無限遠方の極限

Nobuyuki TOSE

Lec07, May 29, 2019 V02

$+\infty$ に発散する数列 (1)

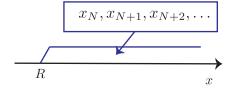
Definition

数列 $\{x_n\}$ が無限遠方に発散する:

$$x_n \to +\infty \quad (n \to +\infty)$$

とは、任意のR>1に対して番号Nが存在して

$$R < x_n \quad (n \ge N)$$



$+\infty$ に発散する数列 (2)

Example 1
$$x_n = n$$
 ($n = 1, 2, 3, ...$) とすると

$$x_n \to +\infty$$

 $\forall R > 1$ を取ります. このとき

$$R-1 < [R] \le R$$

なので
$$N = [R] + 1$$
 とします. $n \ge N$ ならば

$$R < [R] + 1 = N \le n$$

定理

定理1

(1)
$$x_n \to +\infty$$
, $y_n \to +\infty$ $(n \to +\infty)$ ならば

$$x_n y_n \to +\infty \quad (n \to +\infty), \quad x_n y_n \to +\infty \quad (n \to +\infty)$$

(2)
$$x_n \to +\infty$$
, $y_n \to \alpha > 0$ $(n \to +\infty)$ ならば

$$x_n + y_n \to +\infty \quad (n \to +\infty)$$

(3) (追し出しの定理)
$$x_n \to +\infty$$
 $(n \to +\infty)$ で

$$x_n \leq y_n \quad (n \geq N_0)$$

を満たす番号 N が存在するならば

$$y_n \to +\infty \quad (n \to +\infty)$$

定理1(証明を少し)(1)

定理 $\mathbf{1}(\mathbf{1}) \ \forall R > 1$ を取ります. $x_n \to +\infty$ から

$$\exists N_1 (n \geq N_1 \Rightarrow 1 < R < x_n)$$

$$y_n \to +\infty$$
 から

$$\exists N_2 (n \geq N_2 \Rightarrow 1 < R < y_n)$$

 $N:= \max(N_1,N_2)$ として $n \geq N$ ならば $n \geq N_1$ かつ $n \geq N_2$ なので

$$R < R + R < x_n + y_n$$
, $R = 1 \cdot R < R \cdot R < x_n \cdot y_n$

から

$$x_n + y_n \to +\infty, \quad x_n y_n \to +\infty \quad (n \to +\infty)$$

◆□▶◆□▶◆壹▶◆壹▶ 壹 釣Q@

定理1(証明を少し)(2)

定理 $\mathbf{1(2)}$ (3) を使います. $y_n \to \alpha > 0$ なので、ある番号 N_0 が存在して

$$n \ge N_0 \Rightarrow \frac{\alpha}{2} < y_n < \frac{3\alpha}{2}$$

が成立します. 従って

$$\frac{\alpha}{2} \cdot x_n < x_n y_n \quad (n \ge N_0)$$

さらに $\alpha > 0$ から

$$\frac{\alpha}{2} \cdot x_n \to +\infty$$

も示せますから(3)によって

$$x_n y_n \to +\infty$$

◆ロト ◆部ト ◆差ト ◆差ト 差 めなべ

定理1(証明を少し)(2)

定理 $\mathbf{1(3)}$ $\forall R > 1$ を取ります. $x_n \to +\infty$ から

$$\exists N_1 (n \geq N_1 \Rightarrow R < x_n)$$

が成立します. $N = \max(N_0, N_1)$ に対して $n \ge N_0$ かつ $n \ge N_1$ から

$$R < x_n \le y_n$$

となります.

定理1に対するコメント

Example 2 定理1の(1)から

$$n^2 \to +\infty \quad (n \to +\infty)$$

Example 3 $a_n = n^2 - n$ とする.これを $a_n = n^2 \left(1 - \frac{1}{n}\right)$ と変形すると

$$a_n = n^2 \left(1 - \frac{1}{n} \right) \to +\infty$$

実際 $n^2 \to +\infty$ と $1-\frac{1}{n} \to 1 > 0$ から定理 1 の (2) が適用できる.

Remark The Part (3) is called PUSH OUT Theorem in Japan. It means OSHIDASHI, a winning trick of the Sumou.

□ → < □ → < □ → < □ →
□ → < □ →

定理1に対するコメント(2)

Example 4 a > 1 % %

$$a^n \to +\infty \quad (n \to +\infty)$$

実際 $a=1+\theta$ とすると $\theta>0$ であり、2 項定理から

$$a^{n} = (1 + \theta)^{n} = 1 + n\theta + \frac{n(n-1)}{2} \cdot \theta^{2} + \dots + \theta^{n} > \theta n$$

が従う. 他方 $\theta \cdot \mathbf{n} \to +\infty$ であるので、定理 $\mathbf{1}(3)$ から $\mathbf{a}^n \to +\infty$.

定理2

定理2

(1) すべての番号 n に対して $x_n \neq 0$ で、 $x_n \rightarrow +\infty$ $(n \rightarrow +\infty)$ ならば

$$\frac{1}{x_n} \to 0 \quad (n \to +\infty)$$

(2) $a_n > 0$ が任意の n に対して成立して, $a_n \to 0$ ならば

$$\frac{1}{a_n} \to +\infty$$

定理 2(1)-証明

 $\forall \varepsilon > 0$ を取ります.そして $R := \frac{1}{\varepsilon} > 0$ とします.このとき $x_n \to +\infty$ から

$$\exists N (n \geq N \Rightarrow R < x_n)$$

これからn>Nならば

$$0<\frac{1}{x_n}<\frac{1}{R}=\varepsilon$$

であることが分かります.

(2) も同様です. 任意の R > 1 に対して $\varepsilon = \frac{1}{R}$ と定めます.

無限遠方の極限(1)

無限遠方の極限 (1)

$$g: (A, +\infty) \rightarrow \mathbb{R}$$
 (1)

$$g(x) \to \alpha \in \mathbf{R} \quad (x \to +\infty)$$

とは条件

$$x_n \in (A, +\infty), \quad x_n \to +\infty \quad (n \to +\infty)$$

を満たす数列 $\{x_n\}$ が必ず

$$g(x_n) \to \alpha \quad (n \to +\infty)$$

を満たすときである.

◆ロト ◆個ト ◆差ト ◆差ト 差 めるぐ

Nobuyuki TOSE

無限遠方の極限(2)

無限遠方の極限 (2)

(2)

$$g(x) \to +\infty \quad (x \to +\infty)$$

とは条件

$$x_n \in (A, +\infty), \quad x_n \to +\infty \quad (n \to +\infty)$$

を満たす数列 $\{x_n\}$ が必ず

$$g(x_n) \to +\infty \quad (n \to +\infty)$$

を満たすときである.

◆ロト ◆団ト ◆豆ト ◆豆 ・ りへで

同値な定義 (Equivallent Definitions)

(1) $g(x) \to \alpha \in \mathbf{R} \ (x \to +\infty)$ if and only if for any $\varepsilon > 0$, we can find R > 0 satisfying

$$\alpha - \varepsilon < g(t) < \alpha + \varepsilon \quad (t > R)$$

(2) $g(x) \to +\infty$ $(x \to +\infty)$ if and only if for any R>1, we can find $R_0>0$ satisfying

$$R < g(t) \quad (R_0 < t)$$

Examples

Example 5 We consider

$$g(x) = \frac{1}{x} \quad (x > 0)$$

Then

$$g(x) \to 0 \quad (x \to +\infty)$$

Take a sequence $\{x_n\}$ satisfying

$$x_n > 0, \quad x_n \to +\infty$$

Then it follows from Theorem 2 that

$$g(x_n) = \frac{1}{x_n} \to 0 \quad (n \to +\infty)$$

Nobuyuki TOSE

Theorem 3

Theorem 3

2つの関数

$$f(x): (A, +\infty) \to \mathbf{R}, \quad g(x): (A, +\infty) \to \mathbf{R}$$

 $if x \rightarrow +\infty$ のとき

$$f(x) \to \alpha \in \mathbf{R}, \quad g(x) \to \beta \in \mathbf{R}$$

を満たすとする.

- (1) $f(x) \pm g(x) \rightarrow \alpha \pm \beta \ (x \rightarrow +\infty)$
- (2) $f(x)g(x) \rightarrow \alpha\beta \ (x \rightarrow +\infty)$
- **(3)** $g(x) \neq 0$ (x > A) で $\beta \neq 0$ とすると

$$\frac{f(x)}{g(x)} \to \frac{\alpha}{\beta} (x \to +\infty)$$