### Search

Yoshimasa Shirai

October 2, 2017

The Basic Model of Sequential Search
Discrete Time Model
Continuous Time Model

## The Set Up of Discrete Time Model

- ▶ The decision maker samples sequentially from the distribution F. I.e., he faces a sequence  $\{x_i\}$  of i.i.d. random variables with cumulative distribution function F
- ► Each observation costs c.
- ▶ He can stop search at any time *n*.
- ▶ Let *y<sub>n</sub>* be the prize received if search is stopped after *n* samples.

For search with recall,  $y_n = \max\{x_1, x_2, ..., x_n\}$ . For search without recall,  $y_n = x_n$ 

▶ Payoff for the decision maker stopping after n samples is denoted Y<sub>n</sub> where

$$Y_n = y_n - nc$$

If the decision maker discount the the sampling time with discount factor  $\delta < 1$ , then the payoff is

$$Y_n = \delta^{n-1} y_n - \sum_{i=1}^n \delta^{i-1} c = \delta^{n-1} y_n - \frac{1 - \delta^n}{1 - \delta} \cdot c.$$

### The Problem

- A stopping rule prescribes a rule after what sequences of observations to stop the sampling.
- ▶ A stopping time resulting from a stopping rule is the integer n after which the sampling will stop, if that stopping rule is invoked. The stopping time is a random variable (because samples are random variables).
- ▶ A stopping rule, S, determines a random stopping time N(S).
- ► The problem the decision maker is facing is to find and use a stopping rule, *S*, that maximizes its expected payoff,

$$E[Y_{N(S)}].$$

► The solution to this problem (a stopping rule), is called an **optimal stopping rule**.



## An Optimal Stopping Rule is a Reservation Value Rule

- ▶ A **reservation value rule** is a stopping rule which prescribes to stop sampling after n observations if and only if  $y_n \ge y$ . The level y is called the reservation value.
- ▶ It turns out that under certain conditions, a optimal stopping rule is a reservation value rule.

### **Proposition**

If  $E[x_i^2]$  is finite, then there exists an optimal stopping rule. It is a reservation value rule.

See Maurice DeGroot (1970, chapter 13.9) for the proof.

# Some Properties of the Reservation Value Rule (I)

Let N(y) be the stopping time associated with the reservation value rule with reservation value y. Since probability of N(y) being i is  $F(y)^{i-1}(1-F(y))$ , we can calculate the expected value of N(y) as follows;

$$E[N(y)] = \sum_{i=1}^{\infty} iF(y)^{i-1} (1 - F(y)) = 1/(1 - F(y)).$$
 (1)

Let V(y) be the expected value of reservation value rule with reservation value y. I.e.,  $V(y) \equiv E[Y_{N(y)}]$ . This can be calculated as follows;

$$V(y) = E[Y_{N(y)}] = E[y_n - N(y)c] = E[x|x \ge y] - cE[N(y)]$$
  
= 
$$\int_{y}^{\infty} x \frac{dF(x)}{1 - F(y)} - \frac{c}{1 - F(y)}.$$
 (2)

# Some Properties of the Reservation Value Rule (II)

### **Proposition**

If F has a connected support, then the optimal policy has a reservation value  $y^*$  such that  $y^* = V(y^*)$ .

▶ The optimal reservation value  $y^*$  solves the equation,

$$c = \int_{y^*}^{\infty} (x - y^*) dF(x) \tag{3}$$

Comparative statics results;

- (1) If the search cost c is higher, then the reservation value  $y^*$  becomes lower.
- (2) If cumulative distribution function for samples G is a mean preserving spread of F, the reservation value under G is higher than that under F. (G is mean preserving spread of F if (i) they have the same mean and (ii)  $\int_{-\infty}^{y} G(x) F(x) dx \ge 0$  for all y)

### Homework I

#### Homework I

- Prove comparative statics results in the previous slide.
- ▶ Derive expression for V(y) (equivalent of expression (2)) if decision maker discounts time with discount factor  $\delta < 1$ .
- Using above result, perform a comparative static of change in  $\delta$  on the optimal reservation value.