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Let A be a 2 x 2 matrix:
a b
=2
Then o € R is called an eigenvalue of A if there exists (;) £0
satisfying

In this situation ;) # 0 satisfying (#) is called an eigen vector

0f A for the eigenvalue a.

Nobuyuki TOSE Eigenvalue Problems

Remark that

and that
Bi=0 forsomev#0 < |Bl=0.
Accordingly it follows that

«vis an eigen valueof A < |ah —Al =0

Nobuyuki TOSE Eigenvalue Problems
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Remark that

\P\.Jtc & Pis regular < (c1ﬁ1+ B2=0 :>c1:cz:0).

We assume that / Ca

cipr @2 =0
and multiply the both hand sides by (8L — A) to get
S ~ =,
a(f—a)pr=0 —_— C' Pl T o
It follwos from 8 — « # 0 and By # 0 that
a = 0

In this situation we get

It follows from p, # 0 that /(__ )

Nobuyuki TOSE Eigenvalue Problems &+, "

A—2 =2
| =2 A=5

= (-1 -9

Thus the eigenvalues of A are A = 1,6. We find the eigenvectors
of A as follows. —y

Incase A =1 @CTL”AJ (?{;)'&'5

X X -1 =2\ [(x =
<y> <y> (—2 —4> (Y> g
Thus
X —2y -2
= = 0
(Y> ( y > g < 1 > =t
are the eigenEaIues Pf A for the eigenvalue A\ = 1.
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Symmetric matrices

Remark that
Gi L g

This is not a coincidence. Actually we have the following theorem.

Theorem

Let A be a 2 x 2 matirx and assume that A is symmetric /.e.
A = A. Moreover we assume that

Ap=ap, A3 =@
with o, # € R satisfying a # . Then

g I

Nobuyuki TOSE Eigenvalue Problems

Moreover

These two identities lead us to

((,Y - /B)(ﬁv G)=0

QT R gy=0.

Nobuyuki TOSE Eigenvalue Problems



Why do we need symmetric matrices?

; . . a c .
We are given a symmetric matrix A = (c b>' We introduce the

quadratice form for A by

Q wadaetic Fann
(A(;)’<;)>=axz+2cxy+by2 s Frnmsel by (.\: |

2 2 h
5 5 ) Wwehave

(4(5).(;)) 2o

We need a more detailed analysis about the diagonalization of
symmetric matrices for its application.

In caseAz(

: Nobuyuki TOSE Eigenvalue Problems

Rotation Matrices(1)

We define the rotation matrix of the angle 6 by
cosf) —sin0
Ro = (sin& cost/ )
The rotation can be figured out by the identity

Ao () = (o s )

Nobuyuki TOSE Eigenvalue Problems
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¥ Siw & ws U

Rotation matrices

(Re| =1

Moreover we find that

p-1_ 1 [ cosf sin@\ [ cosf. sinf) _ tp

0 Ry \—sin® cos@)  \—sin@ cosf)  *
Accordingly
'Ry-Ry=Ryp - 'Ro= 1,
This identity leads us to
(RoV, Row) = (V, W)

for any v, w € R?. In fact

LHS = (¥, RyRow) = (¥, hw) = (¥, W)

~\ 9 e
2 & &R ¢
Ca, &) = o'l e flwsd . 29 7

Diagonalization of symmetric matrices

2 2
2 5
by a rotation matrix chosen as folloes. We define two unit vectors

1 1 |
n=-—\2 -1 Hh=—(1 2 (,2.}
) D

Then R = (A 1) is a rotation mm (2)
=N

AR =7, Ah = 6P

Let us go back to the example A = . We can diagonalize A

Accordingly
o g e . .,(1 0 10
AR = (A/’l Arz) = (r1 6/‘2) = (I’1 I‘2) (0 6) =R (0 6)

Thus we have deduced R~1AR = ((1) 2)

Nobuyuki TOSE Eigenvalue Problems



Diagonalization of symmetric matrices

We now consider the quadratic form of A. Remark that R™1 is a
rotation. It follwos from this fact that ~|

(4C)-0) £ (72 () o= )
vy () ()
TEe (90 ()

Here we used a rotaional coordinate transformation defined by

@:R—l@ nTAR s Q;g)

Nobuyuki TOSE Eigenvalue Problems

R:(WS& —sg\a&'}

S O IO NNS 3

Rl = tp=f W& smo
T o (B sy

v
e

ws (=8 ) = Csm (=@

SM(-G\ ol (—9)
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