2019年5月22日演習問題解答

2.2 微分係数

補充問題 次の函数 f(x) に対して $x=\alpha$ における微分係数 $f'(\alpha)$ を定義に従って求めましょう。

(1) $f(x) = \frac{1}{x^2}$ (但し $\alpha \neq 0$) (2) $f(x) = x^4$ (3) $f(x) = \sqrt{1 + x^2}$

(4)
$$f(x) = \frac{1}{x+2}$$
 (但し $\alpha \neq -2$) (5) $f(x) = \frac{1}{x^2 + x + 1}$

(1) $x \neq \alpha$ とします。

$$\frac{f(x) - f(\alpha)}{x - \alpha} = \frac{\frac{1}{x^2} - \frac{1}{\alpha^2}}{x - \alpha}$$

$$= \frac{\alpha^2 - x^2}{x^2 \alpha^2 (x - \alpha)}$$

$$= -\frac{x + \alpha}{x^2 \alpha^2} \to -\frac{\alpha + \alpha}{\alpha^2 \cdot \alpha^2} = -\frac{2}{\alpha^3} \quad (x \to \alpha)$$

から

$$f'(\alpha) = -\frac{2}{\alpha^3}$$

が分かります。

(2) $x \neq \alpha$ とします。

$$\frac{x^4 - \alpha^4}{x - \alpha} = x^3 + x^2 \alpha + x\alpha^2 + \alpha^3 \rightarrow 4\alpha^3 \quad (x \rightarrow \alpha)$$

から

$$f'(\alpha) = 4\alpha^3$$

が分かります。

(3) $x \neq \alpha$ とします。

$$\begin{split} \frac{\sqrt{1+x^2} - \sqrt{1+\alpha^2}}{x - \alpha} &= \frac{(1+x^2) - (1+\alpha^2)}{(x - \alpha)(\sqrt{1+x^2} + \sqrt{1+\alpha^2})} \\ &= \frac{x + \alpha}{\sqrt{1+x^2} + \sqrt{1+\alpha^2})} \end{split}$$

となります。

$$\sqrt{y} \to \sqrt{\beta} \quad (y \to \beta)$$

が成立しますから、 $x \to \alpha$ のとき $1 + x^2 \to 1 + \alpha^2$ から

$$\sqrt{1+x^2} \to \sqrt{1+\alpha^2}$$

が従います。よって

$$\frac{x+\alpha}{\sqrt{1+x^2}+\sqrt{1+\alpha^2}} \to \frac{\alpha+\alpha}{\sqrt{1+\alpha^2}+\sqrt{1+\alpha^2}} = \frac{\alpha}{\sqrt{1+\alpha^2}}$$

から

$$f'(\alpha) = \frac{\alpha}{\sqrt{1 + \alpha^2}}$$

を得ます。

(4) $x \neq \alpha$ とします。

$$\frac{\frac{1}{x+2} - \frac{1}{\alpha+2}}{x - \alpha} = \frac{(\alpha+2) - (x+2)}{(x+2)(\alpha+2)(x-\alpha)}$$
$$= -\frac{1}{\alpha+2} \cdot \frac{1}{x+2}$$
$$\rightarrow -\frac{1}{\alpha+2} \cdot \frac{1}{\alpha+2} = -\frac{1}{(\alpha+2)^2} \quad (x \to \alpha)$$

から

$$f'(\alpha) = -\frac{1}{(\alpha+2)^2}$$

を得ます。

(5) $x \neq \alpha$ とします。

$$\frac{\frac{1}{x^2+x+1} - \frac{1}{\alpha^2+\alpha+1}}{x - \alpha} = \frac{(\alpha^2 + \alpha + 1) - (x^2 + x + 1)}{(x^2 + x + 1)(\alpha^2 + \alpha + 1)(x - \alpha)}$$
$$= \frac{-(x + \alpha) - 1}{x^2 + x + 1} \cdot \frac{1}{\alpha^2 + \alpha + 1}$$
$$\to \frac{-(\alpha + \alpha) - 1}{\alpha^2 + \alpha + 1} \cdot \frac{1}{\alpha^2 + \alpha + 1} = -\frac{2\alpha + 1}{(\alpha^2 + \alpha + 1)^2}$$

から

$$f'(\alpha) = -\frac{2\alpha + 1}{(\alpha^2 + \alpha + 1)^2}$$

を得ます。

2.3 微分の公式

2019年5月22日演習問題解答

I 以下の関数 f(x) に対して導関数 f'(x) を求めましょう. ただし

$$(x^n)' = nx^{n-1}$$
 $(n = 1, 2, 3, ...)$ (10)

$$\left(\frac{1}{x^n}\right)' = -\frac{n}{x^{n+1}}$$
 $(n = 1, 2, 3, ...)$ (11)

$$\left(\sqrt{x}\right)' = \frac{1}{2} \cdot \frac{1}{\sqrt{x}} \tag{12}$$

(1)
$$f(x) = \frac{1}{x+2}$$
 (2) $f(x) = \frac{x+3}{x-1}$ (3) $f(x) = \frac{1}{2x+1}$ (4) $f(x) = \frac{x}{2x-1}$

(5)
$$f(x) = \frac{1}{x^2+1}$$
 (6) $f(x) = \frac{x+1}{x^2+1}$ (7) $f(x) = \frac{x^2}{x-1}$ (8) $f(x) = x^2\sqrt{x}$

(1)
$$f(x) = \frac{1}{x+2}$$
 (2) $f(x) = \frac{x+3}{x-1}$ (3) $f(x) = \frac{1}{2x+1}$ (4) $f(x) = \frac{x}{2x-1}$ (5) $f(x) = \frac{1}{x^2+1}$ (6) $f(x) = \frac{x+1}{x^2+1}$ (7) $f(x) = \frac{x^2}{x-1}$ (8) $f(x) = x^2\sqrt{x}$ (9) $f(x) = \frac{1}{x\sqrt{x}}$ (10) $f(x) = \frac{1}{x^2\sqrt{x}}$ (11) $f(x) = \frac{x^2}{x^2+1}$ (12) $f(x) = \frac{x}{x^2+x+1}$

解答

(1)

$$f'(x) = -\frac{1}{(x+2)^2}$$

(2)

$$f'(x) = \frac{(x+3)'(x-1) - (x+3)(x-1)'}{(x-1)^2}$$
$$= \frac{1 \cdot (x-1) - (x+3) \cdot 1}{(x-1)^2} = -\frac{4}{(x-1)^2}$$

(3)

$$f'(x) = -\frac{(2x+1)'}{(2x+1)^2} = -\frac{2}{(2x+1)^2}$$

(4)

$$f'(x) = \frac{(x)'(2x-1) - x(2x-1)'}{(2x-1)^2}$$
$$= \frac{1 \cdot (2x-1) - x \cdot 2}{(x-1)^2} = -\frac{1}{(2x-1)^2}$$

(5)

$$f'(x) = -\frac{(x^2+1)'}{(x^2+1)^2} = -\frac{2x}{(x^2+1)^2}$$

$$f'(x) = \frac{(x+1)'(x^2+1) - (x+1)(x^2+1)'}{(x^2+1)^2}$$
$$= \frac{1 \cdot (x^2+1) - (x+1) \cdot 2x}{(x^2+1)^2} = \frac{1 - 2x - x^2}{(x^2+1)^2}$$

$$f'(x) = \frac{(x^2)'(x-1) - x^2(x-1)'}{(x-1)^2}$$
$$= \frac{2x \cdot (x-1) - x^2 \cdot 1}{(x-1)^2} = \frac{x^2 - 2x}{(x-1)^2}$$

$$f'(x) = (x^2)'\sqrt{x} + x^2(\sqrt{x})' = 2x\sqrt{x} + x^2 \cdot \frac{1}{2} \cdot \frac{1}{\sqrt{x}} = \frac{5}{2} \cdot x\sqrt{x}$$

(9)

$$f'(x) = -\frac{(x\sqrt{x})'}{(x\sqrt{x})^2} = -\frac{(x)'\sqrt{x} + x \cdot (\sqrt{x})'}{x^3} = -\frac{1 \cdot \sqrt{x} + x \cdot \frac{1}{2} \cdot \frac{1}{\sqrt{x}}}{x^3}$$
$$= -\frac{\frac{3}{2} \cdot \sqrt{x}}{x^3} = -\frac{3}{2} \cdot \frac{1}{x^2\sqrt{x}}$$

(10)

$$f'(x) = -\frac{(x^2\sqrt{x})'}{(x^2\sqrt{x})^2} = -\frac{(x^2)'\sqrt{x} + x^2 \cdot (\sqrt{x})'}{x^5} = -\frac{2x \cdot \sqrt{x} + x^2 \cdot \frac{1}{2} \cdot \frac{1}{\sqrt{x}}}{x^5}$$
$$= -\frac{\frac{5}{2} \cdot x\sqrt{x}}{x^5} = -\frac{5}{2} \cdot \frac{1}{x^3\sqrt{x}}$$

(11)

$$f'(x) = \frac{(x^2)'(x^2+1) - x^2(x^2+1)'}{(x^2+1)^2}$$
$$= \frac{2x \cdot (x^2+1) - x^2 \cdot 2x}{(x^2+1)^2} = \frac{2x}{(x^2+1)^2}$$

(12)

$$f'(x) = \frac{(x)'(x^2 + x + 1) - x(x^2 + x + 1)'}{(x^2 + x + 1)^2}$$
$$= \frac{1 \cdot (x^2 + x + 1) - x(2x + 1)}{(x^2 + x + 1)^2}$$
$$= \frac{-x^2 + 1}{(x^2 + x + 1)^2}$$

II 以下の関数 f(x) に対して導関数 f'(x) を求めましょう.

(1)
$$f(x) = \frac{1}{(3x+1)^3}$$
 (2) $f(x) = (1-2x)^5$ (3) $f(x) = (\frac{x-1}{x})^5$

(4)
$$f(x) = (3 - 2x^2)^3$$
 (5) $f(x) = \sqrt{x-1}$ (6) $f(x) = \frac{1}{\sqrt{x-1}}$

(7)
$$f(x) = \frac{1}{\sqrt{x^2 + x + 1}}$$
 (8) $f(x) = \frac{x}{\sqrt{1 - x^2}}$ (9) $f(x) = \frac{x}{\sqrt{1 + x^2}}$

(1) y が $y = \frac{1}{u^3}$ と u = 3x + 1 の合成関数と考えると

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = -\frac{3}{u^4} \cdot 3 = -\frac{9}{(3x+1)^4}$$

となります。

(2) y が $y = u^5$ と u = 1 - 2x の合成函数と考えると

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = 5u^4 \cdot (-2) = -10(1 - 2x)^4$$

となります。

(3) y が $y=u^5$ と $u=\frac{x-1}{x}=1-\frac{1}{x}$ の合成函数と考えると

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = 5u^4 \cdot \frac{1}{x^2} = 5\frac{(x-1)^4}{x^6}$$

となります。

(4) y が $y = u^3$ と $u = 3 - 2x^2$ の合成函数と考えると

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = 3u^2 \cdot (-4x) = -12x(3 - 2x^2)^2$$

となります。

(5) y が $y = \sqrt{u}$ と u = x - 1 の合成函数と考えると

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{1}{2} \cdot \frac{1}{\sqrt{u}} \cdot 1 = \frac{1}{2} \cdot \frac{1}{\sqrt{x-1}}$$

(6) y が $y = \frac{1}{\sqrt{u}}$ と u = x - 1 の合成函数と考えると

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = -\frac{1}{2} \cdot \frac{1}{u\sqrt{u}} \cdot 1 = -\frac{1}{2} \cdot \frac{1}{(x-1)\sqrt{x-1}}$$

(7) y が $y = \frac{1}{\sqrt{u}}$ と $u = 1 + x + x^2$ の合成函数と考えると

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = -\frac{1}{2} \cdot \frac{1}{u\sqrt{u}} \cdot (1+2x) = -\frac{1}{2} \cdot \frac{1+2x}{(1+x+x^2)\sqrt{1+x+x^2}}$$

(8) まず $y=\sqrt{1-x^2}$ に対して $\frac{dy}{dx}$ を求めます.そのために y を $y=\sqrt{u}$ と $u=1-x^2$ の合成関数とみなします.すると

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{1}{2} \cdot \frac{1}{\sqrt{u}} \cdot (-2x) = -\frac{x}{\sqrt{1-x^2}}$$

となります. さらに

$$f'(x) = \frac{(x)'\sqrt{1-x^2} - x\left(\sqrt{1-x^2}\right)'}{(\sqrt{1-x^2})^2} = \frac{1\cdot\sqrt{1-x^2} - x\left(-\frac{x}{\sqrt{1-x^2}}\right)}{1-x^2}$$
$$= \frac{(1-x^2) + x^2}{(1-x^2)\sqrt{1-x^2}} = \frac{1}{(1-x^2)\sqrt{1-x^2}}$$

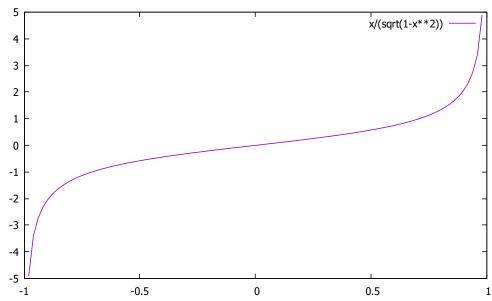
(9) まず $y=\sqrt{1+x^2}$ に対して $\frac{dy}{dx}$ を求めます.そのために y を $y=\sqrt{u}$ と $u=1+x^2$ の合成関数とみなします.すると

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{1}{2} \cdot \frac{1}{\sqrt{u}} \cdot (2x) = \frac{x}{\sqrt{1+x^2}}$$

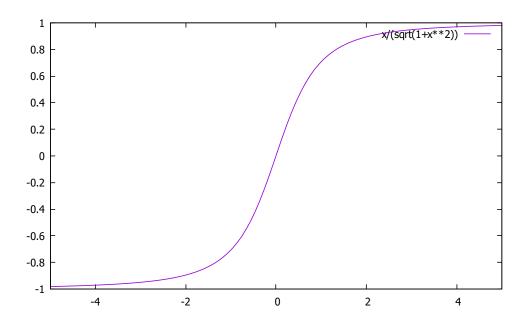
となります. さらに

$$f'(x) = \frac{(x)'\sqrt{1+x^2} - x\left(\sqrt{1+x^2}\right)'}{(\sqrt{1+x^2})^2} = \frac{1\cdot\sqrt{1+x^2} - x\cdot\frac{x}{\sqrt{1+x^2}}}{1+x^2}$$
$$= \frac{(1+x^2) - x^2}{(1+x^2)\sqrt{1+x^2}} = \frac{1}{(1+x^2)\sqrt{1+x^2}}$$

参考 (8) のグラフは以下のようになります.



(9) のグラフは以下のようになります.



III 函数 f(x) が x = c で微分可能であるとします. すなわち,極限

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

が存在するとします. このとき以下の極限を求めましょう.

(1)

$$\lim_{h \to 0} \frac{f(c+h^2) - f(c)}{h}$$

(2)

$$\lim_{h \to 0} \frac{f(c+ph) - f(c+qh)}{h}$$

解答 (1) $x = c + h^2$ とすると $h \to 0$ のとき $x \to c$ となります. このとき

$$\frac{f(c+h^2) - f(c)}{h} = \frac{f(x) - f(c)}{h^2} \cdot h = \frac{f(x) - f(c)}{x - c} \cdot h \to f'(c) \cdot 0 = 0$$

となります.

(2)

$$\begin{split} \frac{f(c+ph) - f(c+qh)}{h} &= \frac{(f(c+ph) - f(c)) - (f(c+qh) - f(c))}{h} \\ &= \frac{(f(c+ph) - f(c))}{h} - \frac{(f(c+qh) - f(c))}{h} \\ &= p \cdot \frac{(f(c+ph) - f(c))}{ph} - q \cdot \frac{(f(c+qh) - f(c))}{qh} \end{split}$$

となります. ここで x=c+ph とすると $h\to 0$ のとき $x\to c$ となります. そして

$$\frac{f(c+ph) - f(c)}{ph} = \frac{f(x) - f(c)}{x - c} \to f'(c)$$

となります. 同様に

$$\frac{f(c+qh)-f(c)}{qh}\to f'(c)$$

も示せます. 以上から

$$p \cdot \frac{(f(c+ph)-f(c))}{ph} - q \cdot \frac{(f(c+qh)-f(c))}{qh} \rightarrow p \cdot f'(c) - q \cdot f'(c) = (p-q)f'(c)$$

となります.

IV 以下の極限が存在するとします.

$$\lim_{x \to 1} \frac{ax^2 + bx}{x - 1} = 1$$

このときa, bを求めましょう.

解答 $x \to 1$ のとき

$$ax^{2} + bx = \frac{ax^{2} + bx}{x - 1} \cdot (x - 1) \to 1 \cdot 0 = 0$$

となります. 他方,

$$ax^2 + bx \rightarrow a \cdot 1^2 + b \cdot 1 = a + b$$

したがって a+b=0 であることが分かります. ここで b=-a を用いると $x\to 1$ のとき

$$\frac{ax^2 + bx}{x - 1} = \frac{ax^2 - ax}{x - 1} = a \cdot \frac{x^2 - x}{x - 1} = a \cdot x \to a$$

となります. よって a=1 であることが従います. 以上で a=1,b=-1 であることが示されました.

V 以下の極限が存在するとします.

$$\lim_{x \to 1} \frac{a\sqrt{x+1} - b}{x-1} = \sqrt{2}$$

このとき a, b を求めましょう.

解答

$$a\sqrt{x+1} - b = \frac{a\sqrt{x+1} - b}{x-1} \cdot (x-1) \to \sqrt{2} \cdot 0 = 0$$

となります. 他方,

$$a\sqrt{x+1} - b \rightarrow a \cdot \sqrt{2} - b = a\sqrt{2} - b$$

したがって $a\sqrt{2}-b=0$ であることが分かります. ここで $b=a\sqrt{2}$ を用いると $x\to 1$ のとき

$$\frac{a\sqrt{x+1} - b}{x-1} = \frac{a\sqrt{x+1} - a\sqrt{2}}{x-1} = a \cdot \frac{\sqrt{x+1} - \sqrt{2}}{x-1} = a \cdot \frac{x-1}{(\sqrt{x+1} + \sqrt{2})(x-1)}$$
$$= a \cdot \frac{1}{(\sqrt{x+1} + \sqrt{2})} \to a \cdot \frac{1}{2\sqrt{2}} = \sqrt{2}$$

となります. よって a=4 であることが従います. 以上で $a=4,b=4\sqrt{2}$ であることが示されました.

補充問題 次の函数 y=f(x) に対して導関数 $\frac{dy}{dx}=f'(x)$ を求めましょう。 (1) $f(x)=\frac{x}{x^2+x+1}$ (2) $f(x)=\frac{1}{(3x+1)^3}$ (3) $f(x)=(1-2x)^5$ (4) $f(x)=\frac{1}{(3x-2)^5}$ (5) $f(x)=\left(\frac{x-1}{x}\right)^5$ (6) $f(x)=\frac{1}{\sqrt{1+x+x^2}}$

(1)
$$f(x) = \frac{x}{x^2 + x + 1}$$
 (2) $f(x) = \frac{1}{(3x+1)^3}$ (3) $f(x) = (1-2x)^5$

(4)
$$f(x) = \frac{1}{(3x-2)^5}$$
 (5) $f(x) = \left(\frac{x-1}{x}\right)^5$ (6) $f(x) = \frac{1}{\sqrt{1+x+x^2}}$

(7)
$$f(x) = (3 - 2x^2)^3$$
 (8) $f(x) = \frac{x^2}{x^2 + 1}$

解答 (1)

$$\left(\frac{x}{x^2+x+1}\right)' = \frac{(x)'(x^2+x+1) - x \cdot (x^2+x+1)'}{(x^2+x+1)^2}$$
$$= \frac{x^2+x+1 - x \cdot (2x+1)}{(x^2+1)^2}$$
$$= \frac{1-x^2}{(x^2+1)^2}$$

(2) y が $y = \frac{1}{u^3}$ と u = 3x + 1 の合成関数と考えると

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = -\frac{3}{u^4} \cdot 3 = -\frac{9}{(3x+1)^4}$$

となります。

(3) y が $y = u^5$ と u = 1 - 2x の合成函数と考えると

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = 5u^4 \cdot (-2) = -10(1 - 2x)^4$$

となります。

(4) y が $y = \frac{1}{u^5}$ と u = 3x - 2 の合成関数と考えると

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = -\frac{5}{u^6} \cdot 3 = -\frac{15}{(3x-2)^6}$$

となります。

(5) $y \stackrel{\text{ti}}{v} y = u^5$ と $u = \frac{x-1}{x} = 1 - \frac{1}{x}$ の合成函数と考えると

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = 5u^4 \cdot \left(-\frac{1}{x^2}\right) = -5\frac{(x-1)^4}{x^6}$$

となります。

(6) y が $y = \frac{1}{\sqrt{u}}$ と $u = 1 + x + x^2$ の合成函数と考えると

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

$$= \frac{1}{2} \cdot \frac{1}{\sqrt{u}} \cdot (1 + 2x)$$

$$= \frac{1}{2} \cdot \frac{1 + 2x}{\sqrt{1 + x + x^2}}$$

(7) y が $y = u^3$ と $u = 3 - 2x^2$ の合成函数と考えると

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$
$$= 3u^2 \cdot (-4x) = -12x(3 - 2x^2)^2$$

となります。

(8)

$$f'(x) = \frac{(x^2)'(1+x^2) - x^2(1+x^2)'}{(1+x^2)^2}$$
$$= \frac{2x(1+x^2) - x^2 \cdot 2x}{(1+x^2)^2}$$
$$= \frac{2x}{(1+x^2)^2}$$

補充問題 函数 $f(x) = \frac{x}{1+x^2}$ に対して f'(x) > 0, f'(x) = 0, f'(x) < 0 である x を求めましょう.