経済数学入門演習問題 WLec 01, 2021/10/04

I
$p,q,I>0$とします.効用関数 $$ u(x,y)=x^{\frac 13}y^{\frac 13} $$ を制約条件 $$ I-px-qy=0 $$ の下で最大化することを考えます.
(1) 停留点を求めて $$ x(p,q,I)=\frac I{2p},\quad y(p,q,I)=\frac I{2q},\quad \lambda=\frac 13\sqrt[3]{\frac 2{pqI}} $$ であることを示しましょう.
(2) 間接効用関数 $$ v(p,q,I)=u(x(p,q,I),y(p,q,I)) $$ に対して $$ \frac{\partial v}{\partial I}=\lambda(p,q,I) $$ が成立することを示しましょう.
(3) Royの恒等式 $$ \frac{\partial v}{\partial x}+ \frac{\partial v}{\partial I}\cdot x(p,q,I)=0 $$ が成立することを示しましょう.
II
$p,q,I>0$とします.効用関数 $$ u(x,y)=\frac 13\log x+\frac 13\log y $$ を制約条件 $$ I-px-qy=0 $$ の下で最大化することを考えます.
停留点を求めて、需要関数と所得の限界効用関数$\lambda(p,q,I)$を求めましょう.
III
制約条件 $$ x^2+2y^2-24=0 $$ の下で $$z=x+y$$ の停留点を求めましょう.
IV
$p,q,I>0$とします.効用関数 $$ u(x,y)=x^{\frac 13}y^{\frac 23} $$ を制約条件 $$ I-px-qy=0 $$ の下で最大化することを考えます.
停留点を求めて、需要関数と所得の限界効用関数$\lambda(p,q,I)$を求めましょう.
V
$g(x,y):=2x^2+y^2-1=0$の下で $z=f(x,y)=x^2y$を考えます.停留点を求めましょう. (CT290ページ,演習8.13)
VI
$x$の関数$y=\varphi(x)$が \begin{equation*} x^2+\varphi(x)^2-3x\varphi(x)=0 \end{equation*} を満たしているとします.$\varphi'(x)$と$\varphi''(x)$を $x$と$\varphi(x)$で表しましょう. (CT294ページ,演習8.18)
VII
$g(x,y)=1-xy=0$の下で$z=f(x,y)=x+2y$を考えます.停留点を求めて,極大・極小を判定しましょう.
VIII
$g(x,y)=x^2-y^2-1=0$をその上の点$(2,\sqrt 3)$の近傍で解いて \begin{equation} \varphi(x)=\sqrt{x^2-1} \end{equation} とします.$\varphi''(2)$を$g$の1階および2階の偏微分係数を用いて求めましょう.
IX
$g(x,y)=x+2y-1=0$の下で$z=f(x,y)=xy$を考えます.停留点を求めて極大・極小を判定しましょう.