Lagrange Multiplier

Nobuyuki TOSE

December 4, 2017

Constrained Optimization

Given an open subset U in \mathbf{R}^{2} and two functions defined on U

$$
f, g: U \rightarrow \mathbf{R}
$$

Problem

Maximize or minimize $z=f(x, y)$ subject to the constraint $g(x, y)=0$.

Constrained Optimization

Example 1 Maximize or minimize
$z=f(x, y)=2 x+y$ subject to the constraint $g(x, y)=x^{2}+y^{2}-1=0$
例 2 Let $I, p, q>0$. Maximize the utility function

$$
u(x, y)=\sqrt{x y}
$$

subject to the budget constrint

$$
g(x, y)=I-p x-q y=0 \quad(x, y>0)
$$

In this problem, the prices of the 1st good and the second are respectively p and q. It is asked how we maximize the utility by spending the budget I with x units of the 1st good and y units of the second.

Impicit function Theorem

Theorem

Assume that

$$
g(a, b)=0, \quad g_{y}(a, b) \neq 0
$$

Then $\{(x, y) \in U ; g(x, y)=0\}$ is expressed by

$$
y=\varphi(x)
$$

in a neighborhood of (a, b).

Impicit function Theorem-Example

Take a point (a, b) on the unit circle

$$
g(x, y)=x^{2}+y^{2}-1=0
$$

In case $b>0$

$$
y=\sqrt{1-x^{2}}
$$

In case $b<0$

$$
y=-\sqrt{1-x^{2}}
$$

Solution (1)

We assume the condition

$$
g(a, b)=0, \quad g_{y}(a, b) \neq 0
$$

to apply Implicity Function Theorem. Then the curve $g(x, y)=0$ is expressed by

$$
y=\varphi(x)
$$

in a neighborhood of (a, b).
If f is maximal or minimal at (a, b) subject to $g(x, y)=0$,

$$
F(t):=f(t, \varphi(t))
$$

satisfies $F^{\prime}(a)=0$.

Solution (2)

We apply Chain Rule to differentiate $F(t)$ by

$$
F^{\prime}(t)=f_{x}(t, \varphi(t)) \cdot 1+f_{y}(t, \varphi(t)) \cdot \varphi^{\prime}(t)
$$

Thus we get

$$
0=F^{\prime}(a)=f_{x}(a, b)+f_{y}(a, b) \cdot \varphi^{\prime}(a)
$$

Next we differentiate the both sides of $g(t, \varphi(t)) \equiv 0$ by t to get

$$
g_{x}(t, \varphi(t)) \cdot 1+g_{y}(t, \varphi(t)) \cdot \varphi^{\prime}(t) \equiv 0
$$

Then it follows that

$$
g_{x}(a, b)+g_{y}(a, b) \cdot \varphi^{\prime}(a)=0 \quad \text { i.e. } \quad \varphi^{\prime}(a)=-\frac{g_{x}(a, b)}{g_{y}(a, b)}
$$

Another way to find $\varphi^{\prime}(a)$

The tangent line of the curve

$$
\begin{aligned}
& g(x, y)=0 \text { a }(a, b) \text { is } \\
& g_{x}(a, b)(x-a)+g_{y}(a, b)(y-b)=0
\end{aligned}
$$

Then it follows from $g_{y}(a, b) \neq 0$ that

$$
y=-\frac{g_{x}(a, b)}{g_{y}(a, b)}(x-a)+b
$$

We consider the slope of the tangent line to get

$$
\varphi^{\prime}(a)=-\frac{g_{x}(a, b)}{g_{y}(a, b)}
$$

Solution (3)

We substitute $\varphi^{\prime}(a)=-\frac{g_{x}(a, b)}{g_{y}(a, b)}$ to $f_{x}(a, b)+f_{y}(a, b) \cdot \varphi^{\prime}(a)=0$ to get

$$
f_{x}(a, b)-\frac{g_{x}(a, b)}{g_{y}(a, b)} \cdot f_{y}(a, b)=0
$$

Here we define the Lagrange Multiplier by

$$
\lambda=-\frac{f_{y}(a, b)}{g_{y}(a, b)}
$$

Then we find the three identities

$$
\left\{\begin{align*}
f_{x}(a, b)+\lambda g_{x}(a, b) & =0 \tag{L}\\
f_{y}(a, b)+\lambda g_{y}(a, b) & =0 \\
g(a, b) & =0
\end{align*}\right.
$$

Theorem

Theorem

Assume that $(a, b) \in U$ satisfies the condition $g(a, b)=0, g_{y}(a, b) \neq 0$. Moreover $f(a, b)$ is a maximum (minimal) value of $f(x, y)$ subject to the constraint $g(x, y)=0$. Then there exists $\lambda \in \mathbf{R}$ satisfying (L).

Example(1)

Problem Optimize $z=f(x, y)=2 x+y$ subject to the constraint $g(x, y)=x^{2}+y^{2}-1=0$.

If f is maximal or minimal at (x, y) subject to the constraint $g(x, y)=0$, there exists $\lambda \in \mathbf{R}$ satisfying

If $\lambda=0$ it follows from (i) that $2=0$. Accordingly we find $\lambda \neq 0$. Under this condition, (i) and (ii) imply

$$
\begin{equation*}
x=-\frac{1}{\lambda}, \quad y=-\frac{1}{2 \lambda} \tag{iv}
\end{equation*}
$$

We substitute these into (iii) to get

Example(2)

$$
\frac{1}{\lambda^{2}}+\frac{1}{4 \lambda^{2}}=1 \text { thus } \lambda= \pm \frac{\sqrt{5}}{2}
$$

Moreover we substitute these into (iv) to find

$$
x=\mp \frac{2}{\sqrt{5}}, \quad y=\mp \frac{1}{\sqrt{5}}, \quad \lambda= \pm \frac{\sqrt{5}}{2} \quad \text { (Double Sign Correspond) }
$$

