存在すると約束する．

A が上に有界でないときには supA =∞ という記号を使う（上限はない，と呼ぶのは変わらない）．数列
でも同様．そして，任意の実数 a に対して a <∞ を正しいと定義する．この記号を使えば，任意の集合ま
たは数列の上限は実数値または ∞ の意味で確定する．
∞ は実数ではないことにする．（実数の公理の中に， ∞ �∈ R となる性質を約束する．）
下限に関して負の無限大 −∞ も正の無限大 ∞ と同様に用いる．−∞ < a <∞ (a ∈ R) と約束しておく

と，いくつかの公式が変数が実数または ±∞ に対して成り立つので便利．
あとで上極限の定義をするときに次の（簡単な）性質を使うので特記しておく．

命題 1 A ⊂ B ⊂ R ならば supA ≤ supB . 特に，{an} が {bn} の部分列ならば sup{an} ≤ sup{bn} .
ここで部分列とは自然数列 m1 < m2 < · · · が取れて an = bmn が全ての自然数 n に対して成り立つ

ことをいう．

証明. a ∈ A ならば a ∈ B だから a ≤ supB , 結論が成り立たないと仮定して supB < supA ならば，ある
a ∈ A に対して a > supB . この２つは両立しないから結論は成り立つ． ✷

§2.2 実数の公理．

準備ができたので実数についての約束事（公理）を書く．

定義 3 実数の集合 R とは次の性質を持つ集合である：

(i) R ⊃ Q . また，四則について閉じていることは細かく言わないが当然に仮定する．（細かくなるが，その
定義は，以下の公理（約束）と Q の四則の性質と矛盾しないようにすると自然に定まる．つまり，数列
の四則が極限で保存するようになっているとする．）
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(ii) 全順序集合（任意の２つの実数 x, y に対して x < y, x > y, x = y のいずれかが成り立つ集合）であ

る．なお，わざわざ言うのもおかしいが，この大小関係は有理数 Q ⊂ R では Q で既知とした大小関係

になっているとする．

(iii)実数の上に有界な集合には上限がただ一つ存在する．（あるとすれば一つである，というのは定義から明
らかなので，約束したのは「存在」である．）

(iv) どの実数に対しても，それより大きい自然数が存在する（アルキメデスの原理）．

この定義は「実数の集合だったらこうなる」という言い方なので，直感ではとらえにくい面がある．このよ

うな定義のしかたを定義と呼ばずに公理と呼ぶのが普通．

「実数の上に有界な集合には上限がただ一つ存在する．」という約束（公理）が実数の集合のキーポイ

ントである．

なぜキーポイントか？有理数の集合 Q では成り立たないからである！

上に有界な単調増加数列の上限は，意味を考えればその数列の極限である．（第 §3.2章 で定義することを
説明の都合で先取りする．）よって実数の公理から

「上に有界な単調増加数列は極限を持つ (収束する)」(9)

という主張が導かれる．有理数の集合ではこれが成り立たない．つまり，上に有界な有理数の単調増加数列

でも極限は有理数とは限らない！例：

(i) an = 1− 1
n
は単調増加で各項 1未満だから (9)によれば収束する．しかし，(9)によらなくても 1 に収

束．有理数の範囲で分かるので定義 3を持ち出すまでもない．
(ii) an+1 =

2an + 2
an + 2

, a1 = 1, は単調増加で a2
n < 2．なぜなら， a2

n < 2 が帰納的に言えて結果として増加

も言える．上の定義によればある実数に収束．極限は有理数でない（ピタゴラス学派が既に 2500年以
上昔にその証明を秘匿していたと聞く）ので，{an} の上限は Q の中に見つけられないが，代数方程式

x2 = 2 の解として理解できるので，定義 3は必ずしも必要ない．
(iii) an+1 = an +

1
n!
, a1 = 1 . an < 3 が証明できて，定義により収束．この極限

e = 1 +
1
1!

+
1
2!

+
1
3!

+ · · · = 2.718281828 · · ·

は代数的な方法で有理数を使って表すことはできない（超越数）．それでもそういう実数がある，と言

い切るときに 定義 3が意味を持つ．なお， e は自然対数の底，ネピアの eとも呼ばれる重要な頻出定数

である．

(iv) an = (1 +
1
n
)n で定義される数列も単調増加上に有界である．（極限は eになる．証明は二項定理を用い

る [高木貞治, 第 1章 4節 例 5]．）
(v) 実数を無限小数で表すのは数列 an = 0.c1c2c3 · · · cn, n = 1, 2, 3, · · ·, に対して 定義 3 の c を対応させる

こと．

実は，より弱い性質にみえる「上に有界な単調増加数列は上限を持つ」だけで「実数の部分集合であって

上に有界な集合には上限がただ一つ存在する」という性質が導ける．

命題 2 単調増加数列についてのみ上限の存在を認めれば，任意の有界集合に対しても上限が存在する．

極限という概念に比べたときの上限という概念の価値は，有界な数列には上限が必ずある点である．

証明のあらすじは 第 §19.2章 に回す．

注. 「アルキメデスの原理」の気持ち．
わざわざ言及するとちょっと気持ち悪いと感じる諸君もいると思うが，これを仮定しない立場というのも

一応あり得る．仮定する立場と仮定しない立場の違いを突き詰めると，アルキメデスの原理とは，±∞ を実
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数や自然数として認めない，という要請をしたことになる．解析学では極限と不等式を併用するので，±∞
と実数を別に分けて考える必要がある．

∞ は実数ではないことの証明．もし実数だとすると，アルキメデスの原理から，∞ < n を満たす自然数

n があるはずだが，∞ の記号の約束（任意の実数 a に対して a <∞）と矛盾する．

§3 不等式と極限．

§3.1 不等式．

不等式について説明することは殆どないだろう．

実数が全順序集合であること，即ち，任意の２つの実数 a, b の間に a = b, a < b, a > b, のいずれかが成
り立つことは既に言及した 定義 3．
x < y か x = y のどちらかが成り立つ（正しい）とき x ≤ y とも書く．例えば 2 < 3 と 2 ≤ 3 はどちら

も正しい．x が 2 または 3 のどちらかであることは分かっているがどちらであるか分からない（x ∈ {2, 3}
の）とき，x < 3 や x = 3 は正しいとは言えないが x ≤ 3 は正しい．

max{a, b} = 1
2
(a+ b+ |a− b|), min{a, b} = 1

2
(a+ b− |a− b|),(10)

はそれぞれ a, b の大きい方と小さい方を表す．

復習を兼ねて簡単な事実を示しておく．

命題 3 (有理数の稠密性) 任意の異なる有理数 a, b の間には（無数の）有理数がある．

証明. a < b として一般性を失わない（a > b でも全く同様の証明が成り立つ，という意味）．m = (a+ b)/2
は有理数であって a < m < b を満たすことは容易に分かる．

a と m および m と b に対して同様の議論を繰り返すことができる．これを繰り返せば無数の互いに異な

る有理数を得る． ✷

|a| − |b| ≤ |a+ b| ≤ |a|+ |b| (三角不等式)

は任意の２つの実数 a, b に対して成り立つ頻出の公式である．

問題． 三角不等式が全ての実数 a, b に対して成り立つことを証明せよ (命題 37)．

§3.2 数列の上極限，収束，極限．

この講義では極限は数列の極限と関数についての極限が登場する．主に，前者は実数の根本的な性質（—bf
実数の連続性）に関連し，後者は関数の解析的性質（関数の連続性や微分）に関連する．次節の実数の説明

に備えるために，ここでは数列の極限に即して用語を定義する．
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問題点は何か． これから，いくつかの単語を定義する．なぜか？

最終的に定義したいのは極限だが，周知のように極限は必ずあるとは限らない．上極限は上に有界な数列

なら必ず存在する．極限の存在しない数列があることは良く知っているだろうが，極限が存在しなくても n

が大きくなるときの an の傾向を示す量が必ず存在してほしい．上極限は，n が大きいときの an たちの「最

大値の極限」である．例えば an = (−1)n のとき，上極限は lim
n→∞ an = 1 であり，下極限は lim

n→∞ an = −1
である．そして上極限と下極限が一致するとき極限がある，と定義することができる．

定義 4 (上極限) 「プレ」極限の概念として上極限がある．これは数列の遠く（大きな n）のほうの上限と

いう気持ちである．

数列 {an} の上極限 lim
n→∞ an とは単調減少数列 bN = sup{an | n = N,N +1, N +2, · · ·}, N ∈ N, の

下限のことを指す．

定義を式で書けば，

lim
n→∞ an = inf

N∈N
sup
n≥N

an .(11)

{bN} が単調減少数列になるのは 命題 1 による．bN は全ての N で ∞ かもしれないが，このときは

lim
n→∞ an =∞ と約束する．そうでなければあるところから（実は最初から） bN は実数列になる．定義 3 よ

り，有界な単調減少実数列の下限は（実数値で）存在する．有界でない場合は lim
n→∞ an = −∞ と書く．即ち，

上極限は実数または ±∞ の意味で全ての数列に対して確定する（定義される）．
下極限 lim

n→∞
an も同様．

上限や下限は数列の n の小さい方も影響するが，上極限や下極限は n が大きくなった「ずっと遠くの傾

向」のみが影響する．

lim, lim はそれぞれ上（下）極限を表す一つの記号．limsup とも書くが，sup をとってさらに lim を
とる，という意味ではない！

定義の気持ち．(11) のねらいはあくまで an の「極限」を求めたいということ．だけど，極限は ±∞ を
許しても常にあるという保証がない．振動が消えない場合，例えば an = (−1)n は極限がない．他方，単調
数列ならばそういう振動が起きないから ±∞ を許せば必ず極限（つまり近づいていく先）があることは直

感的に明らか．そこで一般の数列の遠方 n → ∞ の振る舞いを，単調数列に翻訳したい．上限の列 sup
n≥N

an,

N = 1, 2, 3, · · ·, や下限の列 inf
n≥N

an, N = 1, 2, 3, · · ·, は命題 1から単調数列になるから，それぞれ極限があ

る．それを，それぞれ lim
n→∞ an, lim

n→∞
an, と書いた．

sup
n≥N

an, N = 1, 2, 3, · · ·, の極限ならば，

lim
n→∞ an = lim

N→∞
sup
n≥N

an

と書けば良さそうに思うかもしれない．この式は正しい．(11) のように inf
N∈N

という書き方をしたのは，単

にまだ lim という記号を定義していないから！（つまり，これから lim を定義しようとしている！）

lim
n→∞ an とは supn≥N an の N →∞ の極限のこと！

定義 5 (収束と極限) ある実数列 {an} の上極限と下極限が実数値であってかつ一致するとき，その数列は
収束するといい，その値を {an} の極限値と呼ぶ．あるいは {an} がその値に収束する，とも言う．一致す
るけれども ∞ (−∞) のとき正（負）の無限大に発散する（収束しない），という．ここまで含めて極限と呼
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ぶこともある．（この講義では値と言ったら原則実数値． ∞ は値とは呼ばない．）それ以外の場合は収束も発
散もしない．

例：上に有界な単調増加数列の上限はその極限である．

例２：an = (−1)n で定義される数列の上極限は 1，下極限は −1，収束はしない（極限はない）．
極限を lim

n→∞ an と書く．例： lim
n→∞(1− 1/n) = 1．このことを 1− 1/n→ 1 とも書く．

定義 5 の収束の定義は通常次の同値な性質で定義する (第 §19.2章)．そのほうが

(i) 連続変数に関する収束の定義に拡張しやすい，
(ii) 他の定理を証明するのに便利，
(iii) 数列が「近づいていく先を極限と呼ぶ」という気持ちが表れている，

等の理由から．

命題 4 {an} が α ∈ R に収束することと次の性質は同値である：

(∀ε > 0) ∃n0; n ≥ n0 =⇒ |an − α| < ε .

an →∞ と次の性質は同値である：

(∀R > 0) ∃n0; n > n0 =⇒ an > R .

an → −∞ でも同様の同値な条件がある．

この証明はこの講義では行わないが，難しいものではないので，興味があれば練習問題として考えてほしい．

極限に関しては（直感的に明らかな）種々の基本性質がある (第 §19.3章)．
数列は収束するとは限らない．収束の必要十分条件（同値な条件）の一つに次が知られている．

命題 5 (コーシー列の収束) n,m→∞ のとき |an−am| → 0 となる（即ち，任意の ε > 0 に対して n0 ∈ N

があって，n ≥ n0 かつ m ≥ n0 ならば |an−am| < ε が成り立つ）数列は収束する．（逆も明らかに成り立つ．）

仮定されている性質を持つ数列をコーシー列と呼ぶ．即ちこの命題の主張は実数列はコーシー列と収束が同

値である，ということ．これも 定義 3 から証明できることだが，ここでは証明は略して先を急ぐ（あらすじ
は 第 §19.2章）．この条件は極限の値を前もって知らなくても収束が判定できる点で役に立つ．
例２． an = (−1)n で定義される数列が収束しないこと．これをコーシーの条件から言うには，命題 5 の

主張の逆を作らないといけない．

§3.3 上下限，上極限，下極限の計算例．

上限，下限，上極限，下極限の定義が直接的でないので，実際に sup
n
an, lim

n
an = inf

N
sup
n≥N

an などを求め

るのは「知恵」を要し，それが求める値であることを示すには「証明」を要する．

極限が高校時代にも習っていてなじみがあるのに

簡単に求まる場合：

命題 6 (i) {an} が単調増加ならば supn≥1 an = lim
n→∞ an , infn≥1 an = a1 . 一般に N = 1, 2, 3, · · · に対して

supn≥N an = lim
n→∞ an , infn≥N an = aN . よって，

lim
n→∞ an = lim

n→∞ an = lim
n→∞

an .

(ii) {an} が単調減少ならば infn≥1 an = lim
n→∞ an , supn≥1 an = a1 . 一般に N = 1, 2, 3, · · · に対して

infn≥N an = lim
n→∞ an , supn≥N an = aN . よって，

lim
n→∞ an = lim

n→∞ an = lim
n→∞

an .
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証明. いずれも定義に戻れば容易である． ✷

例題．

(i) an = 1− 1
2n および

(ii) an = (−1)n
(
1 + 1

n

)
について lim

n→∞ an と lim
n→∞

an を求めよ．さらに {an} が収束するかどうか判定せよ3 ．

解． 定義から

lim
n→∞ an = inf

N
sup
n≥N

an , lim
n→∞

an = sup
N

inf
n≥N

an .

(i) (1− 1
2n ) ≤ 1 かつ，b < 1 ならば（ n を十分大きくすると）(1− 1

2n ) > b となる（詳しく言うと，アル
キメデスの原理）．この数列は単調増加なので N がいくつであっても以上の結論は成り立つ．だから，

定義より

sup
n≥N

(1− 1
2n ) = 1 .

これは N によらないから，その下限も 1 である．

lim
n→∞ an = inf

N
sup
n≥N

an = inf
N

1 = 1 .

この数列は単調増加なので，n ≥ N では an ≥ aN．よって inf
n≥N

an = aN . sup
N
aN = sup

n
an = sup

n≥1
an は

上で求めたとおり 1 である．よって，

lim
n→∞

an = sup
N

inf
n≥N

an = sup
N
aN = 1 .

lim
n→∞ an = 1 = lim

n→∞
an なので an は収束し，極限は 1 である．

(ii) 最初に

sup
n≥N

an =

{
aN , N が偶数のとき，

aN+1 , N が奇数のとき，

を示す．奇数次の項は負，偶数次の項は正なので，上限は偶数次の項の中にある．偶数次だけ見ると，n

とともに減少しているので，上限は最初のほうの項である． n ≥ N ではN 以上の最初の偶数番目の項

が求めるものである．よって主張は示された．

bN = sup
n≥N

an の下限を求める．bN は an の偶数次の項からなるが， n が偶数ならば an ≥ 1 である．他

方，n を十分大きくすると an の偶数次の項は an =
(
1 +

1
n

)
なので，上と同様 1 に近づく．つまり，

b < 1 ならばいつかは an > b となる．よって，

lim
n→∞ an = inf

N
bN = 1 .

inf
n≥N

an についても同様に考えると，奇数次の（負の）項のみ考えればよい．負の項だけ見ると増加して

いるから，下限は最初のほうの項．よって

inf
n≥N

an =

{
aN , N が奇数のとき，

aN+1 , N が偶数のとき．

3 2000 年度名古屋大学数学基礎 I T.A. 多元数理科学研究科 M2 中尾充宏君出題．
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cN = sup
n≥N

an の上限は，上と同様に考えると，−1 になることが分かる．よって，

lim
n→∞

an = inf
N
cN = −1 .

lim
n→∞ an = 1 �= −1 = lim

n→∞
an なので an は収束しない．

§4 関数の連続性．

関数の話に戻る．

X ⊂ R に対して f : X → R が（X を定義域とする，X 上の）実数値関数とは，どの x ∈ X に対しても
ただ一つ実数値が対応していることであった．x を変数と呼ぶ（だから 1変数関数とも）．例：X = [a, b] ま
たは X = (a, b) などがこの講義では普通に用いられる．この講義は夏学期は（実数）1変数実数値関数しか
扱わない．

関数というだけではあまりにいろんなものが許される．例： f(x) =

{
1, x ∈ Q,

0 otherwise,
は [0, 1]上の実数

値関数 f : [0, 1]→ {0, 1} を定義する（[0, 1]上のどの x に対しても一つ，ただ一つ f(x) が値として決まって
いる！）が，これをグラフに書こうとすると y = 0 と y = 1 という２本の直線を書くより他になく，その実
体はとてもグラフからは読みとれない．実際はどの点の近くも 0 と 1 の間を限りなく行ったり来たりして，
不連続（もちろん微分もできない）．このような関数は解析学では取り扱いにくい（但し積分はできる）．

別の例： f(x) =

{
sin(1/x), x �= 0,
0, x = 0,

も [0, 1]上の関数を定める．この関数は x = 0 の付近で「正体不

明」になる．

注. (i)実際はこの式で R上の関数が定義できるが，これは極めて堅苦しく考えると別の関数ということに
なる．関数というときは，対応を定める方法（式）と定義域を両方明示して初めて一つの関数，という

ことになる．もちろん通常そうするように混同しても被害が大きいことは少ない．また f : A→ R と
A ⊃ B があると自然に f : B → R と思い直すことができる（f の B への制限）．このようなことは自

由にできる．

(ii) x = 0 のとき 1/x は定義されないから， sin(1/x) だけでは x = 0 のところの関数値が定まらず，[0, 1]
上の関数を定義したとは言えない．（これも直感的には当たり前のことしか言っていないという意味では

堅苦しいことだが，しかし，こっちの話はいい加減にし過ぎるとたまに計算を間違えることがある．）

この講義で取り扱うのは（定義域上「ほとんど」の点で）何回でも微分できる関数だけである．「正体不明」

な点はあまりない，ということを前提にする．そのために，連続や微分ということを復習しておく．

微分可能ならば連続なので，少なくとも（「ほとんど」の点で）連続な関数でないといけない．微分の話に

はいる前に，連続ということを復習する．

§4.1 実数値変数の場合の極限．

1変数実数値関数 f : X → R がある点 x ∈ X で連続というのは，気持ちは「y が x に近づくとき

f(y) が f(x) に近づく」ということである．「近づく」ということを定義として述べるには，数列の収
束の性質に合わせて定義すべきである．数列のときは n が自然数の値をとりながら大きくなる場合し

か極限や収束ということを定義しなかったので，連続変数（実数値変数）への定義の拡張（追加）が

必要．

上極限と下極限の一致という定義を拡張したものを採用する．（数列の収束を用いて定義を拡張する試みを

第 §20.1章 に記録しておく．ただし講義録をわかりやすくする目的には有効ではないと思う．）
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定義 6 上極限． lim
x→x0

f(x) = inf
δ>0

sup
0<|x−x0|<δ

f(x) を x が x0 に近づくときの f(x) の上極限という．

ここで， inf
δ>0

G(δ) = inf{G(δ) | δ > 0} および， sup
0<|x−x0|<δ

f(x) = sup{f (x) | 0 < |x− x0| < δ}
である．以下類似の記号は同様に， sup, inf の下に書いてあるのが集合を規定する条件，右に
書いてあるのが集合の要素の一般形，その集合の上限，下限という意味．

下極限． lim
x→x0

f(x) = sup
δ>0

inf
0<|x−x0|<δ

f(x) を x が x0 に近づくときの f(x) の下極限という．

実数の性質より上限，下限は ±∞ を許せば必ず存在するので，上極限，下極限は必ず存在する．

収束，極限． lim
x→x0

f(x) = lim
x→x0

f(x) のとき，f は x→ x0 で収束すると言い，その値を極限という．

lim
x→x0

f(x) = lim
x→x0

f(x) = lim
x→x0

f(x).

この定義のように x0 での f の値と極限値 β の関係は問わない（連続，という概念で別に扱う）．（従って f

は (a, x0) ∪ (x0, b) で定義されていれば lim
x→x0

f(x) は定義される．）

実際上の意味は直感的に知っているとおりである．そのことをふまえてこの講義では具体例に関しては多

くの場合，「近づく」というイメージで議論する．（実際にはこの講義で紹介する結果は「イメージ」によらず

に定義から証明可能であり，数学者はそのようにして全て証明している．曖昧な言葉があぶないときは数学

者は定義に基づいて結論を下す，ということだけ知っていれば当面は十分．）

連続変数の場合の収束は 命題 4 の性質も拡張しやすい．

命題 7 定義 6 でいう limx→x0 f(x) = β と次は同値．

(∀ε > 0) ∃δ > 0; x ∈ (a, b), 0 < |x− x0| < δ =⇒ |f(x)− β| < ε .

この証明もこの講義では行わないが，数列の場合 (命題 4) と同様に難しいものではない．
例： lim

x→1
(1− x) = 0, lim

x→1
1/(1− x3) は存在しない． lim

x→1
(1− x)/(1− x3) = lim

x→1
1/(1+ x+ x2) = 1/3（連

続変数についての極限の定義から， x = 1 で左辺が定義されている必要はなく，x �= 1 で成り立つ変形は全
て使ってよい）．

右極限 lim
x↓x0

f(x)，左極限 lim
x↑x0

f(x)，もよく使うが，意味は直感的に明らかだと思うので，詳しい定義等は

第 §20.1章 に回す．

§4.2 関数の連続性の定義．

連続変数に関する（関数の）極限を長々と持ち出した大きな理由は関数の連続性（同じ言葉を使うが実数

の連続性とは直接の関係はない）を定義するためである．

定義 7 x0 を含む開区間 X を定義域に含む（以後，このことを単純に開区間 X で定義された，と呼ぶ）関

数 f が x0 で連続であるとは

f(x0) = lim
x→x0

f(x)

が成り立つということ．

同様に f(x0) = lim
x↓x0

f(x) が成り立つとき，右連続，f(x0) = lim
x↑x0

f(x) が成り立つとき，左連続，と呼ぶ．

命題 7 より，次を直ちに得る．
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命題 8 f : X → R が x0 ∈ X で連続であるということと

(∀ε > 0) ∃δ > 0; x ∈ X, |x− x0| < δ =⇒ |f(x)− f(x0)| < ε

ということは同値である．

定義 8 定義域のどの点でも連続なとき，（その定義域で）連続関数であるという．即ち

(∀x0 ∈ X, ε > 0) ∃δ > 0; x ∈ X, |x− x0| < δ =⇒ |f(x)− f(x0)| < ε .

（ x �= x0 の制限がいらないのはなぜか？）

境界での連続性は左連続ないしは右連続で定義する．

直感的にはグラフがつながっているということだが，y軸に平行な線や「x の小さい方へ戻っていく」線でつ

ながっているのは不可．一つの x に対して二つ以上の点が対応することになって関数を表すグラフでなくな

るからである．

例：多項式は全実数で定義され，全実数で連続な関数である．これも以上の定義から証明できることであ

るが，各自の研究に任せる．

多項式を基本にして多項式列の「極限」（関数項級数）でもっと「高度な」関数を定義できる．解析学で「通

常」用いる関数はそういうものでほとんどつきている．例えば ex = exp(x) =
∞∑

n=0

xn

n!
の右辺は任意の実数 x

に対して収束して実数値を定めるので，実数上の関数を定義できる（指数関数）．この関数は実数上の連続

関数だが，そのことは証明するのに準備を要する．f(x) = 1 + x+ x2 + · · · で定義される関数は −1 < x < 1
で定義されている．実際そこでは f(x) = 1/(1− x) となるので， x = −1 では f(−1) = 1/2 と定義してやれ
ば右連続に拡張できる（さらに f(x) = 1/(1− x) で定義すれば x �= 1 で連続関数になるようにできる）が，
x = 1 ではどうやっても連続関数にはならない（∞ は実数値ではないので，この講義で扱う関数の値 f(1)
としては許さない）．

本当はこのような関数項級数の解析性を議論するために解析学のかなりの部分が精密化された．

実際の証明は工夫を要する場合もある．例：

| sin(a+ h)− sin(a)| = 2| cos(a + h/2) sin(h/2)| ≤ |h|

が任意の実数 a, h に対して成り立つので sin(x) は R で連続関数である．

次の補題は気持ちを考えると「当たり前」の内容だが，命題 10, 命題 25, 命題 26 などで（当然のごとく）
使うので，例題の代わりに掲げておく．

補題 9 (i) f が aを含む開区間で定義された関数で a で連続とし，g が f(a)を含む開区間で定義された関
数で f(a) で連続 (limx→f(a) g(x) = g(f(a))) とする．このとき，

lim
x→a

g(f(x)) = g(f(a)) .(12)

(ii) f が aを含む開区間で定義された狭義単調増加関数で a で連続とし，g が f(a)を含む開区間で定義され
た関数で limx→f(a) g(x) = α が存在するとする．このとき，

lim
x→a

g(f(x)) = α .(13)

注. 前半と後半で仮定がかなり違う．
前半で，極限の存在だけでなく g の連続性も要求するのは，x が a に近づく途中で f(x) = f(a) が何度も

起きる可能性があるので，x = f(a) で g が連続でないと困る．

逆に後半では f の単調増加性を仮定したので，x が a に近づく途中で f(x) = f(a) が起きない．
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証明. (i) 極限を lim = lim で定義する立場で証明を書いてみる．
g が f(a) で連続だから，

lim
y→f(a)

g(y) = lim
y→f(a)

g(y) = g(f(a)),

即ち，

inf
δ>0

sup
|y−f(a)|<δ

g(y) = sup
δ>0

inf
|y−f(a)|<δ

g(y) = g(f(a)).

即ち，どんな ε > 0 を持ってきても，

sup
|y−f(a)|<δ

g(y)− ε < g(f(a)) < inf
|y−f(a)|<δ

g(y) + ε

となる δ > 0 がある．y = f(x) と書き換えると，

sup
|f(x)−f(a)|<δ

g(f(x))− ε < g(f(a)) < inf
|f(x)−f(a)|<δ

g(f(x)) + ε(14)

f が a で連続だから，

lim
x→a

f(x) = lim
x→a

f(x) = f(a).

即ち，上と同様に考えると，特に上記の δ に対して，

sup
|x−a|<δ′

f(x)− δ < f(a) < inf
|x−a|<δ′

f(x) + δ

となる δ′ > 0 がある．これを書き換えると

|x− a| < δ′ =⇒ |f(x)− f(a)| < δ

となるから，(14) とあわせると，

sup
|x−a|<δ′

g(f(x))− ε < g(f(a)) < inf
|x−a|<δ′

g(f(x)) + ε

を得る．ε > 0 が何であってもこのような δ′ > 0 が存在するから

inf
δ′>0

sup
|x−a|<δ′

g(f(x)) ≤ g(f(a)) ≤ sup
δ′>0

inf
|x−a|<δ′

g(f(x)).

最右辺は最左辺より小さいことはあり得ないので，実際は等号が成り立つ．これは

lim
x→a

g(f(x)) = inf
δ>0

sup
x; |x−a|<δ

g(f(x)) = g(f(a)),

即ち (12) を意味する．
(ii) 極限を ε–δ論法で定義する立場で証明を書いてみる．

limx→f(a) g(x) = α が存在するから，

(∀ε > 0) ∃δ′ > 0; 0 < |y − f(a)| < δ′ ⇒ |g(y)− α| < ε .

y = f(x) を代入すると

(∀ε > 0) ∃δ′ > 0; 0 < |f(x)− f(a)| < δ′ ⇒ |g(f(x))− α| < ε .

f が aで連続なので，命題 8 から，この δ′ に対して

∃δ > 0; |x− a| < δ ⇒ |f(x)− f(a)| < δ′ .
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0 < |f(x)− f(a)| と f(x) �= f(a) は同値だから，

(∀ε > 0) ∃δ > 0; |x− a| < δ, f(x) �= f(a) ⇒ |g(f(x))− α| < ε .

f が狭義単調増加ならば f(x) �= f(a) と x �= a は同値なので，

(∀ε > 0) ∃δ > 0; 0 < |x− a| < δ, ⇒ |g(f(x))− α| < ε

と書き直せる．これは (13) を意味する．
✷

命題 10 (i) n ∈ Z+ のとき f(x) = xn で定義される関数は連続関数である．

(ii) 二つの連続関数の和差積商も連続関数である．但し商については定義域（商を考察する実数の範囲）に
おいて分母に来る関数が 0 にならないとする．

(iii)二つの連続関数 f , g について，（g の値域が f の定義域に含まれているならば，）合成関数 f ◦ g : x �→
f(g(x)) も連続関数である．

証明は第 §19.3章などの極限に関する基本性質を用いるが省略する．

§4.3 関数列と一様収束．

関数列． たとえば fn(x) = xn, n = 1, 2, 3, · · ·, で定義された [0, 1]上の関数列 fn : [0, 1]→ R, n ∈ N, を
考える．命題 10 で注意したようにこれは連続関数の列である．等比数列で既知のように x ∈ [0, 1] を決める
毎に {fn(x)} は収束する等比数列だから，その（各点毎の）極限として得られる関数を f とおくと，

f(x) = lim
n→∞ fn(x) =

{
0, 0 ≤ x < 1,
1, x = 1,

を得る． x = 1 で f は（左）不連続である．

連続関数の関数列の（各点毎の）極限の関数は（極限が存在しても）連続関数とは限らない．

ある意味で当然で，各点毎に個別に収束を調べているから，連続性という x を動かしたときの f の値の「つ

ながり」が保証されないとしてもやむを得ない．

極限でも連続関数になることを保証するためには，x 全体の構造（収束の様子）を「見渡しながら」極限

をとるべきである．そのような，極限関数の連続性を保証する収束の概念が一様収束である．

一様収束．

関数列 fn, n = 1, 2, 3, · · ·, が関数 f に（E 上で）一様収束するとは

lim
n→∞ sup

x∈E
|fn(x)− f(x)| = 0

が成り立つことを言う．

つまり，定義域全体で一番収束のおそいところをいつも見渡しながら，それでも収束する，というこ

とを言う．

例題． 前述の（各点収束極限が連続関数にならない例）fn(x) = xn, n = 1, 2, 3, · · ·, について，一様収束し
ていないことを示せ．

定義から次の結果を得る．この定理もこの講義では証明を割愛する．
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定理 11 連続関数の列が E で一様収束していれば極限関数は E で連続関数になる．

§5 中間値の定理と最大値の定理．

§5.1 中間値の定理と逆関数．

連続ということをきちんと定義したのは複雑微妙な問題を扱うのが本来の目的だが，当たり前のことも証

明できなければ複雑なことが扱えるわけはない．その点心配がないことは大昔に研究が済んでいる．

定理 12 (中間値の定理) 有界閉区間 [a, b] で連続な関数 f が f(a) �= f(b) を満たすとき，f(a) と f(b)
の間の任意の実数 γ に対して， [a, b] の間で f はこの値をとる：

∃c; a ≤ c ≤ b, f(c) = γ .

略証は 第 §20.2章 に任せる．

定義 9 関数 f : X → R が（単調）増加であるとは x < y, x, y ∈ X, ならば必ず f(x) ≤ f(y) が成り立つ，
ことをいう．（非減少と呼んだほうが間違いがないかもしれないが，かえって分かりづらいので増加と呼ぶ．）

関数が減少ということも同様に定義する．単に関数が単調と言えば増加関数または減少関数のことを指す

ことにする．

x < y, x, y ∈ X, ならば必ず f(x) < f(y) が成り立つ，とき，そのことを強調するためには狭義単調増加
と呼ぶ．

次の結果は 1変数実数値関数では当たり前のことだが，関数の定義で述べたこと (第 §1.3章) の精密化と
して，また， 2変数関数の場合（後期参照）の伏線として書いておく．

命題 13 f : [a, b] → R が連続な狭義単調増加関数ならば区間 [f(a), f(b)] で定義された逆関数 f−1 :
[f(a), f(b)]→ R が存在する（即ち各点毎にただ一つ値が定まる）．しかもこの関数は連続である．

略証は 第 §20.2章 に任せる．

§5.2 初等関数の逆関数．

三角関数 sin, cos, tan は知っているものとしよう (第 D章 参照)．
逆数と三角関数の合成関数も名前が付いていることは知っているとしよう：cosecx = 1/ sinx, secx = 1/ cosx,

cot x = 1/ tanx. sinx は [−π/2, π/2] で狭義単調増加で連続関数であって sin
(
±π
2

)
= ±1 なることは知っ

ているので，命題 13 によって，逆関数は [−1, 1]上で定義された連続関数である．これを sin−1 x あるいは

arcsinx と書く：arcsin(sin x) = x, −π/2 ≤ x ≤ π/2 , sin(arcsinx) = x, −1 ≤ x ≤ 1 . （定義域と値域を確
認せよ！）

sinx は [π/2, 3π/2] で狭義単調減少で連続関数だから値を [π/2, 3π/2] にとる sinx の逆関数も考えられる．
通常最初に書いたものを sinx の逆関数とする．そのことを明確にしたいときは Sin−1x と大文字にする．

同様に cosxは [0, π]で狭義単調増加で連続関数だから [0, π]に値をとる逆関数 arccosx = cos−1 xが [−1, 1]
上で考えられる．これも逆関数の値の取り方は一つでないから，[0, π]に値をとるものと明示するために Cos−1

を使うこともある．最後に tanx は (−π/2, π/2) で狭義単調増加で連続関数であり，limx↓−π/2 tanx = −∞,
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limx↑π/2 tanx =∞,だから，実数上で定義された −π/2, π/2)に値をとる単調増加連続関数 arctanx = tan−1 x

が存在する．

第 §4.2章 で触れたように指数関数 expx = ex が定義できるが，全実数を定義域として単調増加で値域は

正の実数なので，x > 0 で定義された逆関数が存在する．それが対数 log x = loge x であることも周知であ

ろう．通常数学で底を明示しなければ e を底とする自然対数である．但し工学では log x = log10 x を（常用

対数）底を明示せず loge x = lnx と書くことも多い．自然対数は微積分の公式が容易なので数学では自然対
数を基本に考える．

§5.3 最大値の定理．

関数 f : X → R について， x0 ∈ X があって，f(x) ≤ f(x0), x ∈ X , が成り立つとき f(x0) を f の X

における最大値と呼ぶ．最小値も同様に定義される．最大値や最小値を求めることは実用上必要になること

が多い．

Y ⊂ X のとき f を自然に f : Y → R と思うことができる（強調する必要のある問題では関数の制限と
呼ぶ）ので，Y における最大値（最小値）という．

定理 14 (最大値の定理) 有界閉区間 [a, b] 上の連続関数 f : [a, b]→ R は次の性質を持つ．

(i)有界である．
(ii) 最大値および最小値をとる．

略証は 第 §20.2章 に任せる．
最大値というときは f(x0) と，f が実際にとる値（関数の定義から当然実数値）．一般的には閉区間でな

いといけない理由は，(0, 1] における f(x) = 1/x .
定理 14はロルの定理 補題 18 の証明で使う．ロルの定理はそのあとの平均値の定理 定理 19 の準備となる

定理だが，平均値の定理は微分法に関する種々の公式（定理）等を導くかなめの定理である．

問題．

f : [a,∞) → R が連続で lim
x→∞(f(x + 1) − f(x)) = c ならば lim

x→∞ f(x)/x = c . (f(x) − cx で c = 0 に
帰着．)

連続関数の合成関数は連続関数である．

2 微分法．

微分法というとき微分係数（特定の注目点での値）と導関数（各点毎に値が決まるという意味で関数とみ

なして，その関数としての性質に注目，例えば２階以上の微分）の２つの側面がある．実際は混用する．

§6 微分法の基礎．

（１変数関数の）微分係数や導関数は既知であろうけれども，あまりに重要な概念なので復習することに

何の損もない．ただし，復習であることと，極限と連続ということについて十分講義したことにより，さらっ

とすませる．
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§6.1 微分係数と導関数．

定義 10 ある実数の区間上で（区間を定義域に含んでいることをいう）関数 f が定義されているとき

に，区間の内部のある点 x に対して極限 lim
h→0

f(x+ h)− f(x)
h

が存在するとき，f は点 x で微分可能

であるといい，上記極限を f ′(x) または
d f

dx
(x) と書いて，f の点 x における微分係数と呼ぶ．

区間の各点で微分係数が存在するとき，対応 x �→ f ′(x) によってその区間上で関数が定義できる．こ

の関数を f の導関数と呼び，f ′,
d f

dx
などと書く．

注. (i)上記極限は h = y − x とおけば d f

dx
(x) = lim

y→x

f(y)− f(x)
y − x とも書ける．

(ii) 導関数は 第 §1.3章 の意味で一つの関数である．但し，与えられた関数 f を与えると，上記の定義で

（存在すれば）自動的に一つに決まるという意味で「f から導かれた」関数という気持ちで導関数という

名前がある．定義域は f の微分係数 f ′(x) が存在する x の集合（またはその部分集合）．

(iii) 関数を x–y 平面に書くとき (x, f(x)) に点を対応させることから y = f(x) と書く．この意味で f の導

関数を y′ と書くこともある．

微分に関する種々の公式はあとでまとめることにして，ひとまず線型性と x′ = 1, c′ = 0, が定義からすぐ
出ることは周知であろう．

もう一つ，定義からすぐに示せる次の注意をしておく．

命題 15 関数がある点で微分可能ならばその点で連続．

注. この性質はあまりにもよく用いられるので，以下では断らず（引用せず）に証明に使う．

証明. ２つの極限（ lim
x→x0

f(x) = α と lim
x→x0

g(x) = β とする）が存在することが分かっていれば積（f と g の

定義域の共通部分を定義域とし，(f g)(x) = f(x) g(x) で定義される関数）も極限が存在して，２つの極限値
の積になる： lim

x→x0
f(x) g(x) = αβ という事実を使い，微分の定義と連続の定義を比べる（以下証明の完成

は各自）． ✷

関数論の立場から見ると一点での連続性や微分係数はたいへん「弱い」情報である．その間の関連を付ける

この命題の意味は深く考えるよりは，一点での連続性と微分可能性がこのような単純な上下関係に定義から

なっている，と覚えておくのがよかろう．

§6.2 接線．

関数 f が aを含む開区間 U で定義されているとする．曲線 y = f(x) (平面内の集合 {(x, y) | y = f(x), x ∈
U} のことを普通こう書く)上の点 P (a, f(a)) を通る直線 $ を考える．曲線上に P と異なる点 Q(x, f(x)) を
とり， Q から $ に下した垂線の足を H とする．直線 $ が点 P における y = f(x) の接線であるとは

lim
x→a

QH

PQ
= 0

が成り立つことを言う．即ち，曲線と $ の距離が交点 P からの距離に比べて高次の微小量であるような $ が

もしあれば，それを接線と呼ぶ．
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命題 16 f が点 a で微分可能である（f の微分係数 f ′(a) が存在する）とき曲線 C : y = f(x) 上の点
P (a, f(a)) における接線がただ一つ存在し，y = f(a) + f ′(a)(x− a) で表される．
このことから，微分係数の図形的意味は接線の勾配であることが分かる．事実上，高校時代に習っているこ

とでもあり，ここでは直感的に理解すればいいので，証明は 第 §21章に譲る．

§6.3 極値．

X ⊂ R 上で定義された関数 f : X → R の最大値や最小値は 第 §5.3章 で定義した：

x0 ∈ X があって，f(x) ≤ f(x0), x ∈ X , が成り立つとき f(x0) を f の X における最大値と呼ぶ．

Y ⊂ X のとき f の Y への制限を考えてそこでの最大値（最小値）を考えることができることも注意した．

ここでは最大値（最小値）の局所化した概念として極値を定義する．実用上最終的に必要なのは最大値（最

小値）であることが多いが，その「候補」としての意義があることと，極値と導関数の間には以下に述べる

ような密接な関係がある（最大値と導関数の関係は極値を通しての間接的なものである）ことが導入の動機

である．

X ⊂ R 上で定義された関数 f : X → R が x0 ∈ X で極大値を取るとは X0 を含む開区間 I ⊂ X で
f(x) < f(x0), x ∈ I \ {x0}, を満たすものが存在することをいう．このとき f(x0) を（ x0 における）

f の極大値と呼ぶ．極小値も同様に定義する．

最大値と極大値は一致することも多いが，概念として違うものを見ているので違うことも多い．極値は最

大値（最小値）の「候補」ではある．

f(x) = x で定義される関数の X = [0, 1] における最大値は f(1) = 1 であるが，1 は X の端なので

1 ∈ I ⊂ [0, 1] なる開区間はとれないから，極値になれない．
定義域 X = [−1, 3]で f(x) = x3/3− x2/2 で定義される関数を考える．−1/2 < x < 1/2 かつ x �= 0 なら

ば x3/3− x2/2 = x2/2(2x/3− 1) < 0 なので（もちろん x < 3/2 でいいのだが，そこまで必要でない），f
は 0 で極大値 0 を取るが， f(3) = 9/2 > 0 なので f(0) = 0 は最大値ではない．
最大値や最小値は一つの関数と定義域を決めると一つの値に決まる（最大値を取る定義域内の点は複数か

も知れない）が，極値は（かってに制限した区間で最大値になればいいので）定義域の中に複数あるかも知

れない．最大値は定義域を制限すると変わりうるが極値は定義域の中に問題の点を含む開区間が含まれてさ

えいればいつも極値である．

極値と微分係数の関係の出発点は次の命題である．

命題 17 関数 f が c を含む開区間 I で定義され， c で微分可能とする．このとき f が c で最大値または最

小値または極値をとるならば f ′(c) = 0 である．

証明. f : I → Rが cで最大値を取るとすると，b ∈ I ならば f(b) ≤ f(c)だから，y > cならば f(y)− f(c)
y − c ≤ 0

かつ y < c ならば
f(y)− f(c)
y − c ≥ 0 に注意すると，f ′(c) = lim

y→c

f(y)− f(c)
y − c が存在するとしたら 0 しか許さ

れない（命題の仮定により存在するからその値は 0 である）．
最小値も同様，極値をとれば I のある部分区間で c を含むものが取れてそこに制限すれば f(c) が最大値

または最小値になるから，最大値または最小値の場合に帰着する． ✷

注. f は f ′ が存在するので連続だが， f ′ は連続でなくてもよい．実用上は（仮に f ′ が連続でなくても平均
値の定理等が成り立つのだから）ありがたいことだが，証明上は平均値の定理やテーラーの定理で，f ′ が連
続でない場合にも通用するように証明を組み立てる．ロルの定理 補題 18 の定理の証明で直ちに示すように，
最大値の定理 定理 14 と命題 17 はこのときに威力を発揮する．
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§6.4 平均値の定理．

導関数の符号ともとの関数の増減の関係は周知であろう．微分係数が接線の勾配に等しいという図形的意

味を考えて，f ′(a) が正 (負)のとき f は a で増加 (減少)と言いたいところ．しかし，増減は２点以上の比
較だから，他の情報なしに１点 a のみで関数の増減を言うのは実は分かりにくい話．むしろ区間を考えてそ

の区間で増減を論じるのが分かりやすい（結果として数学的に議論を厳密にしやすい）．

次のロルの定理はより一般的な平均値の定理を本質的に含んでいる．

補題 18 (ロルの定理) a < b とする．f は [a, b] で連続，(a, b) で微分可能とする．もし f(a) = f(b) なら
ば，(a, b) の間で微分係数が 0 になる点が少なくとも一つある．即ち， a < c < b かつ f ′(c) = 0 を満たす c

がある．

証明. f が [a, b] で定数ならば明らかなので定数でないとする．f は閉区間 [a, b] で連続だから最大値の定理
定理 14 より最大値 M = f(c1) と最小値 m = f(c2) をとる（M , m を与える c1, c2 が [a, b] にある）．定数
関数でないから M または m は f(a) = f(b) ではないから，c1 か c2 は a でも b でもない．仮に a < c1 < b

とすると命題 17 を I = (a, b) で考えれば f ′(c1) = 0 なので，c = c1 とおけばよい．a < c2 < b でも同様．✷

注. 導関数の連続性を仮定すれば，証明はもっと直感的になる．つまり，導関数が最初正だとすると，最後に
f が元の値に戻るから，いつかは導関数も負になる．導関数が連続ならば，導関数に中間値の定理を使って，

途中で f ′ = 0 となる点がある，と結論できる．上の証明では，f ′ の連続性がいらない！

導関数が連続関数だったら証明は導関数に対する中間値の定理で，直感的にもやさしいのに．それを

仮定しなくても証明できるところが最大値の定理の深さ，おもしろさ．

定理 19 (平均値の定理) a < b とする．f は [a, b] で連続，(a, b) で微分可能とする．このとき，[a, b] におけ
る f の平均勾配（平均変化率）に等しい微分係数（接線の傾き）を持つ点が (a, b) にある．即ち， a < c < b

かつ f ′(c) =
f(b)− f(a)
b− a を満たす c がある．

証明. A =
f(b)− f(a)
b− a , F (x) = f(x)−Ax, で [a, b]上の関数 F を定義すると F はロルの定理の条件を満た

すので a < c < b かつ f ′(c)−A = F ′(c) = 0 を満たす c がある． ✷

補題 18 から引き継いでいることだが，区間の両端以外に c を取れる．（この定理においては極めて重要な

ことではないが，一般論を議論するときには端を気にしないでいいというのは議論を楽にする．）

次の２つ結果は周知のことであろうが，導関数からもとの関数を求めるという意味では積分の問題に含ま

れるので，内容は見かけほど軽くない．

命題 20 （ある開区間で）可微分な関数（その区間の各点で微分係数が存在する関数）の導関数が恒等的に

ゼロならば定数関数．

証明. 区間内の２点 a �= b を任意に取ると，定理 19 より，a < c < b かつ f ′(c) =
f(b)− f(a)
b− a を満たす c が

ある．仮定より左辺は 0 なので f(b) = f(a) . これが区間内の任意の２点に対して成り立つ（a を一つに固
定して b を区間内で動かせば，どの f(b) も定数 f(a) に等しい）ので，f は定数関数． ✷
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命題 21 （ある閉区間で連続でその内部で）可微分な関数の導関数が恒等的に正ならばその関数はその閉区
間で狭義単調増加，恒等的に負ならば狭義単調減少．（あるいは，ある開区間で可微分な関数で同様の仮定の

下で，その関数はその開区間で同様の単調性を持つ．）

注. (i)導関数が 0 のことはここでは (ひとまず)許さない．導関数が不連続だと，きわどい例が起こりうる
から．（例えば導関数が無理点で 0，有理点で正，という可能性を排除しないといけない．）

(ii) 実際の状況では導関数も連続関数の場合が多い．そのときは中間値の定理定理 12を導関数について考え
ることで，「（ある閉区間で連続でその内部で）可微分な関数の導関数が連続で 0 になることがなければ，
その関数はその閉区間で狭義単調．」が成り立つことが分かる．

証明. 導関数が恒等的に正の場合を考えればあとは同様．(閉)区間内の２点 a, b を a < b を満たすように任

意に取ると，定理 19 より，a < c < b かつ f ′(c) =
f(b)− f(a)
b− a を満たす c がある．仮定により左辺は正な

ので f(b) > f(a) を得る．a < b は任意だったからこれは f の狭義単調増加性を意味する． ✷

§7 微分法の種々の公式（平均値の定理の応用）．

§7.1 ロピタルの定理．

極限に関する性質 第 §19.3章（を 定義 6 で連続変数に拡張したもの）から， lim
x→a

f(x) = α, lim
x→a

g(x) = β

が存在し，かつ，β �= 0 ならば lim
x→a

f(x)
g(x)

も存在して α/β に等しい．β = 0 の場合は，α �= 0 ならば

lim
x→a

f(x)
g(x)

= sgn(α)∞ となることも極限の定義にもどれば証明できる．α = β = 0 の場合（不定形）は微分

法の応用によって極限が計算できる場合がある．ロピタルの定理は不定形の極限への微分法の応用である．

先に 定理 19 をこの目的に使いやすい形に（見かけ上）拡張する．

命題 22 (コーシーの平均値の定理) a < b とする．f , g は [a, b] で連続で (a, b) で微分可能とする．g(a) �=
g(b) かつ g′(x) �= 0, a < x < b, ならば次を満たす c が a < c < b に存在する：

f(b)− f(a)
g(b)− g(a) =

f ′(c)
g′(c)

.

証明. F (x) = f(x)− f(b)− f(a)
g(b)− g(a) (g(x)− g(a)) で定義される [a, b]上の関数 F はロルの定理の仮定を満たす

ので， F ′(c) = 0 となる c が (a, b) に存在する．F ′(x) = f ′(x)− f(b)− f(a)
g(b)− g(a) g

′(x) だから定理を得る． ✷

定理 23 (ロピタル (l’Hospital)の定理) f , g は a を含む開区間 I で定義されていて微分可能で f(a) =

g(a) = 0，および， g(x) �= 0, x ∈ I \ {a}, g′(x) �= 0, x ∈ I, を満たすとする．このとき， lim
x→a

f ′(x)
g′(x)

が存在

するならば， lim
x→a

f(x)
g(x)

も存在して両者は等しい．

証明. 微分可能ならば連続なので f(a) = g(a) = 0 だから 命題 22 から
f(x)
g(x)

=
f ′(c)
g′(c)

となる c が (a, x) にあ

る．x が a に近づくと c も a に近づくから，右辺の極限が存在するという仮定により左辺の極限も存在して

両者は等しい． ✷

注. 以下は証明は略すが，下記例を見て意味を理解されたい．
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(i) 定理 23 の仮定のうち「 lim
x→a

f(x) = lim
x→a

g(x) = 0」 を「 lim
x→a

f(x) = lim
x→a

g(x) =∞」 に換えてもこの定
理（に対応する結果）が成り立つ．便宜上 ∞

∞ 型の不定形と呼ぼう．
4

(ii) 片側極限例えば x→ a の代わりに x ↓ a の場合でも対応する結果が成り立つ．
(iii) 連続関数の定義を用いれば，うまい連続関数を選ぶことで計算できる範囲がさらに増える（下記例参照）．
(iv) 証明の「気持ち」．

ロピタルの定理を必要としない場合．　 f , g が連続関数で， g(x) が x = a の付近で 0 にならないなら
ば，x が a に近づくとき f(x) は f(a) に近づくので，f(x)/g(x) は f(a)/g(a) に近づく．これが
連続関数の極限についての「基本の気持ち」である．

元のロピタルの定理 定理 23 の場合．　 f(a)/g(a) が 0/0 で定義されないので，「基本の気持ち」では何
も言ったことにならない．そこで，少し詳しく (x− a についての１次を) 考える．テーラーの定理

によれば f(x) ≈ f(a) + (x− a)f ′(a) だから，f(x)
g(x)

≈ f(a) + (x− a)f ′(a)
g(a) + (x− a)g′(a) だが，f(a) = g(a) = 0

ならば
f(x)
g(x)

≈ f ′(a)
g′(a)

を意味する．これがロピタルの定理の「気持ち」．

f , g が ∞ に発散する場合 　 “f (a) = ∞” だと f(x) ≈ f(a) + (x − a)f ′(a) (?) と言ってみても何も
意味がない．そこで発想を逆にして，y を a とは別のところ (y < a としておく) に固定する．（以
下， x が a の左から近づく場合のみ証明する．逆の場合も同様に証明できるので確認してほしい．）

y < x < a，つまり， x を a に近いところに置くと，“f (a) = g(a) = ∞” だから f(x) は f(y) に
比べてとても大きくなる．そして，y から x に変化したときの f の変化について x − y の１次ま
で考える．ここで，f(x) ≈ f(y) + (x − y)f ′(y) (?) と言いたいが，これも不十分である．なぜな
ら，x が a に近づくと急速に f(x) が大きくなるので，a から遠い y の辺りのあまり大きくない数

f(y)+ (x− y)f ′(y) では f(x) に近いとは言えないからである．そのかわり，もう少し精密に，コー
シーの平均値の定理を使えば，

f(x)− f(y)
g(x)− g(y) − r =

f ′(c)
g′(c)

− r(15)

となる c が y < c < x にある (両辺から r を引いたのは後の説明を簡単にするため）．ここでま

ず xを a に近づけると，f , g は急速に大きくなるから，(15)の左辺で f(y) は f(x) に比べて無視

でき，g(y) も g(x) に比べて無視できる．つまり， lim
x→a

∣∣∣∣f(x)− f(y)g(x)− g(y) − r
∣∣∣∣ = lim

∣∣∣∣f(x)g(x)
− r
∣∣∣∣. 他方，

(15)の右辺も x が a に近づくとき動きうるが，y < x < a で考えているのでしょせん y < c < a

の範囲で動くしかない．その範囲での f ′(c)/g′(c)− r のふれ幅を越えて変動することはない．そこ
で，あとから，y を a に近づけてみると，(15) の左辺は既に y と無関係な lim

x→a

∣∣∣∣f(x)g(x)
− r
∣∣∣∣ で上か

ら押さえられているが，右辺は lim
y→a

sup
y<c<a

∣∣∣∣f ′(c)g′(c)
− r
∣∣∣∣ = lim

c→a

∣∣∣∣f ′(c)g′(c)
− r
∣∣∣∣ = 0 で押さえられる．つま

り 0 に収束する．変動幅が 0 ということはつまり収束するということである．（つまり，「収束する」
ということはそういう強い意味である．）よって，f(x)/g(x) は r = lim

x→a
f ′(x)/g′(x) に収束する．

高校時代に事実だけ習ったかもしれないこの拡張は，上のように正しいし，かつ，その根拠は定理 23
の証明よりも丁寧に考えないといけない（だから高校時代には証明まで踏み込まない）ことも分か

るだろう．

4 証明は少し高度 (ε–δ 論法と上極限の概念を使わないと難しい）． lim
x→a

f ′(x)

g′(x)
= r とおく．正数 ε を任意に固定する．r のおきかた

から正数 δ があって，|x − a| < δ ならば
∣∣∣ f ′(x)

g′(x)
− r

∣∣∣ < ε にできる．|y − a| < δ になるように y をいったん固定する．x を y と a

の間にとると，コーシーの平均値の定理から，
f(x) − f(y)

g(x) − g(y)
=

f ′(c)
g′(c)

となる c が x と y の間にとれる．もちろん |c − a| < δ だから，

さらに，
∣∣∣f(x) − f(y)

g(x) − g(y)
− r

∣∣∣ < ε. ここで y を固定したまま x を a に近づけると，仮定から f(x), g(x) は正の無限大に発散するので，

lim
x→a

f(x) − f(y)

g(x) − g(y)

g(x)

f(x)
= 1 . よって lim

∣∣∣ f(x)

g(x)
− r

∣∣∣ ≤ ε. ところが，この上極限は ε に無関係な確定値だから，最初に ε > 0 をどう

与えても変わらない．それが ε 以下だということは 0 しかない．よって lim
f(x)

g(x)
= r. ✷ .
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例：lim
x↓0

xx （このタイプを 00型の不定形と呼ぼう）．先ず対数を取って lim
x↓0

x log x = lim
x↓0

log x
1/x

を考える

と不定形なので， lim
x↓0

x log x = lim
x↓0

1
−1/x3

= 0 だから

lim
x↓0

xx = lim
x↓0

exp(x log x) = exp(lim
x↓0

x log x) = 1 .

ここで２つ目の等号は exp(x) の x = 0 における連続性に基づく．
このほか 1∞, ∞0 型の不定形などが考えられ，上記例の方法が有効なことが多い．

§7.2 微分に関する公式．

和差積商の微分は既知であろう．極限に関する性質 第 §19.3章（を 定義 6 で連続変数に拡張したもの）か
ら，微分の定義に戻れば全て証明可能．見落としやすいのは，単に左辺と右辺が両方存在すれば一致すると

言っているだけではなく，仮定の下では左辺が存在して（右辺は仮定の下で当然存在）右辺と一致する，と

いう点である．微分は極限を用いて定義されるが，極限は必ず存在するとは限らないからである．

命題 24 c を定数とする．関数 f , g が開区間 I で微分可能ならば c f , f ± g, f g, f/g も I で微分可能で以

下が成り立つ．(c f)′ = c f ′, (f ± g)′ = f ′ ± g, (f g)′ = f ′ g + f g′, (f/g)′ = (f ′ g − f g′)/g2 . 但し f/g に

関しては g(x) = 0 となる点 x を除いたところで成り立つ．

最初の二つは微分演算の（微分可能な関数の空間における）線型性を意味する．その次ぎの性質はライプ

ニッツ規則と呼ばれて，微分という演算の特徴である．

§7.3 合成関数の微分．

命題 25 I, J を R の区間とする．f : I → R, g : J → R が (定義域の各点で) 微分可能とする．
f(I) ⊂ J ならば，合成関数 g ◦ f : I → R は I で微分可能（つまり (g ◦ f)′ が I の各点で存在して）

(g ◦ f)′(x) = g′(f(x)) f ′(x) (x ∈ I) を満たす．
ここで合成関数 g ◦ f は (g ◦ f)(x) = g(f(x)) で定義される関数である．

注. (i) f(I) ⊂ J のとき g ◦ f が I 上で定義されることは明らか．

(ii) 普通は見やすくするために y = f(x), z = g(y) に対して
dz

dx
=
dz

dy

dy

dx
と書いて覚える．

証明. a ∈ I とし， b = f(a) とおいて h : J → R を y ∈ J に対して

h(y) =




g(y)− g(b)
y − b , y �= b,

g′(b), y = b,

で定義する．g が J で微分可能であるという仮定より，h は（J の各点で）連続な関数である．また h の定

義より（y = b では直接代入することで） y ∈ J に対して
g(y)− g(b) = h(y) (y − b)

が成り立つ．y = f(x) を代入すると b = f(a) に注意して

g(f(x))− g(f(a))
x− a = h(f(x))

f(x)− f(a)
x− a .

f の微分可能性と h と f の連続性から（補題 9 によって）右辺について x→ a の極限が存在し，

lim
x→a

h(f(x))
f(x)− f(a)
x− a = h(f(a)) f ′(a) = h(b) f ′(a) = g′(b) f ′(a) = g′(f(a)) f ′(a) .

従って左辺の極限
dg ◦ f
dx

(a) が（存在して）これに等しい． ✷
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§7.4 逆関数の微分．

命題 26 I ⊂ R を開区間，関数 f : I → R は微分可能で I で f ′ は恒等的に正（または恒等的に負）とす
る．このとき， J = f(I) は区間になり，逆関数 f−1 は J で定義される狭義単調増加微分可能な関数であ

り，さらに
df−1

dx
(x) =

(
f ′(f−1(x))

)−1
.

証明. 命題 21 より，f は I で狭義単調増加なので，f−1 が J = f(I) 上で定義されること，J が区間になる
こと， f−1 が連続関数になること，は 命題 13 に同じ．狭義単調増加性も明らか．
b ∈ J における可微分性と公式を同時に証明する．f ′ が恒等的に正の場合を証明すればあとは同様．a =

f−1(b) ∈ I とおき，g(x) = x− a
f(x)− f(a) で関数 g を定義すると，

f−1(y)− f−1(b)
y − b = g(f−1(y)) .

f の可微分性の仮定から， lim
x→a

g(x) = f ′(a)−1 > 0 （即ち極限が存在する）．既に注意したように f−1 は

連続関数だから 補題 9より

lim
y→b

g(f−1(y)) = lim
x→a

g(x) = f ′(a)−1 > 0 .

✷

注. 普通は見やすくするために y = f(x) に対して
dx

dy
=
(
dy

dx

)−1

と書いて覚える．

§7.5 初等関数の微分公式．

以下の公式は定義から導けるし，ほとんどのものを高校で習っているだろうから，導出は演習問題として

一覧として掲げる．

基本：
d xn

dx
= nxn−1,

d sinx
dx

= cosx,
d cosx
dx

= − sinx,
d tanx
dx

=
1

(cosx)2
,
d exp(x)
dx

= exp(x).

逆関数の微分を使う：
d log |x|
dx

=
1
x
(x �= 0),

d arcsinx
dx

=
1√

1− x2
(−1 < x < 1),

d arccosx
dx

= − 1√
1− x2

(−1 < x < 1),
d arctanx

dx
=

1
1 + x2

.

d xa

dx
= axa−1 (a ∈ R, x > 0). a が自然数のときは多項式だが，一般には xa = exp(a log x) と合成関

数の微分を使う．例えば
d
√
x

dx
=
d x1/2

dx
=

1
2
√
x
,
d 1/x
dx

= − 1
x2

.
d xx

dx
= xx(log x + 1) (x > 0) も同様．

d ax

dx
= ax log a (a > 0, a �= 1) も同様だがやさしい．

これらを組み合わせて得られる関数は積の微分や合成関数の微分などを駆使する．

§8 ２次微分係数．

１次の微分係数が曲線の接線の傾きであり，関数の増減を表すことを見てきた．導関数，即ち各点にそこ

での微分係数を対応させた関数が再び微分可能ならば，その微分係数を元の関数の２次微分係数と呼び，そ

れを関数と見るとき，元の関数の２次の導関数と呼ぶことなどは周知であろうが，２，３の事項を復習して

おく．

２次以上の微分係数（導関数）に関する以下の性質が成り立つ根拠（証明）は１次の微分係数に関する諸

定理を高次の導関数に（場合によっては繰り返し）適用することにすぎないので，微分の定義上は新しい性

質（定義）を持ち込むのではないことに注目されたい．元の関数がそれだけの階数微分できるということそ
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のことがその関数の解析的性質を著しく良いものと仮定していることになるのである．（ときによって漠然と

した意味で用いられるが，高次の階数または何回でも微分できる関数のことをなめらかな関数，と呼ぶ．な

めらかな関数は特に幾何学的な考察が容易で，精密な一般論が構築可能となる．）

§8.1 曲線の凹凸と変曲点．

この節は [三宅敏恒] に従う．y = f(x) で表される曲線 C 上の点 P (a, f(a)) における接線を $ とする．P

の近くでは（以下の性質を満たす P を含むある開区間がとれることをこのように表現する）P 以外では C

が $ よりも上にあるとき，C は P で下に凸であるという．P の近くで C が $ よりも下にあるときは C は

P で上に凸であるという．さらに， P の前後で C と $ の上下関係が逆転するとき，P は C の変曲点であ

るという．例えば x = 0 は y = x3 の変曲点である．

命題 27 f ′′ が a （を含む開区間で定義されていて，x = a ）で連続とする．f ′′(a) > 0 ならば y = f(x)
（で定義される曲線 C）は点 P (a, f(a)) で下に凸であり，f ′′(a) < 0 ならば P で上に凸であり，f ′′(a) = 0
かつ x = a の前後で f ′′ の符号が変化するならば P は変曲点である．

注. (i) f ′′ が a で連続という仮定は，最初の２つのケースで a のすぐ近くでも符号が一定，ということが仮

定から出るようにしてあるので，連続でなくても，符号が一定ならば結論は成立する．

(ii) どんな本でも，断りなくある関数が a で連続，と書いた場合には，a を含む開区間で定義されて（もち

ろん，定義域がそれより広くて構わない）いて，x = a で連続，いう意味である．

証明. 第２のケースは第１のケースと同様で，第１のケースは [三宅敏恒, 定理 2.3.1] の証明にあるので，最後
のケースについて証明する．

曲線 (C) の P における接線 $ は

$ : y = f ′(a)(x− a) + f(a)
と書けるから，

g(x) = f(x)− f(a)− f ′(a)(x− a)
とおくと（この式で関数 g を a の近くで定義すると），g′(x) = f ′(x)− f ′(a), g′′(x) = f ′′(x) なので仮定よ
り，ある δ > 0 があって，a− δ < x < a ならば g′′(x) < 0 かつ a < x < a+ δ ならば g′′(x) > 0 となるか，
さもなければ，g′′ の符号がこれと全く逆になるか，である．前者について証明すれば後者は同様である．
命題 21 より，g′ は x < a で（狭義単調）減少，x > a で増加．g′(a) = 0 だから，x �= a で g′(x) > 0

（増減表を書くべき）．従って 命題 21 より [a− δ, a+ δ] で g は（狭義単調）増加．（x = a で g′(a) = 0 と
なって 命題 21 が使えなくなるが，そこで分けて増加減少の定義に戻ればＯＫ．）g(a) = 0 だから，x < a で
g(x) < 0， x > a で g(x) > 0 . これは P が $ の変曲点であることを（変曲点の定義より）表す． ✷

§8.2 極値の判別．

命題 28 f ′′ が a で連続とする．f ′(a) = 0 のとき，f ′′(a) > 0 ならば f は a で極小値，f ′′(a) < 0 ならば
f は a で極大値をとる．

証明. f ′(a) = 0 だから x = a での y = f(x) の接線は x軸に平行である．また，命題 27 より，f ′′(a) > 0 な
らば y = f(x) は x = a で下に凸となる．よって f は a で極小値をとる． f ′′(a) < 0 の場合も同様である．
（命題 27 の証明のように接線との差を g とおいて，その正負を議論すれば図形に頼らず代数的に証明できる．

もちろん，結果は変わらない．） ✷
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§8.3 ニュートン法．

２次導関数の応用として，方程式の近似解を求めるニュートン法がある．

定理 29 f は [a, b] を含む開区間で２階微分可能２階導関数連続で，f ′(x) �= 0, a ≤ x ≤ b, f ′′(x) �= 0,
a < x < b, かつ f(a) f(b) < 0 を満たすとする．このとき，方程式 f(x) = 0 は区間 [a, b] において，ただ１
つの解を持つ．

さらに，c1 ∈ {a, b} を，f ′′ の符号（(a, b) で一定なことはすぐ分かる）と f の値が同じ符号になるほうを

選び，数列 {cn} を

cn+1 = cn − f(cn)
f ′(cn)

, n ∈ N,

と定めると，{cn} は（広義）単調減少で，その解に収束する．

注. (i)実用上 cn たちが方程式 f(x) = 0 の解の近似値になる．定理の仮定を満たす a, b をうまく取れる問
題 (f) で，特殊な用途でなければ，実用上ほとんどこれで十分といってよい方法である．

(ii) a, b, を含む開区間で微分可能性を仮定したのは，近似列で f ′(c1) = f ′(a) （または f ′(b)）を用いるか
らである．

証明. (cn+1, 0)は (cn, f(cn))における接線の方程式 y−f(cn) = f ′(cn)(x− cn)と x軸 (y = 0) の交点である．
f ′, f ′′ は連続関数だから中間値の定理 定理 12 より f ′ と f ′′ は (a, b) で定符号．変数変換， x′ = −x と

y′ = −y を組み合わせることにより，f ′ も f ′′ も共に正であるとして良い（即ち単調増加下に凸）．このとき
f(a) < 0, f(b) > 0 のはずだから c1 = b である．中間値の定理 定理 12 より，f(x0) = 0 となる x0 ∈ (a, b)
が存在し，f は狭義単調増加だから 命題 26 (命題 13) から，ただ１つに決まる．
f が狭義単調増加下に凸だから，図示することにより，c1 > c2 > · · · > x0 が分かる（c1 が分かればあと

は帰納法，図示しなくてもできるが，略）．これは下に有界な単調減少数列だから収束するので，極限を γ

とおく．a < x0 ≤ γ < c1 = b である．cn+1 = cn − f(cn)
f ′(cn)

の両辺の極限（が存在することが今の考察と f ,

f ′ の連続性から分かったのでそれ）をとると，γ = γ − f(γ)
f ′(γ)

となるから f(γ) = 0 . 既に証明した方程式の

解の一意性より γ = x0 となる． ✷

例：f(x) = x2 − 2, a = 1, b = 2 に対するニュートン法．

定理 29 の仮定を満たすことは容易に分かる．cn+1 = cn − f(cn)
f ′(cn)

= cn/2 + 1/cn に c1 = 2 から順次代入

していくと，c2 = 3/2 = 1.5, c3 = 17/12 = 1.4166 · · ·, c4 = 577/408 = 1.414215686 · · ·. n = 4 で既に小数点
以下 5桁合っている (x0 =

√
2)．

例２：2e logx = x, 0 < x < e の近似解．

f(x) = 2e logx − x とおくと f(x) = 0, 0 < x < e, を解くことと同値．f ′(x) =
2e
x
− 1, f ′′(x) = −2e

x2
だ

から，f(1) = −1 < 0, f(e) = e > 0, f ′(x) > 0, 0 < x < 2e, f ′′(x) < 0, x > 0 . そこで a = 1, b = e とおく

と， f は 0 < x < 2e で単調増加なので，0 < x ≤ 1 = a では f は負であって f(x) = 0 に解はない．そこで，
[a, b] = [1, e] で解を探せば良い．この a, b に対して 定理 29 の仮定は全て満たされるから，方程式 f(x) = 0
は区間 [a, b] においてただ１つの解を持つ．それが求めるものであるから， 定理 29 により

c1 = a = 1, cn+1 = cn − f(cn)
f ′(cn)

=
2ecn

2e− cn log
e

c
, n ∈ N,

で定義される数列 {cn}が近似解を与える数列になる．数値的には，c2 = 1.225399673561, c3 = 1.26041296072,
c4 = 1.261070263638, c5 = 1.261070486831, c6 = 1.261070486831 .
代数的には解けない方程式なので，このような近似解は重要である．
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§9 高次導関数．

§9.1 導関数の連続性．

導関数が存在する（すなわち全ての点で微分係数が存在する）ならばその導関数は連続関数か？そうとは

言えない．（それ故，Rolleの定理 補題 18 の証明で注意を書いたように，中間値の定理を導関数に適用する
「気持ちの分かる」証明が使えない場合があった．）

例．

f(x) =

{
x2 cos(1/x) + 2x3 sin(1/x), x �= 0,
0, x = 0,

という関数は x �= 0 では

f ′(x) = sin(1/x) + 6x2 sin(1/x)

と，各点で微分係数が存在し，x = 0 では |f(h)− f(0)| ≤ h2 +2h3 なのでやはり微分可能で f ′(0) = 0．よっ
て全ての点で微分可能だ（全ての点で導関数 f ′ が定義されている）が，f ′ は原点では連続ではない（sin(1/x)
は x→ 0 で 0 に収束しない）．
よって導関数が全ての点で存在しても連続とは限らない．

§9.2 Cn 関数．

１次および２次の微分係数ならびに導関数を得る手続きを n回繰り返すことで，（もしそのような多数回の

微分が可能ならば） n次微分係数， n次導関数を考えることもできる．

多くの実用上の計算では何回でも微分可能な関数を用いる．これを C∞（級の）関数と呼ぶ．多項式，sinx,
cosx, exp(x), ax (a > 0) などはR で C∞ 級の関数．
一般的には，ある n ∈ Z+ があって n階までは微分可能だが，n次導関数は必ずしも微分可能でない，と

いうことが起こりうる．

例 ([高木貞治, p.50定理 23前の反例])：f(x) =


 x2 sin

1
x
, x �= 0,

0, x = 0,
で f : R → R を定義する．この f

は連続関数であることは sinx が連続関数であることを知っていれば容易に分かる（x = 0 のところは直接
limx→0 f(x) = 0 = f(0) を示す．x �= 0 ならば f ′(x) = 2x sin

1
x
− cos

1
x
かつ

lim
h→0

1
h
(f(h)− f(0)) = lim

h→0
h sin

1
h
= 0

だから f ′(0) も存在して 0 である．よって f は R上全ての点で微分可能である．しかし， lim
x→0

f ′(x) は存在
しないから x = 0 で連続な関数ではあり得ない．
しかし，n次導関数が連続関数であるほうが一般論が有効になる．例えば，「3次導関数が存在するが，それが

連続関数でない」ときは，2次導関数は命題 15 によって連続だから，「2次導関数が存在してそれが連続関数で
ある」とみたほうが使いやすい定理が多い．そこで，（ある定義域の上で考えた）ある関数について，n次導関数

までが存在してしかもそれらが連続関数であるとき，この関数をCn級の関数 (Cn関数)と呼ぶ．Cn+1関数は

Cn関数でもある．I上の Cn関数の集合を Cn(I)と書くこともある．上の例では x2 sin 1
x ∈ C0(R)\C1(R) .

§9.3 テーラーの定理．

平均値の定理　定理 19 の高階導関数への一般化がテーラーの定理である．証明上は高階導関数に平均値の
定理を適用するだけのことである．

定理 30 f が開区間 I で（定義されてそこで） n階微分可能とする．I の任意の２点 a, b に対し，

f(b) = f(a) + f ′(a) (b− a) + · · ·+ 1
(n− 1)!

f (n−1)(a) (b− a)n−1 +
1
n!
f (n)(c) (b− a)n
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を満たす点 c が a と b の間に存在する．

証明. 定理 19 の証明と同様に，

A =
1

(b− a)n
{
f(b)−

(
f(a) + f ′(a) (b− a) + · · ·+ 1

(n− 1)!
f (n−1)(a) (b− a)n−1

)}
,

F (x) = f(b)−
(
f(x) + f ′(x) (b− x) + · · ·+ 1

(n− 1)!
f (n−1)(x) (b − x)n−1 +A (b− x)n

)

とおくと F (a) = F (b) = 0かつ F は [a, b]で連続で (a, b)で微分可能だからロルの定理補題 18よりa < c < b

かつ − 1
(n− 1)!

f (n)(c)(b− c)n−1 + nA(b− c)n−1 = F ′(c) = 0 を満たす c がある．よって A =
1
n!
f (n)(c) を

得る． ✷

注. テーラーの定理の式の最後の項を剰余項，それ以外を主要項，a = 0 のときのテーラーの定理をマクロー
リンの定理と呼ぶ．

c は定理からは決まらないので，一見役に立たないように見えるかも知れないが，この項を「評価」（工学

でいう「誤差」の厳密版）として用いることができる．次の例を見よ．

例：ex についてテーラーの定理の主要項を４次までとる：

ex = 1 + x+
1
2!
x2 +

1
3!
x3 +

1
4!
x4 +

1
5!
eθxx5, 0 < θ < 1,

を満たす θ が存在する．x = 1 のとき主要項は
65
24

= 2.7083 · · · だが，これは指数関数を持ち出すまでもな
く自然対数 e の定義から計算すれば良い．剰余項の価値は，この主要項の値が真の値からどれくらいずれて

いるかを判定できることである．即ち 0 < θ < 1 だから，1 < eθ < e なので，既に知っている（級数を公比
1/2 の等比級数で評価する方法で得られる） (0 <) e ≤ 3 を用いれば，

0.00833 · · ·= 1
5!
< e− 65

24
<

3
5!

= 0.025

あるいは 2.716666 · · · < e < 2.7333 · · ·を得る．このようにして近似値だけでなく，真の値に関する厳密な上
下からの bound （範囲限定）がテーラーの定理の剰余項によって可能になる．

C∞関数ならば定理 30の主要項はずっと続けることができる．即ち「主要項だけからなる」級数が作れる．
これをテーラー級数と言う．

f(b) (?) = f(a) + f ′(a) (b− a) + · · ·+ 1
(n− 1)!

f (n−1)(a) (b− a)n−1 +
1
n!
f (n)(a) (b− a)n + · · · .(16)

この級数は収束するかどうかも保証されてないし，収束しても左辺に一致するという保証はない．反例は

f(x) = e−1/xχ[0,∞)(x) = 0 + 0 + · · ·．
剰余項が作る数列 {Rn}が n→∞ で 0 に収束することが (16) が成り立つことの必要十分条件である．こ

れは，この講義のこの時点の知識では各具体例毎にたしかめるしかない．等号が成り立つとき， (16) を f の

テーラー展開と言う．

特に a = 0 のとき，マクローリン級数，マクローリン展開，と言う．

f(x) (?) = f(0) + f ′(0)x+ · · ·+ 1
(n− 1)!

f (n−1)(0)xn−1 +
1
n!
f (n)(0)xn + · · · .(17)

このように各項が x のべきだけからなる級数をべき級数といい，その意味で，マクローリン展開のことをべ

き級数展開とも言う．
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§9.4 テーラー展開を楽にやる方法．

テーラー展開の右辺の各項は一つに決まる．例えば，n次のマクローリンの定理が成り立てば m < n なる

全ての m についてもマクローリンの定理が成り立つが，このとき，m次までの項は（剰余項以外は）m次

のマクローリンの定理でも n次のマクローリンの定理でもマクローリン展開でも変わらない．もっと一般に

f(x) = a0 + a1x+ a2x
2 + · · ·

の右辺が (x = 0を含むある開区間で)絶対収束して，かつ，上記等号が成り立っていれば，f はその区間で
C∞ 関数であって，an = (n!)−1f (n)(0), n ∈ Z+, が成り立つ．（絶対収束するとは |a0|+ |a1|x+ |a2|x2+ · · ·と
いう別の級数が収束することを言う．）このとき右辺は一様収束するので，例えば x→ 0 とすると f(0) = a0，

x で割ってから x→ 0 とすると f ′(0) = a1 などと順に決まって行くからである．（きちんと証明することは

省略する．以上でヒントはそろっているので演習問題．）

これを利用すると，もし C∞ 関数 f に対して f (n)(0) を直接計算するのが面倒でも，別の方法で (17)の
形の級数（べき級数）を得ていれば，そこから逆に f (n)(0) を得ることができる．例えば，f(x) = arctanx

とすると f−1(x) = tanx で，
df

dx
(x) のマクローリン展開は

df

dx
(x) =

1
df−1

dx (f(x))
=

1
1 + x2

= 1− x2 + x4 − x6 + · · ·

だから arctanx = f−1(x) = x− 1
3
x3 +

1
5
x5 − 1

7
x7 + · · ·．（ここで，両辺を各項毎に積分している．等号が成

り立つことは証明を要することだが，いまは「感じ」だけつかんでもらうために，そのことには立ち入らな

い．）よって，arctan(n)(0) =




0, n = 0, 2, 4, · · · ,
1
n
, n = 1, 3, 5, 7, · · · .

§9.5 ランダウの記号と漸近展開．

剰余項は厳密な bound を得るのに有効だが，おおよその近似値を得れば十分な場合や，理論上 b → a を

考える場合には剰余項の 0 への近づく速さが分かれば十分な場合も多く，この場合剰余項を細かく書くのは
かえって不便であり本質を損なう．このような目的に用いられる記号がランダウの記号である．

点 a の近くで定義された２つの関数 f , g に対して

lim
x→a

f(x)
g(x)

= 0

のとき，f(x) = o(g(x)) (x→ a) と書く．スモールオー．f が g に比べて a の近くで非常に小さいことにな

る．f(x) は g(x) の高次の微少量．特に f(x) = o(1) とは 0 への収束

lim
x→a

f(x) = 0

を意味する．

これを拡張して，f(x)− h(x) = o(g(x)) のとき f(x) = h(x) + o(g(x)) とも書く．また，ある g と h に対

して f(x) = o(h(x)) ならば必ず f(x) = o(g(x)) が成り立つことが分かっていれば o(h(x)) = o(g(x)) と書
く．例えば，

命題 31 h(x) = o(g(x)) (x→ a) ならば o(h(x)) = o(g(x)) (x→ a)．

証明. 仮定の下で f(x) = o(h(x)) ならば f(x) = o(g(x)) となることは定義と積の極限から直ちに分かるので，
o(h(x)) = o(g(x))． ✷

注. h = g という自明な反例があるので，逆は成り立たない．
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さらに拡張して f(x) + o(g(x)) = o(h(x)), f(x) o(g(x)) = o(h(x)), o(f(x)) o(g(x)) = o(h(x)) なども，同様
に左辺の評価を持つ任意の関数に対して右辺の評価が成り立つ，ということで定義する．

ランダウの記号は左辺を右辺で評価する，という意味であって，等号ではない．例えば x → 0 のとき
o(x2) = o(x) だが o(x) = o(x2) ではない．同様に x→ 0 のとき sinx = o(1) だが o(1) = sinx という書き
方は許されない．つまり対称律は成り立たない．しかしいくつかの使いやすい公式が成り立つ．

定理 32 以下の公式が成り立つ：

(i) f(x) = o(g(x)), g(x) = o(h(x)) ならば f(x) = o(h(x)) . o(f(x)) = o(g(x)), o(g(x)) = o(h(x)) ならば
o(f(x)) = o(h(x)) .

(ii) f(x) o(g(x)) = o(f(x) g(x)) . o(f(x)) o(g(x)) = o(f(x) g(x)) .
(iii) f(x) = o(g(x))ならば f(x)+o(g(x)) = o(g(x)) . o(f(x)) = o(g(x))ならば o(f(x))+o(g(x)) = o(g(x)) .

この性質は高次の微少量を無視して計算する，と表現できる．複雑な式を単純な o 一つにできるのでラ

ンダウの記号が便利になる理由である．

証明. (i) 仮定より

lim
x→a

f(x)
g(x)

= lim
x→a

g(x)
h(x)

= 0

だから，極限と積の可換性より lim
x→a

f(x)
h(x)

= 0 即ち f(x) = o(h(x)).

q(x) = o(f(x)) とすると仮定より q(x) = o(g(x)) だからさらに q(x) = o(h(x)) となるので o(f(x)) =
o(h(x)).

(ii) h(x) = o(g(x)) ならば f(x)h(x) = o(f(x) g(x)) が oの定義から出るので，f(x) o(g(x)) = o(f(x) g(x)) .
o(f(x)) o(g(x)) = o(f(x) g(x)) も同様に定義から得る．

(iii) f(x) = o(g(x)) ならば

lim
→∞x→ af(x) + o(g(x))g(x) = 0

なので f(x) + o(g(x)) = o(g(x)) . o(f(x)) + o(g(x)) = o(g(x)) についても同様．
✷

通常 a = 0 の場合が用いられる．特に g(x) = xn (n ∈ N) の場合が重要である．例えば，上の公式から
xmo(xn) = o(xm+n), o(xm)o(xn) = o(xm+n), m ≤ n ならば o(xm) + o(xn) = o(xm) .
例：x→ 0 で (1 + 2x− x2 + o(x2))(2 + x+ o(x2)) = 2 + 5x+ o(x2) .
a が関数の定義されている区間の端点に当たる場合もこれに準じて x→ a を x→ a+0 または x→ a− 0

に置き換えて同様に定義する．（使い分けは文脈で判断する．）

マクローリンの定理で剰余項を o(xn−1) に書き換えた式が n ∈ N に対して成り立つとき，主要項を形式

的に無限和で書いたもの（級数）を漸近展開と呼ぶ．

定理 33 0 を含む開区間 I に対して f ∈ Cn(I) ならば

f(x) = f(0) + f ′(0)x+ · · ·+ 1
n!
f (n)(0)xn + o(xn) (x→ 0).

証明. マクローリンの定理より

f(x) = f(0) + f ′(0)x+ · · ·+ 1
(n− 1)!

f (n−1)(0)xn−1 +
1
n!
f (n)(0)xn +

1
n!
(f (n)(θx)− f (n)(0))xn

を満たす 0 < θ < 1 が存在する．仮定より f (n) は連続関数だから，剰余項は o(xn) の評価を持つ． ✷

近似値の誤差は評価できないが，誤差が x→ 0 とともに 0 に近づく速さが分かり，かつ，複雑な剰余項を
書かないですむという利点があることはランダウの記号の使い道と同様である．

第 n項目までとった式を「漸近展開の第 n項目まで」「テーラー展開の第 n項目まで」「マクローリン展

開の第 n項目まで」などということもある．
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3 積分（その１）．

積分には２つの側面がある．微分の逆演算としての側面と面積（２変数関数の積分ならば体積）としての

側面である．

ここではもっとも単純に，陽に計算できる場合について，微分の逆演算として不定積分を定義する．定義

によって不定積分を微分すれば元の関数に戻り，微分可能な関数について導関数を積分すると積分定数を除

いて元の関数に戻る．実用上は，区分的に連続な有界な関数の積分で大半のケースをカバーするので，この

節ではこの場合を扱う．

この定義では，どのような関数に不定積分が存在するかという問いには答えないし，この段階では面積と

の関係もつかない．実は，連続な関数（区分的に連続な有界な関数）を閉区間で考える限り，積分の２つの

側面とも全く問題がない．即ち，関数の不定積分を微分すれば元の関数に（全ての点で）戻り，閉区間の両

端での不定積分の値の差を求めれば関数と積分範囲と x軸で囲まれた領域の（符号付き）面積になる（定積

分）．但し，定積分が面積に等しいことを言うためには面積とは何かということを定義しなければならない．

従って，この周知の事実を証明するには若干の準備を必要とする．ここまでは理論的には殆ど高校時代の復

習に過ぎない．

さらに，面積ということにこだわるならば，連続関数という，極めて限られた曲線で囲まれた図形にしか

面積が定義できないとすればあまりに不思議である．この直感は数学的にも正当化されて，面積及び定積分

を論理的に最大限拡張した測度及びルベーグ積分がある．これは定積分であるが，これを集合関数と見るこ

とで不定積分の拡張概念である加法的集合関数が定義できる．これを微分したとき元の関数に戻るかどうか

は自明ではない．これらのことは冬学期に回すことにしよう．

§10 不定積分．

I = [a, b] を閉区間とする．関数 F : I → R が微分可能であって， F ′ = f のとき，F (x) =
∫
f(x) dx と書

いて，これを f の不定積分と呼ぶ．微分の線形性と定数の微分が 0 になることより F ′ = f ならば任意の定

数 C に対して (F +C)′ = f であり，逆に F , G がともに f の不定積分ならば (F −G)′ = 0 だから 命題 20
より F と G の差は定数である．よって

定理 34 不定積分は積分定数 C の不定性を除いて１つに定まる．

§10.1 不定積分の例１．

第 §7.5章 から以下が分かる．
∫
xa dx =

{
1

a+1x
a+1 + C (a �= −1),

log x+ C (a = −1), x > 0 .

特に，a ∈ Z \ {−1} ならば定義域は x ∈ R まで広がる．a = −1 のときも右辺を log |x|+C とすれば x ∈ R
で成立．以下，積分定数 C を省略する．∫

sinxdx = − cosx,
∫
cosxdx = sinx,

∫
1

(cos x)2 dx = tanx,
∫

1
1+x2 dx = arctanx .

これらは x ∈ R で成立．∫
exp(x) dx = exp(x),

∫
ax dx = 1

log aa
x (a > 0, a �= 1) も x ∈ R で成り立つが，log a = α ∈ R と置いて，∫

exp(αx) dx = 1
α exp(αx) (x ∈ R) としたほうが覚えやすい．∫

1√
1−x2 dx = arcsinx = − arccosx (−1 < x < 1).∫

xx(log x+ 1) dx = xx (x > 0)．∫
log xdx = x log x− x.
以下も，第 §7.5章 と微分法に関する公式 第 §7.2章 を組み合わせれば，両辺を微分することによって，証

明できる．
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∫
1√

a2 − x2
dx = arcsin

x

|a| (a �= 0)．∫
1√
a+ x2

dx = log |x+
√
x2 + a| (a �= 0)．∫ √

a2 − x2 dx =
1
2

(
x
√
a2 − x2 + a2 arcsin

x

|a|
)

(a �= 0)．∫ √
a+ x2 dx =

1
2

(
x
√
x2 + a+ a log |x+

√
x2 + a|

)
(a �= 0)．∫

1
a2 + x2

dx =
1
a
arctan

x

a
(a �= 0)．

問題． axxbx を微分することで，公式
∫
xx(log x+ 1) dx = xx を拡張せよ．

§10.2 定積分．

I = [a, b] を有界閉区間とする．I で連続な f の不定積分 F （があるとき）に対して F (b)− F (a) を f の

I における定積分と呼んで F (b)− F (a) = F (x)|ba =
∫ b

a

f(x) dx と書く．積分変数 x は結果には現れないの

で， x である必要はなく，例えば，
∫ b

a
f(x) dx =

∫ b

a
f(t) dt．

特に
∫ x

a

f(t) dt = F (x)− F (a) を x の関数と見ると，

d

dx

∫ x

a

f(t) dt = f(x)

を得る．

高校時代に習ったように，定積分
∫ b

a

f(x) dx は関数 f，x軸，x = a, x = b で囲まれた領域の符号付き面

積である．但し，符号は x軸の上側の部分を正，下側の部分を負として足し合わせたものである．このこと

自体も証明できることだ（区分的に連続な関数については高校時代に習っていると思う）が，面積の定義を

しなければならないので，証明は後回しにする．

同じく高校時代に習ったと思うが，連続関数の有界閉区間における定積分は存在する．このことは証明し

ないが，以下では必要に応じて認める．

§10.3 積分に関する公式．

定理 35 f , g は区間 I = [a, b] で有界かつ区分的に連続であり，さらに，不定積分
∫
f(x) dx,

∫
g(x) dx が

あるとする．このとき，

線形性
∫ b

a

(f(x)± g(x))dx =
∫ b

a

(f(x) dx±
∫ b

a

g(x))dx. k が定数のとき，
∫ b

a

k f(x) dx = k

∫ b

a

f(x) dx.

変数変換 g が微分可能な関数で，下記左右両辺の不定積分があるとき，
∫
f(x) dx =

∫
f(g(t)) g′(t) dt.

さらに，g : [α, β]→ [a, b] かつ g(α) = a, g(β) = b のとき，
∫ b

a

f(x) dx =
∫ β

α

f(g(t)) g′(t) dt.

部分積分 G(x) =
∫
g(x) dx とおくと

∫
f(x) g(x) dx = f(x)G(x)−

∫
f ′(x)G(x)dx.

証明. 積分の上限を b = x として，左辺と右辺をそれぞれ関数 F , G とすると，G′ = f + g = F ′ だから
定理 34 よりその差は定数であり， x = a のときその定数は 0 と決まる．２つ目以降も同様． ✷
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§11 不定積分の例２．

§11.1 有理式の積分．

命題 36 実数係数有理式（二つの実数係数多項式の比）の不定積分は，部分分数展開によって次の積分に帰

着される．

(i) 多項式，
(ii) a/(x+ b)m (a, b ∈ R, m ∈ N)，
(iii) (ax+ b)/(x2 + cx+ d)n (a, b, c, d ∈ R, n ∈ N), 分母の２次式の判別式は負．

証明. 多項式のわり算によって，有理式は多項式と分母の次数のほうが分子の次数より高い有理式の和に書け
る．そこで，いつでも有理式は分母の次数が高いと思って良い．

複素数を許せば分母の多項式は一次式の積に因数分解できる（代数学の基本定理）．それを
n∏

i=1

(x− ci)ei , ci = ai +
√−1bi ,(18)

とする．（全体の定数倍は積分の線形性で処理できる．ai, bi たちは実数で ci は互いに異なり， ei は自然数．）

かけ算を済ませれば実係数多項式だから x ∈ R に対して

n∏
i=1

1
(x− ci)ei

= Re

(
n∏

i=1

1
(x− ci)ei

)
(19)

となることに注意．

c �= c′ ならば

1
(x− c)e(x− c′)e′ =

∑e−1
i=0 fix

i

(x− c)e +
∑e′−1

i=0 f
′
ix

i

(x− c′)e′(20)

とできる (fi, f ′i がある) ことにも注意．実際，

R[X ](x− c)e + R[X ](x− c′)e′ = R[X ]GCM{(x− c)e, (x− c′)e′} = R[X ] � 1 .

(20) の右辺の各項は∑e−1
i=0 fix

i

(x− c)e =
e∑

i=1

ai

(x− c)i(21)

とも書ける．

(19), (20), (21) を (18) に用いれば，

n∏
i=1

1
(x− ci)ei

=
n∑

i=1

ei∑
j=1

Re
(

aij

(x− ci)j
)

となる．

右辺の各項について ci ∈ R ならば， a/(x + b)m (a, b ∈ R, m ∈ N) の形になっている．虚数の項
(c = a+ b

√−1, b �= 0) については実部をとる． c̄ を c の複素共役として，

Re
(

a

(x− c)j
)

= Re(a)
(

1
(x− c)j +

1
(x− c̄)j

)
+ Im(a)

(
1

(x− c)j −
1

(x− c̄)j
)

= Re(a)
xの多項式

(x2 − 2Re(c)x+ Re(c)2 + Im(c)2)j
+
√−1Im(a)

xの多項式
(x2 − 2Re(c)x+ Re(c)2 + Im(c)2)j

=
xの実係数多項式

(x2 − 2Re(c)x+ Re(c)2 + Im(c)2)j

=
j∑

k=1

akx+ bk
(x2 − 2Re(c)x+ Re(c)2 + Im(c)2)k

.
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ここで最後の２つの変形で分子が実係数になるのは分母が実係数であることと，もともと実部を取ったから

実係数多項式になるはずことから，そして，分母分子のわり算によって分子を１次式にできることから，導

かれる (ak, bk はある実数)．
以上より命題が証明された． ✷

注. (i)有理式を命題の形の和に書くことを 部分分数展開 と呼ぶ．上記証明で分かるように，複素係数を許
せば分母は２次式はいらない．

(ii) 多項式と a/(x+ b)m の不定積分は既知であろう．後者については最初のほうで積分変数変換 u = x+ b
を行っておくといっそう見やすい．

(ax + b)/(x2 + cx + d)n (D = c2 − 4d < 0) の不定積分は，変数変換 x′ = 2(x + c/2)/
√−D で

(ax+ b)/(x2 + 1)n の積分に帰着する．さらに

∫
2x

(x2 + 1)n
dx =


 − 1

(n− 1)(x2 + 1)n−1
, n = 2, 3, 4, · · · ,

log(x2 + 1), n = 1

だ（両辺を微分して積分の変数変換をすれば分かる）から In =
∫

1
(x2 + 1)n

dx が求まればよい．とこ

ろが，

In+1 =
x

2n(x2 + 1)n
+

2n− 1
2n

In, n = 1, 2, 3, · · · ,

だ（両辺を微分すると分かる）から，I1 が求まればよいが，

I1 =
∫

1
x2 + 1

dx = arctanx

は知っているから，結局有理関数の不定積分は全て計算できる．

(iii) 部分分数展開を求めるには未定係数法によるのが普通．例１．

5x− 4
2x2 + x− 6

=
a

2x− 3
+

b

x+ 2

とおいて右辺を通分し，分子を左右で比較すると

5x− 4 = (a+ 2b)x+ (2a− 3b) .

これが x の恒等式だから，a = 1, b = 2．これを最初の式の右辺に戻せば，部分分数展開を得る．この
不定積分は

1
2
log |2x− 3|+ 2 log |x+ 2| .

例２．∫
x+ 2

x2 + 2x+ 2
dx =

1
2
log(x2 + 2x+ 2) + arctan(x+ 1) .

途中で x′ = x+ 1 なる変数変換を行う．

§11.2 無理関数を含む積分．

３次式以上の平方根を含む不定積分は一般には初等関数では表せない．（比較的簡単な場合でも楕円積分と

呼ばれる積分が生じて，その逆関数である楕円関数は種々の興味深い性質を持つ深い研究対象であった．）１

次式のべき乗根を含む場合と２次式の平方根を含む式という簡単な場合だけを扱う．
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x と (ax+ b)1/n の有理式．　 t = (ax+ b)1/n とおくと，x = (tn − b)/a, x′(t) = ntn−1/a だから，被積分

関数は t に変数変換（定理 35）した後では有理式になる．

例．
∫

1
x+ 2

√
x− 1

dx．有理式になってからの計算は 第 §11.1章 に準じる（なれないうちは u = t+1

とするのが見やすい）．答えは 2 log(
√
x− 1 + 1) +

2√
x− 1 + 1

.

x と
√
ax2 + bx+ c (a �= 0) の有理式．　 根号内が正になる（実数値関数として定義できる）可能性がある

のは，a > 0 の場合か，a < 0 だが根号内の２次式が 0 になる実数 x が２つ（それらを α, β とおく）
ある場合．（さもなければ，恒等的に根号内は正になれない．）

(i) a > 0 の場合は
√
ax2 + bx+ c = t−√ax とおく，

(ii) a < 0 の場合は t =

√
a(x− β)
x− α ，すなわち， x =

αt2 − aβ
t2 − a とおく，

と，いずれの場合も t の有理式の積分になるので，原理的には有理式の積分に帰着する．

ただし，実際の計算は大変な場合が多く，また，これ以外の変数変換のほうが簡単な例も多い．

例．
∫

1√
x2 − 1

dx．上のようにやれば，答えは log |t| = log |√x2 − 1 + x|．

§11.3 三角関数を含む積分．

三角関数の有理式の積分は，変数変換 u = tan
x

2
によって u の有理式の積分になる．実際，両辺を u で

微分すると

1 =
1
2

1
cos2 x

2

dx

du
=

1
2
(1 + u2)

dx

du
.

つまり， dx =
2du

1 + u2
である．また，

sinx =
2u

1 + u2
, cosx =

1− u2

1 + u2
.

なぜなら，

sinx = 2 sin
x

2
cos

x

2
= 2 tan

x

2
cos2

x

2
=

2u
1 + u2

,

および，

cosx = 2 cos2
x

2
− 1 =

2
1 + tan2 x

2

− 1 =
1− u2

1 + u2
,

だからである．

例．
∫

1 + sinx
1 + cosx

dx = tan
x

2
+ log

(
1 + tan2 x

2

)
.

しかし，実際の計算は煩雑になる場合も多い．u = sinx, u = cosx, u = tanx などのおきかたのほうが簡
単な場合もある．また，おきかた（変数変換の方法）などによって答えが見かけ上違う場合も起きるが，三角

関数の種々の公式を用いて変形すればもちろん一致する．簡単な形や用途に応じた変形が必要になるが，そ

のためには積分だけではなく三角関数の公式にも通じている必要がある．

例． I =
∫

1
sinx

dx .

１．上記の方法 (u = tanx/2)：

I =
∫

1
u
du = log u = log

∣∣∣tan x
2

∣∣∣ .
２．自然な方法 (u = cosx)：

I =
∫

sinx
sin2 x

dx =
∫

sinx
1− cos2 x

dx = −1
2

∫ (
1

1 + cosx
+

1
1− cosx

)
(cosx)′ dx

= −1
2

∫ (
1

1 + u
+

1
1− u

)
du = −1

2
(log |1 + u| − log |1− u|) = −1

2

(
log
∣∣∣∣1 + cosx
1− cosx

∣∣∣∣
)
.
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一見結果が違うが，等しいことは

−1
2

(
log
∣∣∣∣1 + cosx
1− cosx

∣∣∣∣
)

= −1
2

(
log
∣∣∣∣cos2(x/2)sin2(x/2)

∣∣∣∣
)

= log
∣∣∣tan x

2

∣∣∣
によって分かる（最後の変形は log a2 = 2 log |a|, log 1/a = − log a）．

このほか，三角関数は
∫

sinxdx = − cosx,
∫

cosxdx = sinx で関数が元に戻るので，部分積分を繰り返

し用いると漸化式を得て解ける場合がある．

例． In =
∫

cosn xdx．答え：

In =
1
n
cosn−1 x sinx+

n− 1
n

In−2 (n ≥ 2), I0 = x, I1 = sinx .

特に，

∫ π/2

0

cosn xdx =
∫ π/2

0

sinn xdx =




(n− 1)!!
n!!

π

2
, n: even,

(n− 1)!!
n!!

, n: odd,

§12 広義積分．

定積分
∫ b

a

f(x) dx は閉区間 I = [a, b] で連続な関数 f に対して不定積分 F の区間での差 F (b)− F (a) で
定義した (第 §10.2章)．F が区間の中または端で発散するときにうっかり差をもって定積分とすることは，定
積分と面積の関係に外れるので危険である．また積分区間が無限に延びる場合も定義を拡張する必要がある．

しかし，場合によっては，被積分関数が連続関数でなくても定積分を定義したい場合がある（しかも，自

然な内容を持つことも多い）．例えば， f が [a, b) で連続ならば
∫ b−ε

a

f(x) dx = F (b− ε)− F (a) が十分小
さい任意の ε > 0 に対して成り立つから，∫ b

a

f(x) dx = lim
ε↓0
F (b− ε)− F (a)

でもって（右辺の極限が存在するとき）積分を定義するのが自然である．これを広義積分と呼ぶ．

同様に，∫ ∞

a

f(x) dx = lim
b→∞

∫ b

a

f(x) dx

で無限区間の積分が（定義できるときには）定義できる．これも広義積分と呼ぶ．

積分の下端に関しても全く同様である．

f が (a, b) で連続なとき，a < c < b なるある c に対して広義積分
∫ c

a

f(x) dx と
∫ b

c

f(x) dx があれば，

その和をもって
∫ b

a

f(x) dx と定義する．（ある c で存在すれば，どの a < c < b でも存在して値は c によら

ないことは明らか．）

例．
∫ 2

1

1√
2− x = 2 . b < 0 のとき

∫ b

−∞

1
x2
dx = lim

a→−∞

∫ b

a

1
x2
dx = lim

a→−∞− 1
x

∣∣∣∣
b

a

(=
1
x

∣∣∣∣
b

−∞
) = lim

a→−∞

(
1
a
− 1
b

)
= −1

b
.

この同じ計算から，
∫ 0

−∞

1
x2
dx はないことが分かる．

n を非負整数とし，a < c1 < c2 < · · · < cn < b とする．f : (a, b) \ {c1, · · · , cn} → R が（有限個の点 ci,

i = 1, 2, · · · , n を除いて） (a, b) で連続であって，不定積分があるとき，積分
∫ b

a

f(x) dx があるとは，広義
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積分
∫ c1

a

f(x) dx,
∫ c2

c1

f(x) dx,
∫ c3

c2

f(x) dx, · · ·,
∫ b

cn

f(x) dx, が全て存在（収束）するときをいい，そのと

きの積分の値はこれらの広義積分の和で定義する．

例．
∫ 2

−1

1√|x| dx =
∫ 0

−1

1√|x| dx+
∫ 2

0

1√|x| dx = 2 + 2
√
2 .

例２．
∫ 2

−1

1
x
dx は存在しない．

実は F が（存在して）連続関数であっても，F の増分と面積の関係は自明はない．ルベーグ積分ではここ

で述べた広義積分の一部が積分と認められない．ルベーグ積分についてここで言及する余裕はないが，その

関係で言うと，危険な広義積分と安全な広義積分がある．例えば
∫ ∞

0

1
x
sinxdx = π/2 は危険な広義積分で

ある．これに対して，次のケースは安全な広義積分である．

(i) 被積分関数が定符号の時，
(ii) 被積分関数の絶対値の（広義）積分が有限値の時，

これらのときは，積分範囲に関する極限の取り方によらず積分値の極限が一つに決まる，という意味で，広

義積分が意味を持つ．（これ以外の，危険な広義積分では，先に被積分関数が正の範囲で積分すると無限大に

発散してしまう．負の部分も積分は負の無限大に発散し，広義積分の定義通りにやるとうまく打ち消しあっ

て定義通りの値になる．）危険な広義積分であっても，正則関数に関する留数定理のような代数的，幾何的理

由により自然な値であることがあるので，否定することはできない．

ここでは安全な広義積分しか出てこないので以上の問題は追求しない．（即ち，論理的にはギャップを残し

たまま先を急いで具体例にとりかかる．）

§12.1 典型的な例．

(i)
∫ 1

0

xk dx =

{
1

k+1 (収束), k > −1,
発散, k ≤ −1 .

(ii)
∫ ∞

1

xk dx =

{
− 1

k+1 (収束), k < −1,
発散, k ≥ −1 .

(iii)
∫ ∞

a

exp(kx)dx =

{
− 1

k exp(ka) (収束), k < 0,
発散, k ≥ 0 .

(iv)
∫ a

−∞
exp(kx)dx =

{
1
k exp(ka) (収束), k > 0,
発散, k ≤ 0 .

§13 積分のいくつかの応用．

§13.1 数列の極限への積分の応用（Stirling の公式とガウス積分）．

Jn =
∫ π/2

0

sinn xdx, n = 0, 1, 2, · · ·, とおく．以下の性質が成り立つ．

(i) J0 = π/2, J1 = 1 .
(ii) Jn は n について単調減少．

(iii) Jn+2 =
n+ 1
n+ 2

Jn . （部分積分．）

(iv) (n+ 1)JnJn+1 = π/2 . （上の性質から (n+ 1)JnJn+1 が n によらない．）

(v) J2n =
(2n− 1)!!
(2n)!!

π

2
= 2nCn2−2nπ

2
.5

5 もちろん J2n+1 =
(2n)!!

(2n + 1)!!
も出るが，以下で使わない．
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これの性質により（例えば）以下が導ける6

(i)
∫ ∞

0

e−x2
dx =

√
π

2
(ガウス積分)．

(ii) lim
n→∞

√
n

2
2−2n

2nCn =
1√
2π

(Wallisの公式)．

(iii) lim
n→∞

n!√
2πnnne−n

= 1 (Stirlingの公式)．

このうち Stirlingの公式は Wallisの公式から導かれる．この公式の左辺極限を取る前の項は n = 1 で既に誤
差 8.5% 以内である．

証明. ガウス積分．　求める積分を I とおく．1− x2 ≤ e−x2 ≤ (1 + x2)−1 と Jn の単調性を用いて

√
nJ2n+2 ≤

√
nJ2n+1 =

√
n

∫ 1

0

(1− x2)ndx

=
∫ √

n

0

(
1− x2

n

)n

dx ≤ I ≤
∫ ∞

0

(
1 +

x2

n

)−n

dx

=
√
n

∫ ∞

0

(1 + x2)−ndx =
√
nJ2n−2 ≤

√
nJ2n−3.

最初の等号は x = cos θ, 最後の等号は x = cot θ の変数変換．故に

2nJ2n+1J2n+2 ≤ 2I2 ≤ 2nJ2n−2J2n−3 .

n→∞ で両側の辺はともに π/2 に収束する．7 ✷

Wallisの公式．　

J2n ≤ J2n−1 ≤ J2n−2 =
2n

2n− 1
J2n .

J2n をかけて真ん中の辺が π/(4n) になることに注意すると

lim
n→∞

√
n

2
2−2n

2nCn = lim
n→∞

√
2n
π
J2n =

1√
2π
.

✷

Stirlingの公式．　

n logn− n+ 1 =
∫ n

1

log xdx =:
n−1∑
k=1

log k +
1
2
logn+ αn

とおくと， αn =
2n−2∑
k=1

(−1)k−1ak . ここで a2k−1 は log k ≤ y ≤ log x, k ≤ x ≤ k + 1/2 で囲まれた領

域の面積， a2k は k + 1/2 ≤ x ≤ k + 1, log x ≤ y ≤ log(k + 1) で囲まれた領域の面積．a1 > a2 > · · ·

6 以下については，ここでの方法がもっとも自然な導出とは言えない．以下の公式は非常に重要で，いろんな導出を考えるに値する．
ここでの方法は，特別な道具を使わないという意味でもっとも初等的な導出，と言えよう．ガウス積分については２乗を２次元の変数変
換で計算するのが，（少なくとも初等的方法の中では）もっとも自然な導出であるが，多変数関数の積分，同変数変換，同広義積分，と
いうふうに，論理的な準備が多すぎるのであとに回す．

7 同じ証明で lim
n→∞

√
2nJ2n =

√
π

2
が証明できる．実際，

J2n+1 ≤ J2n ≤ J2n−1 =
2n + 1

2n
J2n+1

に J2n をかけて (n + 1)JnJn+1 =
π

2
を使えば，挟み撃ちの原理から目標を得る．
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かつ， 0 < a2n < (logn− log(n − 1))/2 を得るので，α = lim
n→∞αn が存在する．A = e1−α とおくと，

n→ 2n として

A = lim
n→∞

n!
nn+1/2e−n

= lim
n→∞

(2n)!
(2n)2n+1/2e−2n

が存在するので，真ん中の辺の２乗を最右辺で割ったものが A に等しい．Wallisの公式から A =
√
2π

を得る． ✷

§13.2 積分が定義する関数（ガンマ関数とベータ関数）．

Γ(s) =
∫ ∞

0

e−xxs−1dx をガンマ関数と呼ぶ．s > 0 で右辺の広義積分は収束し，従って Γ(s) が定義さ

れる．

実際 x ≈ 0 では被積分関数はほぼ xs−1 に近いので広義積分が収束する．また， x� 1 では e−xxs+1 → 0
となるので被積分関数は十分大きい x に対して x−2 以下となり，やはり広義積分は積分範囲を大きくすると

ともに単調増加（被積分関数が正だから）して上に有界となって収束する．

いくつかの公式：

(i) 部分積分により Γ(s+ 1) = sΓ(s) を得る (s > 0)．
(ii) Γ(1) = 1 はあらわに積分できるので，n ∈ Z+ ならば Γ(n + 1) = n! となり，ガンマ関数は階乗の一般
化になっている．

(iii) 変数変換 x = t2 とガウス積分 第 §13.1章 を用いれば

Γ
(
1
2

)
= 2

∫ ∞

0

e−t2dt =
√
π

を得る．漸化式と合わせて一般に Γ(n+
1
2
) = (2n− 1)!!2−n√π.

B(p, q) =
∫ 1

0

xp−1(1− x)q−1dx をベータ関数と呼ぶ（２変数関数はまだ習っていないが，意味は分かるだ

ろう）．p, q > 0 で右辺の広義積分は収束し，ベータ関数が定義されることはガンマ関数の場合と同様である．
いくつかの公式 (p, q > 0)：

(i) 変数変換 x = 1− t により B(q, p) = B(p, q).
(ii) 部分積分により B(p, q + 1) =

q

p
B(p+ 1, q).

(iii) 直接の積分により m ∈ N のとき B(m, 1) =
1
m
なので，m,n ∈ N ならば

B(m,n) =
1

(m+ n− 1)m+n−2Cm−1

となる．

(iv) 変数変換 x = sin2 θ により B(p, q) = 2
∫ π/2

0

sin2p−1 θ cos2q−1 θ dθ.

ガンマ関数とベータ関数にはB(p, q) =
Γ(p)Γ(q)
Γ(p+ q)

という関係があるが，２次元積分（重積分）を用いない初

等的方法を思いつかないので，ここでは証明しない．

ガンマ関数を用いれば，根号の中に３次以上の多項式を含む有理式の定積分が一部記述できるようになる．

問題．以下をガンマ関数を用いて表せ．∫ 1

0

x2n−1

√
1− x4

dx (n = 1, 2, 3, · · ·).∫ 1

0

1√
1− x5

dx.
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§14 何が不満か．

やり残したこと．

(i) ここ（論理的順序に目をつぶった 第 §12章 を除く）では積分があれば（つまり与えられた関数を微分し
て，たまたま導関数が出題の関数だったら）全てうまくいくという話．非常にたくさんの関数に積分が

あるからそれですんでいるようにみえるが，どういう関数に積分があるのか，には答えなかった．

(ii) 定積分と面積の周知の関係も触れなかったので，図形的理解が正当化されていない．

例えば数値積分のように計算機で積分を計算させるときでも，そもそも積分があるのかどうか（なければ強

引に計算しても結果は無意味），は問題になるし，台形公式などの実際の基礎的な数値積分は図形的意味に

基づいて考案されたものである．

ガンマ関数 (第 §13.2章) は s > 0 のとき 広義積分として定義された．しかし，広義積分の存在を証明し
たくとも，この広義積分は初等関数では表せない値で，不定積分をあらわに用意して微分する，という方法

は使えない．

第 §12章 では有限閉区間での定積分の存在と積分上限を無限にするときの収束をもって広義積分を定義し，
（区分的に）連続な関数は有限閉区間で定積分が存在することを既知として話を進めたが，後者についてはこ

の講義ではまだ論理的には言及していない．

他方，積分を面積と理解するならば積分可能な関数を区分的に連続な関数に限るのは不自然である．また，

パラメータや積分範囲の極限と積分の交換が不自由になる．そこで，積分とは何かという問に向かわざるを

得ない．すでに２０世紀はじめにルベーグ積分と呼ばれる積分の定義が確立し，これらの点について明確最

終的な解答が得られている．

これらは可能ならば後期の最後（ルベーグ積分の節）に触れる．
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補遺．

A この講義の狙い．

§15 この講義の立場．

自然科学的方法の基盤としての数学．

数学：怪しいところを一点も残さないことによって，そのあとの議論の如何に関わらず必ず何にでも適用

可能にしておく．究極の蓄積性．cf. 建物：やがて壊れる．そうでなくても，２階建て用の建物の上に１０階
増築したらつぶれる．数学の定理は証明した人はその次の定理を証明したかっただけでも，何千年の後にそ

こからさらに何百段の定理を積み重ねても何も問題がない．全幅の信頼．信頼の理想化．

例：「無限個の項の和」 1− 1 + 1− 1 =?, (1− 1) + (1− 1)+ · · · = 0?, 1 + (−1+ 1) + (−1 + 1) + · · · = 1?,
1 + x+ x2 + · · · = 1

1−x , x = −1 で 1
2?

一つに決まっていない：「無限個の項の和」は数学になっていない．数学としてきちんとしたものを級数と

呼ぶ．級数の定義，値の確定は級数の収束の証明によって初めて保証される．

言葉としての数学：定義，証明の追求をきちんと行うために整備された言葉．

高校時代：公式を使う，具体的な例への適用，計算

大学で学ぶべきこと：公式を作る，個々の例によらない一般論，証明

証明の方法を通して同時に厳密性のありかたの実際を学ぶこともできる．

本来はそうだが，それを全部理解するのは時間がかかる．cf. 工学的技術の確立：実験をして正しいことを
確認する．全てを納得するためには実験を全部自分で体験しないといけない．→時間が足りない．通常は自

分の狭い専門分野だけ自分で確認する．

工学部：数学のきわどいところが分からないときは数学者に質問する．（実際はきわどいところは数学者で

も難しい．ただ，きわどいか簡単かを見極める能力がある．）

素養としては結果を信じること（定理，公式の紹介と利用の練習＝高校の延長）と，数学者の言葉が分か

るようにしておくこと（数学的定義）．

後者は結局数学を理解することにつながる．それは授業の終盤を「やりたい人」向けの講義にすることで

バランスを取ろう．「ここからは仮に分からなくても単位は心配しないでよい．」（最後の 10点くらいは関係さ
せるかもしれないが，前半ができなくて後半だけできるということは考えられない．）

§16 解析学の心意気．

数学の中で「解析学」とくくったときは，概ね不等号と極限を駆使して種々の結果を得る．

等号は次のようにして得る：

(i) a ≤ b かつ a ≥ b ならば a = b .
(ii) a, b を実数の定数（ε の関数ではないとする）とするとき，任意の正の実数 ε に対して a ≤ b ≤ a+ ε が
成り立てば実は a = b である．

だから，等号を扱う分野よりレベルが低いのではない．

全順序がない集合に対して解析学をやるときは？ノルム ‖ · ‖ という量を考える．複素数の絶対値の拡張
概念．つまり全順序集合への写像を考える．ノルムの定義の一つ： ‖f‖ = 0 ならば f = 0 . ノルムで等号
‖f − g‖ = 0 を得ればもとの集合で等号 f = g を得る！

かくして解析学という数学の一つの研究の進め方の方針が普遍性を持つ．
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§17 解析学の応用．

応用上，解析学は，極めて大きな影響力がある．近年非常に注目された金融派生商品の価格決定理論などの

数理ファイナンスの分野は，解析学の一つの最先端である確率過程論の高度な理論という「巨人の肩の上に

乗って」作られた理論である．今日では不可欠を通り越して日常の一部になったコンピュータの数値計算を含

むソフトウェアは全て解析学の基礎的な事実に基づいて開発されている．例えば，繰り返し処理によって次

第に正しい値に近づけていく種類のアルゴリズムは全て，収束という解析学の基礎中の基礎の考え方に基づ

く．これらのソフトウェア正しい利用法や適用限界の確認や自分の目的にかなったプログラム開発は全て解

析学の基礎を必要とする．解析学を知る技術者が一人もいなくなればいかなる数値計算のソフトウェアも新

規開発も修正も計算機新製品への対応も全くできなくなり，コンピュータ社会は確実に終焉を迎える．計算

機に限らず，あらゆる工学上の製品設計（安全性から性能まで）の思想の根底に解析学の知識があり，解析学

なしでは，性能の向上も安全性の確保も保証されなくなる．阪神大震災の惨劇で，「新しい建造物は安全だっ

た」という議論がよくなされるが，数学の知識と技術がなくなれば，これも神話となることは確実である．

B 実数の公理．

第 §3.2章 で「既知」あるいは「省略」としたいくつかの基本事項のあらすじを説明する．

§18 集合から有理数まで．

集合（空集合 ∅，等号 =，包含関係 ⊂, ⊃，共通部分 ∩，和集合 ∪，補集合 c，ドモルガンの法則）と述語

論理（and, or, not, ならば X ⇒ Y ((not X) or Y )，同値，任意の ∀，存在する ∃）は知っているとする．

0 := {∅} = {}, 1 := {0}, 2 := {0, 1}, · · ·

で非負整数 Z+ = {0, 1, 2, · · ·} が定義できる．（0 = ∅, 1 = {0, {0}},などとするほうが普通か．）流儀によるが，
ここでは N = {1, 2, 3, · · ·} を自然数と呼ぶ．自然数 n の「次の自然数」を n′ = {0, 1, 2, · · · , n} で定義する．
自然数の公理：数学的帰納法（そういう証明の仕方を正しいと認める）．

加法 +，積 ×，不等号 <, >（等号は集合論の等号から持ってくる）．例えば n+1 = n′, n+(m+1) = n′+m,
と帰納法で加法が定義される．不等号も同様で 1 < 2 < 3 < · · · が全順序になる．数の正負と絶対値が定義
される．

命題 37 (三角不等式) |x| − |y| ≤ |x+ y| ≤ |x|+ |y|．

証明. 　（略証）　 x, y の正負に応じて場合分けすればよい． ✷

整数 Z = {n −m | n,m ∈ N} . 減法 − は加法の逆として定義される（整数は加法（減法）に関して群を
なす）．即ち，Z とは N を含み，加法に関して群をなす最小の集合と言っても同値．不等号は整数に全順序
として拡張される．

有理数 Q とは Z を含み，加法と乗法に関して体をなす最小の集合．具体的には Q = {n/m | n,m ∈
Z,m �= 0} . 商 / は乗法の逆として定義される．不等号は有理数に全順序として拡張される．

解析学をやるときは通常ここまでは既知として扱う．
数学の厳密性，という意味ではここまでも全て定義に曖昧さのないことを確認すべきだが，直感的な意味

にとっても間違いがないことが長い研究の歴史で確認されているので安心して先に進む．
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§19 有理数から実数へ．

§19.1 有界単調数列の収束．

定義 3 によれば実数とは Q を含む全順序集合であって，四則演算に関して体をなし，上に有界な集合に上

限があるものである．通常の数学では（超準解析という立場を除くと）そのような集合のうちでアルキメデ

スの原理を満たす集合を実数の集合と呼ぶ．

言い方の順序を変えて，上に有界な単調非減少有理数数列 {an} を要素とする集合 R̃ = {{an} | an ∈
Q, n = 1, 2, 3, · · ·} の２つの要素 {an}, {bn}に対して，{an} ∼ {bn} を，任意の c ∈ Q に対して

an ≤ c, n ∈ N,⇔ bn ≤ c, n ∈ N,

で定義すると，∼ は同値関係になる．このとき R = R̃/ ∼ とおく，と言ってもよい．有理数 a は数列

a, a, a, a, · · · と同一視することで実数に含まれる．

§19.2 デデキントの切断．

命題 2 を証明するには若干の基礎的な事項が必要である．ここでそのあらすじを概観する．

(i) コーシー列の収束 (命題 5)．
(ii) 切断の存在 (命題 38)．
(iii) 上限の存在 (命題 2)．

命題 4 の証明. 定義 5 の意味で {an} が α に収束するとする：

sup
N∈N

inf
n≥N

an = inf
N∈N

sup
n≥N

an = α .

ε > 0 に対して

∃n0; inf
n≥n0

an + ε > α > sup
n≥n0

an − ε,

即ち n ≥ n0 =⇒ an + ε > α > an − ε. よって 命題 4 の性質が成り立つ．逆にその性質が成り立つと，い
まの議論をさかのぼって α への収束が言える． ✷

命題 5 の証明. コーシー列ならば bN = inf
n≥N

an, cN = sup
n≥N

an とおくと，b1 ≤ b2 ≤ · · · ≤ c2 ≤ c1 を定義

と 命題 1 から得る．即ち {bN}, {cN} は有界な単調列だから 定義 3 より収束する．極限を β, γ とすると，
命題 4 より任意の ε > 0 に対して

|β − γ| ≤ |β − bN |+ |bN − cN |+ |cN − γ| < 3ε

が十分大きい N に対して成り立つから β = γ を得る．即ち上極限と下極限が一致するから 定義 5 より収束
する． ✷

命題 5 は極限の値を前もって知らなくても収束が判定できる同値条件である点で役に立つ．さらに，他の
性質に比べて実数以外の集合における収束を考えやすい．距離（差の絶対値の抽象概念）が定義された集合

（距離空間）でコーシー列が収束するものを完備な距離空間と呼ぶ．命題 5は実数の完備性を表すという言い
方ができる．

命題 2 を証明するために準備として切断を定義する．
A ⊂ R に対して (A,Ac) が切断であるとは a ∈ A かつ b ∈ Ac ならば a < b が成り立つことを言う．

形式的には４通りの可能性がある．
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(i) ∃a′ ∈ A, b′ ∈ Ac; a ∈ A⇒ a ≤ a′, b ∈ Ac ⇒ b′ ≤ b .
(ii) b′ ∈ Ac はあるが a′ ∈ A はない．
(iii) b′ ∈ Ac はないが a′ ∈ A はある．
(iv) 両方ともない．

命題 3 より，最初のケースはない．第 2,3 のケースはそれぞれ実数 b′, a′ に切断が対応する．命題 5 から
次が言える．

命題 38 (実数の連続性) 実数の集合の切断は第 4 のケースはない．

証明. （略証）　命題 3 の方法（中点をとる）を繰り返して，次のような数列 a1, a2, · · · を帰納的に定義でき
る：a1 ∈ A, a2 ∈ Ac, a3 = (a1 + a2)/2, a4 は a3 と a1 または a2 のうち違う側に属するものとの中点，以下

同様．|an+1 − an| = 2−n+1|a2 − a1| だからコーシー列になり，命題 5 より極限値 α ∈ R が存在する．作り

方から a ∈ A, b ∈ Ac ならば a ≤ α ≤ b であるから第 2,3 のいずれかのケースとなる． ✷

命題 2 の証明. （略証）　 C ⊂ R を実数の有界な集合とすると，a ∈ C ならば a ≤ M となる M ∈ R があ

る．そのような M の集合を Ac とおくと (A,Ac) は切断になるから，命題 38 より，その切断が定義する実
数 α が存在する．α は C の上限である． ✷

有界集合の上限の存在を仮定すればそれから単調有界列の収束を証明できるので，先の証明を順にたどる

ことで，結局，コーシー列の収束 (命題 5)，切断の存在 (命題 38)，上限の存在，上に有界な単調数列の収
束，は全て同値であり，いずれか一つを実数の定義とすれば他の全ては実数の性質としてそこから証明でき

る [高木貞治]．

§19.3 極限の基本性質．

以下の性質は全て定義から証明できる [高木貞治, 第 1章 4–6] ことだが，ここに列挙するにとどめ，自由
に用いることにする．

命題 39 収束すれば有界である．

同様の証明で次も成り立つ．

系 40 収束する数列について，ある項 n0 以降常に (n > n0) an ≤M が成り立てば極限値も M 以下である．

注. an < M が n = 1, 2, 3, · · · に対して成り立っても極限は M 以下であってもM 未満とは限らない．例：

1− 1/n < 1 だが lim
n→∞(1− 1/n) = 1 �< 1 .

命題 41 収束数列の部分数列は元の極限値に収束する．±∞ に発散する場合も同様．

命題 42 {an}, {bn} が収束するとき，

(i) lim
n→∞(an ± bn) =

(
lim

n→∞ an

)
±
(
lim

n→∞ bn
)

.

(ii) lim
n→∞(anbn) =

(
lim

n→∞ an

)(
lim

n→∞ bn
)

.

(iii) bn �= 0, n ∈ N, lim
n→∞ bn �= 0 のとき， lim

n→∞
an

bn
=

lim
n→∞ an

lim
n→∞ bn

.

いずれも左辺の数列も必ず収束して，その極限値が右辺で計算できる，という意味．
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命題 43 c ∈ R が {an} の上極限 c = lim
n→∞ an ということと，次の性質を満たすことは同値．

(i) 任意の ε > 0 に対して n0 があって n > n0 ならば an < c+ ε.
(ii) 任意の ε > 0 と任意の n0 に対して n > n0 があって an > c− ε.

次とも同値．

(i) {an} の部分列で c に収束するものがある，

(ii) c′ > c ならば {an} の部分列で c′ に収束するものがない．

§19.4 位相の基本性質．

以下の性質も実数の定義から証明できる [高木貞治, 第 1章 7] ことである．
a ∈ R が A ⊂ R の集積点であるとは a のどんな近くにも A \ {a} の点があることを言う．（注：数列の集

積点も数列に属する実数を集めた集合と見て同様に定義される．但し，用語の定義によって a, a, a, · · · なる
数列は集積点がない．）A が a に集積することと a に収束する A \ {a} の点列 {an} がとれることは同値で
ある．（実際集積していれば an+1 ∈ {x ∈ A | 0 < |x − a| < min{|an − a|, 1/(n + 1)} が帰納的にとれるから
{an} が a に収束する．逆は自明．）a ∈ A か否かは問わない．

命題 44 lim
n→∞ an は {an} の最大の集積点である．

定理 45 (Weierstrass) 実数の有界な無限集合には集積点が存在する．

閉集合とは集積点を全て含む集合のこと，開集合とは補集合が閉集合であること．

例：空集合と R は閉集合かつ開集合なるただ二つの集合．開区間は開集合，閉区間は閉集合．

命題 46 開集合 A の各点に対して，その点を中心とする開区間で A に含まれるものがとれる．

（この性質を拡張したものを開集合の定義とするのが普通．）

（開集合とは限らない）任意の集合 A ⊂ R と a ∈ A に対して，a が 命題 46 の性質を持つとき， A の内

点と呼ぶ．a ∈ A が A の内点でないとき A の境界点と呼ぶ．A の内点の集合を A の内部と呼び Ao などと

書くことが多い．内部は A に含まれる最大の開集合である．A と A の集積点の和集合を A の閉包と呼び Ā

などと書くことが多い．Ā は A を含む最小の閉集合である．（各自証明してみよ．）集積点でない境界点を孤

立点とも言う．内部のまわりに集積点があり，集積点のうち A にふくまれるものと孤立点が境界点，内点と

境界点で閉包となる．A ⊃ B に対し，B̄ ⊃ A ならば B は A の中で稠密であると言う．

定理 47 (Heine–Borel) 開集合の族で覆える有界閉集合は，その中の有限個で覆える．逆も成り立つ．

「開集合の族で覆えるときその中の有限個で覆える」という性質をその集合はコンパクトである，という．こ

の定理は「実数ではコンパクトということと有界閉集合ということは同値」と書ける．

§20 連続性．

§20.1 連続変数に関する極限．

数列の収束をそのまま拡張する定義の試みを記録しておく．

命題 48 定義 6 と次は同値である．x0 ∈ R を含む区間 (a, b) で定義された実数値関数 f の x0 における極

限値が β ( lim
x→x0

f(x) = β) であるとは， lim
n→∞ an = x0 かつ an ∈ (a, b) \ {x0}, n ∈ N, なる任意の数列 {an}

に対して lim
n→∞ f(an) = β が成り立つことを言う．（そういう β がなければ，極限がない，収束しない，など

と呼ぶのは数列の収束と同様である．）
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もし，ε− δ 論法をできるだけ表に出したくないなら，こちらの定義もあるかもしれない．
定義 6 において {an} の極限が共通の点 (β) であることは前もって知らなくても構わない：

命題 49 x0 ∈ Rを含む区間 (a, b) で定義された実数値関数 f について， lim
n→∞ an = x0 かつ an ∈ (a, b)\{x0},

n ∈ N, なる任意の数列 {an} に対して数列 {f (an)} が収束すれば，その極限値は {an} の選び方によらな
い定数である．（従って， f の x0 における極限値が存在する．）

証明. 　（略証）　 {f (an)} の極限が異なる数列が 2つあると，一方を奇数項，他方を偶数項の部分列とする
数列 {cn} は lim

n→∞ cn = x0 かつ cn ∈ (a, b) \ {x0}, n ∈ N, を満たすのに 命題 5 より {f (cn)} が収束しない
ので，前提に反する． ✷

命題 48 の証明. lim
n→∞ an = x0 かつ an ∈ (a, b) \ {x0}, n ∈ N, なる任意の数列 {an} に対して 命題 4 を

α = x0, ε = δ として用いれば

(∀δ > 0) ∃n0; n ≥ n0 =⇒ 0 < |an − x0| < δ(22)

である．命題の性質が成り立てば ∀ε > 0 に対して

0 < |x− x0| < δ =⇒ |f(x)− β| < ε

となる δ > 0 が取れるので，その δ に対して (22) の n0 を選べば n ≥ n0 に対して 0 < |f(an)− β| < ε を
得るから，命題 4 より数列 {f (an)} は β に収束する．

逆に，命題の性質が成り立っていないとすると（δ = 1/n, x = an として）

∃ε0 > 0; (∀n ∈ N) ∃an ∈ (a, b); 0 < |an − x0| < 1/n, |f(an)− β| ≥ ε0 .

命題 4 より，数列 {an} は x0 に収束する．しかも，n によらない ε0 に対して |f(an) − β| ≥ ε だから

lim
n→∞ f(an) �= β． ✷

片側からの極限を考えることも結構多いので定義しておく．

定義 11 x0 < b とする．区間 (x0, b) で定義された実数値関数 f の x0 における極限値（右極限） lim
x↓x0

f(x)

(または lim
x→x0+0

f(x0) または f(x+ 0)) が β であるとは lim
n→∞ an = x0 かつ an ∈ (x0, b), n ∈ N, なる任意

の数列 {an} に対して lim
n→∞ f(an) = β が成り立つことを言う．

もちろん 命題 48 と同様の言い替えが成り立つ．左極限 lim
x↑x0

f(x) (または lim
x→x0−0

f(x) または f(x0 − 0)) も

同様である．

定義 3 では有界な単調数列の収束を実数の性質（実数の連続性，完備性と同値な条件）として認めたが，
このことから単調な関数 (定義 9) の連続変数についての右極限や左極限 (定義 11) の存在も言える．

命題 50 a < x0 < b とし，f : (a, b)→ R が単調な関数とする．このとき f の x0 における左極限と右極限

が存在する．

証明. どちらに関しても f(x0) が {f (an)} の上限または下限となることに注意．例えば増加関数に対して左
極限（x < x0 からの接近）を考えるときは，bN = inf

n≥N
an とおくと増加数列なので {f (bn)} も増加だから

定義 3 より収束．f が増加だから bn ≤ an より f(bn) ≤ f(an) 従って，命題 4 より {f (an)} も同じ極限値
に収束．他の場合も同様． ✷

次のことは明らかだろう．
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命題 51 a < x0 < b に対して f : (a, b)→ R とする．x0 における左極限 (f : (a, x0)→ R とみなして，以
下同様) と右極限が一致すれば極限が存在してそれも一致する．

逆に言えば有界単調な関数というだけでは極限は存在するとは限らない．例：x < 0 で 0， x ≥ 0 で 1 とな
る関数は実数上で定義された増加関数だが，x = 0 で極限は存在しない．
定義 5 では数列の収束を上極限と下極限の一致で定義したが，その拡張で連続変数についての極限を考え

ることもできる．例えば

lim
x→x0

f(x) := lim
δ↓0

sup{f (x) | 0 < |x− x0| < δ} .

sup は実数値または ∞ の意味で確定する．sup{f (x) | 0 < |x− x0| < δ} は δ に関して単調増加なので δ ↓ 0
とともに減少し，右辺の極限は R ∪ {±∞} の意味で確定する．
極限を持つことと lim

x→x0
f(x) = lim

x→x0

f(x) ∈ R の同値性も今までと同様の議論で言える．

§20.2 関数の連続性．

第 §5.1章, 第 §5.3章 の定理の証明の略証を行う．

命題 52 f : [a, b]→ R が連続関数で a < c < b で f(c) �= 0 ならば c を含むある開区間で f(x) �= 0 である．

証明. f(c) > 0 として証明する．逆の場合も同様．連続だから

0 = lim
x→c

|f(x)− f(c)| = lim
δ→0

sup
x; |x−c|<δ

|f(x)− f(c)| = inf
δ>0

sup
x; |x−c|<δ

|f(x)− f(c)|.

従って特に，ある δ > 0 で

sup
x; |x−c|<δ

|f(x)− f(c)| < f(c)/2

となる．よって，|x− c| < δ ならば，つまり x が区間 (c− δ, c+ δ) にいれば 0 < f(c)/2 < f(c)− f(c)/2 <
f(x) < f(c) + f(c)/2 となる．左側の不等式から f(x) �= 0 が言えている．

（ε− δ法による別証．）
f(c) > 0 として証明する．逆の場合も同様．ε = f(c)/2 > 0 として 命題 7 を適用すると，連続だから

|x− c| < δ ならば |f(x)− f(c)| < f(c)/2 となる δ > 0 がある． (c− δ, c+ δ) は定理の主張を満たす開区間
の実例である． ✷

定理 12 の証明. f(a) < γ < f(b) の場合を扱う．逆の場合も同様．c = sup{a ≤ x ≤ b | f(x) < γ} とおくと，
命題 52 より a < c < b．同じ理由で f(c) < γ も f(c) > γ もあり得ないから f(c) = γ． ✷

命題 13 の証明. 定理 12 より，f(a) < γ < f(b) なる任意の c に対して f(c) = γ なる a < c < b がある．狭

義単調性からそのような c は二つはない．よって f−1 : [f(a), f(b)]→ R が決まる．

連続性は背理法によって狭義単調性を使えば容易． ✷

定理 14 の証明. (i)上に有界でないとすると，有界の定義から n ∈ N に対して f(an) > n なる a ≤ an ≤ b
がある．定理 45 より {an} は集積点 c を持つ (第 §19.4章 の冒頭)．そこで注意したように {an} は c に

収束するとしてよい．しかも [a, b]は閉集合なので c ∈ [a, b] である．連続関数だから lim
n→∞ f(an) = f(c)．

f(an) はいくらでも大きくなるから f(c) を越えて，矛盾（アルキメデスの原理）．よって f は [a, b]上
有界．
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(ii) 最初の結果から M = sup{f (x) | x ∈ [a, b]} は実数値．M をとる x ∈ [a, b] がなければ M − f(x) > 0
だから逆数をとることができて，しかも連続関数になる．つまり， g(x) = 1/(M − f(x)) で [a, b]上の
正値連続関数が定義できる（ [a, b] のどの点 x でも g(x) が実数値である！）．上限の定義から g は [a, b]
で上に有界ではない．これは最初の結果と g が [a, b]上連続なはずだということに矛盾する．
最小値も同様．

✷

定義 12 関数 f : X → R が X で一様連続であるとは

inf
δ>0

sup{|f (x)− f(y)| | x, y ∈ X ; |x− y| < δ} = 0

が成り立つことを言う．

ε− δ の記法で書くと，

(∀ε > 0) ∃δ > 0; (∀x, y ∈ X) |x− y| < δ =⇒ |f(x)− f(y)| < ε

ということでもある．δ > 0 が x, y に無関係に X 全体と f , ε だけで決まるという意味である．
稠密な集合で定義された連続関数を実数の区間に拡張できるために必要な性質．指数関数 ax を定義するの

に x ∈ N から始めて Z, Q までは明らかに拡張できるが，これを R に連続関数として拡張できるのは一様

連続性があるからである．（指数関数については単調性から一様連続性をあらわに用いずに拡張できるが，一

般には Q での一様連続性が R への拡張可能性の必要十分条件になる．）

定理 53 (一様連続性) 有界閉区間 [a, b] で連続関数 f : [a, b]→ R は一様連続である．

x ∈ Rと δ > 0に対して Bx(δ) = {y ∈ R | |y−x| ≤ δ}とおく．[a, b]∩Bx(δ) は有界閉集合なので 定理 14
より f の最大値と最小値がある．その差（変動）を Vx(δ) とおくと，

Vx(δ) = max{f (y)− f(z) | y, z ∈ [a, b] ∩Bx(δ)}

である．δ′ > 0 に対して

ρδ′(x) = sup{δ > 0 | Vx(δ) < δ′}

とおく．

補題 54 (i) ρδ′(x) > 0, x ∈ [a, b],
(ii) ρδ′(y) ≥ ρδ′(x)− |x− y|, x, y ∈ [a, b].

証明. (i) ある x ∈ [a, b] と δ′ > 0 に対して ρδ′(x) = 0 とすると，Vx(δ) > δ′, δ > 0, ということであるか
ら，（δ = 1/n ととることにより）任意の n ∈ N に対して |a2n−1 − x| ≤ 1/n, |a2n − x| ≤ 1/n, なる
an ∈ [a, b], n ∈ N, がとれて f(a2n−1) − f(a2n) > δ′ となる．とりかたから {an} は x に収束するが，

{f (an)} がコーシー列でないこと，従って収束しないことを意味し，即ち， f が x で不連続となり，連

続関数との仮定に反する．

(ii) 定義より，y, z ∈ [a, b] ∩Bx(ρδ′(x)− 0) ならば f(y)− f(z) < δ′ .
By(ρδ′(x)− |x− y| − 0) = {z ∈ R | |z − y|+ |y − x| ≤ ρdelta′(x)− 0}
⊂ {z ∈ R | |z − x| ≤ ρdelta′(x)− 0} = Bx(ρδ′ (x)− 0)

だから，y, z ∈ [a, b]∩By(ρδ′(x)− |x− y|− 0) ならば f(y)− f(z) < δ′ . よって ρδ′(y) ≥ ρδ′(x)− |x− y|.
✷
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系 55 ρδ′ : [a, b]→ R は連続関数である．

証明. 補題 54 の (3) で x と y を入れ替えれば |ρδ′(y)− ρδ′(x)| ≤ |y− x|, x, y ∈ [a, b]. 命題 7 において δ = ε

と選ぶことにより，定義 7 より，ρδ′ の連続性を得る． ✷

定理 53 の証明. ρδ′ : [a, b]→ R は連続関数だから，定理 14 より，有界閉区間 [a, b] で最小値 ρδ′(x0) をとる．
補題 54 の (1) より， ρδ′(x) ≥ ρδ′(x0) > 0 , x ∈ [a, b]. ε > 0 に対して， δ = ρε(x0) > 0 ととり，x, y ∈ [a, b],
|x− y| < δ とすると，|x− y| ≤ ρε(x) なので，|f(y)− f(x)| < ε を得る． ✷

C 微分．

§21 微分の定義．

第 §6.1章 で述べた微分の定義は既に習っているかも知れない．それ故かえって，この講義の最初の部分と
どういう関係にあるのかが気になるかも知れない．

微分係数の定義において用いる極限という概念は，この講義の最初の部分 (定義 5, 定義 6) で定義したもの
に従う．これによって微分係数や導関数についての厳密な取り扱いが可能となり，高校時代には曖昧にして

いた，種々の公式の成り立つ根拠や，どのような関数に対してそれを使うことができるか（あるいはできな

いか），を議論できるようになる．

但し，講義では，原理的にそのような厳密な取り扱いの筋道がある，ということを念頭に置きつつも，そ

のことを表に出さずに高校の復習のように話を展開する．これは講義の最初の部分でつまずいても，ひとま

ず先の部分を学習できるようにという配慮に他ならない．

命題 16 の証明. [三宅敏恒] に従う．
C 上の P を通る直線 $ : m(x− a) + n(y − f(a)) = 0 (m2 + n2 �= 0) を考える．Q(x, f(x)) から $ に下し

た垂線の足を H とすると

QH

PQ
=

|m(x− a) + n(f(x)− f(a))|√
((x− a)2 + (f(x)− f(a))2)(m2 + n2)

だから

lim
x→a

QH

PQ
=

|m+ nf ′(a)|
(1 + f ′(a)2)(m2 + n2)

なので $ が接線となる必要十分条件は −m/n = f ′(a) となる．即ち主張が成り立つ． ✷

D 初等関数．

定数関数 f(x) = 1, x ∈ R，恒等写像 f(x) = x, x ∈ R，は説明するまでもない．四則演算を既知とする

と，xn, n = 1, 2, 3, · · ·, も定義できるので，多項式，有理式の定義も問題ない（有理式は定義域は分母の零点
を含むことができない点のみ注意）．実数値関数としてのべき根 x1/n, n = 2, 3, 4, · · ·, は xn の逆関数として

R+ から R+ への関数として定義可能．初等関数と言うときは以上と三角関数と指数関数およびそれらの逆

関数（に四則演算を施したもの）を通常考えている．（実数 r に対して f(x) = xr はこれだけでは一般に定義

されないが，r に収束する有理数列を考えて，r が有理数の場合に帰着する．）
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三角関数について最小限覚えておくべきことは，tanx =
sinx
cosx

と sinx, cosx についての加法公式，0, π/2,
π での値，2π周期であることなど．これらを知っていれば原理的には他の性質，例えば半角公式やテーラー
展開は導ける．

指数関数については ax = exp(x log a) で exp(x) = ex に帰着すること，exp(x + y) = exp(x) exp(y),

exp(a x) = (exp(x))a,
d exp(x)
dx

= exp(x) など．逆関数として対数関数に対応する性質がある．
本当はそういったことも定義して論理に飛躍や矛盾がないように証明を積み重ねるべきである．つまり，そ

ういった「都合の良い」「美しい」性質が一気に成り立つ関数が本当にあるのか？という疑問に答えられる必

要がある．が，それが可能であることは知られていて，高校で教わったとおりの種々の性質が成り立つこと

が分かっている．

三角関数は，級数の収束に関する一般論をきわめた後にべき級数で定義し，結果として微分に関する公式

を得て，微分方程式の一般論から加法定理を得ることによって，通常知っている全ての公式を満たす関数と

しての三角関数の存在と一意性を得る（か，もっと普通には複素数上の複素数値関数としてコーシーの積分

公式という正則関数の議論を用いる）．

指数関数については 第 §3.2章 で

e = 1 +
1
1!

+
1
2!

+
1
3!

+ · · · = 2.718281828 · · ·

と定義したが，e = lim
x→∞

(
1 +

1
x

)x

が成り立つ．実際，x が自然数の場合の極限は２項定理から単調増加数

列で，上記級数で上に有界なので，収束する．この極限が任意の m に対して上記級数の第 m部分和以上に

なることも変形の途中で分かるので極限は e である．一般の x に対しては n ≤ x ≤ n+ 1 に対して(
1 +

1
n+ 1

)n

≤
(
1 +

1
x

)x

≤
(
1 +

1
n

)n+1

に注意すればよい．この式から

eh = lim
x→∞

(
1 +

h

x

)x

= lim
n→∞

(
1 +

h

n

)n

= 1 + h+O(h2)

を得るので
d ex

dx
(0) = 1 を得るから e(x+h) = exeh と合わせて指数関数の微分の公式に至る．
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講義のスタイルと参考文献について．
最近の教科書の（高木貞治の教科書にない）最大のテーマは，いわゆる ε–δ論法をどう扱うか，である．少

なくとも工学部学生のための講義の最初（１年生の最初の授業）においては ε–δ論法を持ち込まない，とい
う考え方が定着している．理学部学生に対しても，少なくともそのような講義方針を選択できるようにする

考え方がやはり定着しているように思われる．近年あるいは近未来においては数学科学生に対してどうすべ

きか，ということすら，もはや聖域ではなくなっているようだ．

ε–δ 論法は解析的性質を議論するのに便利（不可欠）だから， ε–δ 論法を最初に持ち込まないということ
は，実数の公理や関数の解析的性質（例えば連続性）に関する基本的な性質の多くを証明せずに認める，と

いうことである．

「その先」の扱いは教科書によって違う．単調有界数列の収束を実数の公理とすれば（証明はかなりとばす

ことにしても）論理的には実数の公理から全てを導く，という論理的筋道の呈示は（学生には伝わらなくて

も，講義する教員の心的事実として）維持できる．伝統的な数学科の教員による講義・教科書でこの方針の

ものを複数知っている．他方，実数に関する公理を一切呈示しない（または補遺に回して，各自の自習に任

せる）方針もある．この場合は論理的筋道は放棄せざるをえないが，その時間をいろんな公式や道具の呈示

に回せるので，例えば級数の収束に関するテクニックなどに話を集中する，といった講義が可能になる．最

後の例は物理出身の教員による講義で複数の例を知っている．

この講義録では伝統的な数学科の方針に従う．
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