Chain Rule

Nobuyuki TOSE

ITOSE PROJECT

2017年11月

문 문 문

• Given an open subset U in \mathbf{R}^2 and a function on U

$$f: U \longrightarrow \mathbf{R}$$

We assume that f is of C^2 class.

• Also given a differentiable curve in U

$$(A,B) \longrightarrow U \quad t \mapsto (x(t),y(t))$$

• The we define F: $(A, B) \rightarrow \mathbf{R}$ by

$$F(t) = f(x(t), y(t))$$

Theorem

$$F'(t) = f_x(x(t), y(t)) \cdot x'(t) + f_y(x(t), y(t)) \cdot y'(t)$$

æ

イロト イヨト イヨト イヨト

The tangent direction of the curve at $P_0(a, b) = (x(0), y(0))$ is

 $\begin{pmatrix} x'(0) \\ y'(0) \end{pmatrix}$

Given a curve in the 3-dimensional space

$$c: (A,B)
ightarrow \mathbf{R}^3 \quad t \mapsto (x(t),y(t),z(t))$$

Then the tangent vector of c at $Q_0(x(0), y(0), z(0))$ on c is given by

$$c'(0) = \begin{pmatrix} x'(0) \\ y'(0) \\ z'(0) \end{pmatrix}$$

We are given two curves

$$c_1: (A, B) \to \mathbf{R}^3 \quad t \mapsto (x_1(t), y_1(t), z_1(t))$$

 $c_2: (A, B) \to \mathbf{R}^3 \quad t \mapsto (x_2(t), y_2(t), z_2(t))$

We assume that a point $Q_0(a, b, c)$ is shared by the both curves. Namely

$$(a, b, c) = (x_1(t_1), y_1(t_1), z_1(t_1)) = (x_2(t_2), y_2(t_2), z_2(t_2))$$

holds for some $t_1, t_2 \in (A, B)$. In this situation,

 c_1 and c_2 are tangent at $\mathrm{Q}_0 \Leftrightarrow C_1'(t_1) \parallel C_2'(t_2)$

We find a curve in the space

which is over the curve (x(t), y(t)). We find another curve in the space

$$(a + x'(0)t, b + y'(0)t, f(a + x'(0)t, b + y'(0)t))$$

over (a + x'(0)t, b + y'(0)t). The two curves are tangential at (a, b, f(a, b)). The tangential direction of the curve

(x(t), y(t), F(t))

at (x(0), y(0), F(0)) is $\begin{pmatrix} x'(0) \\ y'(0) \\ F'(0) \end{pmatrix}$

The tangential direction (2)

The tangential direction of the curve

$$(a + x'(0)t, b + y'(0)t, G(t))$$

with

$$G(t) = f(a + x'(0)t, b + y'(0)t)$$
is

 $(a + x'(0)t, b + y'(0)t, f(a, b) + f_x(a, b)x'(0)t + f_y(a, b)y'(0)t)$

• The tangential direction of the curve (x(t), y(t), F(t))

$$\begin{pmatrix} x'(0) \\ y'(0) \\ F'(0) \end{pmatrix}$$

and that of the other curve (a + x'(0)t, b + y'(0)t, G(t))

$$\begin{pmatrix} x'(0) \\ y'(0) \\ f_x(a,b)x'(0) + f_y(a,b)y'(0) \end{pmatrix}$$

are parallel.

• Accordingly we get the identity

$$F'(0) = f_x(a,b)x'(0) + f_y(a,b)y'(0)$$