微分積分演習(2020年度)

第4講義05/27

2020/05/27 第4講 演習問題
I
以下の関数$f(x)$に対して導関数$f'(x)$を求めましょう.ただし \begin{align} \left(x^n\right)'&=nx^{n-1}&(n=1,2,3,\dots)\\ \left(\frac 1{x^n}\right)' &=-\frac n{x^{n+1}}&(n=1,2,3,\dots)\\ \left(\sqrt{x}\right)'&= \frac 12\cdot \frac 1{\sqrt x}& \end{align} は用いましょう.
(1) $f(x)=\frac 1{x+2}$ (2) $f(x)=\frac {x+3}{x-1}$ (3) $f(x)=\frac 1 {2x+1}$
(4) $f(x)=\frac x{2x-1}$ (5) $f(x)=\frac 1{x^2+1}$ (6) $f(x)=\frac {x+1}{x^2+1}$
(7) $f(x)=\frac {x^2}{x-1}$ (8) $f(x)=x^2\sqrt{x}$ (9) $f(x)=\frac 1{x\sqrt{x}}$
(10) $f(x)=\frac 1{x^2\sqrt{x}}$ (11) $f(x)=\frac {x^2}{x^2+1}$ (12) $f(x)=\frac x{x^2+x+1}$
II
以下の関数$f(x)$に対して導関数$f'(x)$を求めましょう.
(1) $f(x)=\frac 1{(3x+1)^3}$ (2) $f(x)=(1-2x)^5$ (3) $f(x)=\left(\frac {x-1}x\right)^5$
(4) $f(x)=\left(3-2x^2\right)^3$ (5) $f(x)=\sqrt{x-1}$ (6) $f(x)=\frac 1{\sqrt{x-1}}$
(7) $f(x)=\frac 1{\sqrt{x^2+x+1}}$ (8) $f(x)=\frac x{\sqrt{1-x^2}}$ (9) $f(x)=\frac x{\sqrt{1+x^2}}$
III
函数$f(x)$が$x=c$で微分可能であるとします.すなわち,極限 $$ \displaystyle\lim_{x\rightarrow c} \frac {f(x)-f(c)}{x-c} $$ が存在するとします.このとき以下の極限を求めましょう.
(1) $$ \displaystyle\lim_{h\rightarrow 0} \frac {f(c+h^2)-f(c)}{h} $$
(2) $$ \displaystyle\lim_{h\rightarrow 0} \frac {f(c+ph)-f(c+qh)}{h} $$
IV
以下の極限が存在するとします. $$ \displaystyle\lim_{x\rightarrow 1} \frac {ax^2+bx}{x-1}=1 $$ このとき$a$, $b$を求めましょう.
V
以下の極限が存在するとします. $$ \displaystyle\lim_{x\rightarrow 1} \frac {a\sqrt{x+1}-b}{x-1}=\sqrt{2} $$ このとき$a$, $b$を求めましょう.