Calculus for Economics, Exercises (Dec. 04,2017)
- I
 
- Let $p,q,I>0$.  We try to maximize the utility function 
$$
u(x,y)=x^{\frac 13}y^{\frac 13}
$$
under the constraint 
$$
I-px-qy=0
$$
 
- (1) 
Find the statinary point of $f(x,y$ subject to $g(x,y=0$ to find 
$$
x(p,q,I)=\frac I{2p},\quad y(p,q,I)=\frac I{2q},\quad 
\lambda=\frac 13\sqrt[3]{\frac 2{pqI}}
$$
 
- (2) We define the indirect utility function by 
$$
v(p,q,I)=u(x(p,q,I),y(p,q,I))
$$
and show 
$$
\frac{\partial v}{\partial I}=\lambda(p,q,I)
$$
 
- (3)  Show that the Roy's identies 
$$
\frac{\partial v}{\partial x}+
\frac{\partial v}{\partial I}\cdot x(p,q,I)=0
$$
hold.
 
- II
 
- Let $p,q,I>0$.  We try to maximize the utility function 
$$
u(x,y)=\frac 13\log x+\frac 13\log y
$$
subject to the constraint 
$$
I-px-qy=0
$$
 
- 
Find the demand functions $x(p,q,I)$ and $y(p,q,I)$ and 
the marginal utility function of the budget $\lambda(p,q,I)$.
 
- III
 
- 
Optimize $$z=x+y$$ 
under the constraint 
$$
x^2+2y^2-24=0
$$
 
- IV
 
- Let $p,q,I>0$.  We try to maximize the utility function 
$$
u(x,y)=x^{\frac 13}y^{\frac 23}
$$
under the constraint 
$$
I-px-qy=0
$$
 
- 
Find the demand functions $x(p,q,I)$ and $y(p,q,I)$ and 
the marginal utility function of the budget $\lambda(p,q,I)$.
 
- V
 
- We consider $z=f(x,y)=x^2y$ subject to the constraint 
$g(x,y):=2x^2+y^2-1=0$. 
 
- VI
 
- A function in $x$, $y=\varphi(x)$ satisfies the identity
\begin{equation*}
x^2+\varphi(x)^2-3x\varphi(x)=0
\end{equation*}
Express $\varphi'(x)$ and $\varphi''(x)$ by $x$ 
and $\varphi(x)$.