Chain Rule

Nobuyuki TOSE
ITOSE PROJECT
2017年11月

Chain Rule

- Given an open subset U in \mathbf{R}^{2} and a function on U

$$
f: U \longrightarrow \mathbf{R}
$$

We assume that f is of C^{2} class.

- Also given a differentiable curve in U

$$
(A, B) \longrightarrow U \quad t \mapsto(x(t), y(t))
$$

- The we define $F:(A, B) \rightarrow \mathbf{R}$ by

$$
F(t)=f(x(t), y(t))
$$

Chain Rule(2)

Theorem

$$
F^{\prime}(t)=f_{x}(x(t), y(t)) \cdot x^{\prime}(t)+f_{y}(x(t), y(t)) \cdot y^{\prime}(t)
$$

Tangent direction of a curve (1)

The tangent direction of the curve at $\mathrm{P}_{0}(a, b)=(x(0), y(0))$ is

$$
\binom{x^{\prime}(0)}{y^{\prime}(0)}
$$

Tangent direction of a curve (2)

Given a curve in the 3-dimensional space
$c:(A, B) \rightarrow \mathbf{R}^{3} \quad t \mapsto(x(t), y(t), z(t))$
Then the tangent vector of c at $\mathrm{Q}_{0}(x(0), y(0), z(0))$ on c is given by

$$
c^{\prime}(0)=\left(\begin{array}{l}
x^{\prime}(0) \\
y^{\prime}(0) \\
z^{\prime}(0)
\end{array}\right)
$$

Two curves tangent to each other

We are given two curves
$c_{1}:(A, B) \rightarrow \mathbf{R}^{3} \quad t \mapsto\left(x_{1}(t), y_{1}(t), z_{1}(t)\right)$
$c_{2}:(A, B) \rightarrow \mathbf{R}^{3} \quad t \mapsto\left(x_{2}(t), y_{2}(t), z_{2}(t)\right)$
We assume that a point $\mathrm{Q}_{0}(a, b, c)$ is shared by the both curves. Namely

$$
(a, b, c)=\left(x_{1}\left(t_{1}\right), y_{1}\left(t_{1}\right), z_{1}\left(t_{1}\right)\right)=\left(x_{2}\left(t_{2}\right), y_{2}\left(t_{2}\right), z_{2}\left(t_{2}\right)\right)
$$

holds for some $t_{1}, t_{2} \in(A, B)$. In this situation,

$$
c_{1} \text { and } c_{2} \text { are tangent at } \mathrm{Q}_{0} \Leftrightarrow C_{1}^{\prime}\left(t_{1}\right) \| C_{2}^{\prime}\left(t_{2}\right)
$$

Two curves tangent to each other

We find a curve in the space

$$
(x(t), y(t), F(t))
$$

which is over the curve $(x(t), y(t))$.
We find another curve in the space

$$
\left(a+x^{\prime}(0) t, b+y^{\prime}(0) t, f\left(a+x^{\prime}(0) t, b+y^{\prime}(0) t\right)\right)
$$

over $\left(a+x^{\prime}(0) t, b+y^{\prime}(0) t\right)$.
The two curves are tangential at $(a, b, f(a, b))$.

The tangential direction (1)

The tangential direction of the curve

$$
(x(t), y(t), F(t))
$$

at $(x(0), y(0), F(0))$ is

$$
\left(\begin{array}{l}
x^{\prime}(0) \\
y^{\prime}(0) \\
F^{\prime}(0)
\end{array}\right)
$$

The tangential direction (2)

The tangential direction of the curve

$$
\left(a+x^{\prime}(0) t, b+y^{\prime}(0) t, G(t)\right)
$$

with

$$
G(t)=f\left(a+x^{\prime}(0) t, b+y^{\prime}(0) t\right)
$$

is

$$
\left(a+x^{\prime}(0) t, b+y^{\prime}(0) t, f(a, b)+f_{x}(a, b) x^{\prime}(0) t+f_{y}(a, b) y^{\prime}(0) t\right)
$$

Chain Rule

- The tangential direction of the curve $(x(t), y(t), F(t))$

$$
\left(\begin{array}{l}
x^{\prime}(0) \\
y^{\prime}(0) \\
F^{\prime}(0)
\end{array}\right)
$$

and that of the other curve $\left(a+x^{\prime}(0) t, b+y^{\prime}(0) t, G(t)\right)$

$$
\left(\begin{array}{c}
x^{\prime}(0) \\
y^{\prime}(0) \\
f_{x}(a, b) x^{\prime}(0)+f_{y}(a, b) y^{\prime}(0)
\end{array}\right)
$$

are parallel.

- Accordingly we get the identity

$$
F^{\prime}(0)=f_{x}(a, b) x^{\prime}(0)+f_{y}(a, b) y^{\prime}(0)
$$

