Convexity of functions of two varibales (1)

Nobuyuki TOSE

October 23, 2017

In case of functions of one variable

Given a twice differentaible function $f:(A, B) \longrightarrow \mathbf{R}$ defined on an open subset (A, B). Assume that

$$
f^{\prime \prime}(t)>0 \quad(t \in(A, B))
$$

Then we have an inequality
$f(t)>f(a)+f^{\prime}(a)(t-a) \quad(t \neq a)$

Proof

Define $F(t)$ by $F(t):=f(t)-f(a)-f^{\prime}(a)(t-a)$ ．Then it follows that

$$
F^{\prime}(t)=f^{\prime}(t)-f^{\prime}(a), \quad F^{\prime \prime}(t)=f^{\prime \prime}(t)>0
$$

We recall the fact about increasing functions．

$$
\begin{aligned}
& G^{\prime}(t)>0(t \in(A, B)) \text { とすると } \\
& \quad A<s<t<B \Rightarrow G(s)<G(t)
\end{aligned}
$$

By the aid of this，we get the inequalities

$$
A<s<a<t<B \Rightarrow F^{\prime}(s)<F^{\prime}(a)=0<F^{\prime}(t)
$$

and the increase abd decrease table

t		a	
F^{\prime}	-	0	+
F	\searrow	0	\nearrow

Then it follows that $F(t)>0 \quad(t \neq a)$ ．

Another proof using Taylor's Theorem

Suppose $t \neq a$. Then by Taylor's Theorem, we can find c between t and a satisfying

$$
f(t)=f(a)+f^{\prime}(a)(t-a)+\frac{1}{2} f^{\prime \prime}(c)(t-a)^{2}
$$

It follows from $f^{\prime \prime}(c)>0$ and $(t-a)^{2}>0$ that

$$
f(t)>f(a)+f^{\prime}(a)(t-a)
$$

In case of functions of two variables-Directional Derivatives

Given an open subset U in \mathbf{R}^{2} and a function $f: U \rightarrow \mathbf{R}$. Take a point $\mathrm{P}_{0}(a, b) \in U$ and a non-zero vector $\binom{\xi}{\eta} \neq \overrightarrow{0}$ to define a function in t by

$$
F(t)=f(a+t \xi, b+t \eta)
$$

Then we have with $\mathrm{P}_{t}(a+t \xi, b+t \eta)$

$$
\begin{aligned}
F^{\prime}(t) & =f_{x}\left(\mathrm{P}_{t}\right) \xi+f_{y}\left(\mathrm{P}_{t}\right) \eta \\
F^{\prime \prime}(t) & =\xi\left(f_{x x}\left(\mathrm{P}_{t}\right) \xi+f_{x y}\left(\mathrm{P}_{t}\right) \eta\right)+\eta\left(f_{y x}\left(\mathrm{P}_{t}\right) \xi+f_{y y}\left(\mathrm{P}_{t}\right) \eta\right) \\
& =f_{x x}\left(\mathrm{P}_{t}\right) \xi^{2}+2 f_{x y}\left(\mathrm{P}_{t}\right) \xi \eta+f_{y y}\left(\mathrm{P}_{t}\right) \eta^{2}
\end{aligned}
$$

Hesse matrix

We define the Hesse matrix at $P \in U$ by

$$
H(f)(P)=\left(\begin{array}{ll}
f_{x x}(P) & f_{x y}(P) \\
f_{y x}(P) & f_{y y}(P)
\end{array}\right)
$$

- If f is in C^{2} class, we have $f_{x y}=f_{y x}$. Thus $H(f)(P)$ is symmetric.
- $F(t)=f(a+t \xi, b+t \eta)$ has the 2 nd order derivative in the form

$$
F^{\prime \prime}(t)=\left(H(f)\left(P_{t}\right)\binom{\xi}{\eta},\binom{\xi}{\eta}\right)
$$

Strictly convex functions of two variables

Given an open convex set U in \mathbf{R}^{2} and a C^{2} function defined on U :

$$
f: U \longrightarrow \mathbf{R}
$$

Assume

$$
f_{x x}(P)>0, \operatorname{det}(H(f)(P))>0(P \in U)
$$

Then for $(x, y) \neq(a, b)$, we have the inequality

$$
f(x, y)>f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b) \quad(x, y) \neq(a, b)
$$

Proof (1)

Assume that $\mathrm{P}(x, y)$ and $\mathrm{P}_{0}(a, b)$ satisfy the condition $\mathrm{P} \neq \mathrm{P}_{0}$ and define a non-zero vector

$$
\vec{v}=\binom{\xi}{\eta}=\binom{x-a}{y-b} \neq \overrightarrow{0}
$$

Proof (2)

We apply Taylor's Theorem to $F(t)=f(a+t \xi, b+t \eta)$ to find c with $0<c<1$ satisfying

$$
F(1)-F(0)=F^{\prime}(0) \cdot 1+\frac{1}{2} F^{\prime \prime}(c) 1^{2}
$$

Then it follows that

$$
f(x, y)-f(a, b)=f_{x}(a, b) \xi+f_{y}(a, b) \eta+\frac{1}{2}\left(H(f)\left(P_{c}\right) \vec{v}, \vec{v}\right)
$$

On the other hand, we have

$$
\left(H(f)\left(P_{c}\right) \vec{v}, \vec{v}\right)>0
$$

for $\vec{v} \neq \overrightarrow{0}$. This implies

$$
f(x, y)-f(a, b)>f_{x}(a, b) \xi+f_{y}(a, b) \eta
$$

Theorem about the positivity of quadratic forms

Theorem

If $a>0$ and $a b-c^{2}>0$, then

$$
a x^{2}+2 c x y+b y^{2}>0 \quad\left(\binom{x}{y} \neq \overrightarrow{0}\right)
$$

Proof

$$
a x^{2}+2 c x y+b y^{2}=a\left(x+\frac{c}{a} y\right)^{2}+\frac{a b-c^{2}}{a} y^{2} \geq 0
$$

If $a\left(x+\frac{c}{a} y\right)^{2}+\frac{a b-c^{2}}{a} y^{2}=0$, then

$$
\begin{equation*}
a\left(x+\frac{c}{a} y\right)^{2}=\frac{a b-c^{2}}{a} y^{2}=0 \tag{1}
\end{equation*}
$$

This implies $x=y=0$. Accordingly we have shown that

$$
\binom{x}{y} \neq \overrightarrow{0} \quad \Rightarrow a x^{2}+2 c x y+b y^{2}>0
$$

