

Gram-Schmidt Orthogonalization

Nobuyuki TOSE

December 20, 2016

Problem

We are given two vectors

$$\vec{p}, \vec{q} \in \mathbf{R}^n \text{ satisfying } \vec{p} \nparallel \vec{q}$$

We define a subset in \mathbf{R}^n by

$$V := \{x\vec{p} + y\vec{q} \in \mathbf{R}^n; x, y \in \mathbf{R}\}$$

called the linear subspace spanned by \vec{p} and \vec{q} . We are given another vector $\vec{c} \in \mathbf{R}^n$. The problem is to find $\vec{c}_0 \in V$ satisfying

$$\vec{c} - \vec{c}_0 \perp V \quad \text{i.e.} \quad (\vec{c} - \vec{c}_0, \vec{v}) = 0 \quad (\vec{v} \in V)$$

Remark that this condition is equivalent to

$$(\vec{c} - \vec{c}_0, \vec{p}) = (\vec{c} - \vec{c}_0, \vec{q}) = 0$$

Orthonormal Basis (1)

We take the orthogonal projection of \vec{q} to the direction of \vec{p} :

$$\vec{w} = \frac{(\vec{p}, \vec{q})}{\|\vec{p}\|^2} \cdot \vec{p}$$

In this situation we have

$$\vec{q} - \vec{w} \perp \vec{p}$$

Moreover

$$\vec{q} - \vec{w} \neq \vec{0}$$

In fact if $\vec{q} = \vec{w} = * \vec{p}$, then $\vec{p} \parallel \vec{q}$. This contradicts the hypothesis.
We define two vectors

$$\vec{r}_1 = \frac{1}{\|\vec{p}\|} \vec{p}, \quad \vec{r}_2 = \frac{1}{\|\vec{q} - \vec{w}\|} (\vec{q} - \vec{w})$$

called an orthonormal basis of V .

Orthonormal Basis (2)

The orthonormal basis \vec{r}_1 and \vec{r}_2 enjoys the basic property

$$\|\vec{r}_1\| = \|\vec{r}_2\| = 1, \quad (\vec{r}_1, \vec{r}_2) = 0$$

We can express the vector $\vec{c}_0 \in V$ by

$$\vec{c}_0 = \xi \vec{r}_1 + \eta \vec{r}_2$$

Moreover $(\vec{c} - \vec{c}_0, \vec{r}_1) = (\vec{c} - \vec{c}_0, \vec{r}_2) = 0$ implies

$$0 = (\vec{c} - \vec{c}_0, \vec{r}_1) = (\vec{c} - \xi \vec{r}_1 - \eta \vec{r}_2, \vec{r}_1) = (\vec{c}, \vec{r}_1) - \xi$$

$$0 = (\vec{c} - \vec{c}_0, \vec{r}_2) = (\vec{c} - \xi \vec{r}_1 - \eta \vec{r}_2, \vec{r}_2) = (\vec{c}, \vec{r}_2) - \eta$$

Accordingly we find that

$$\vec{c}_0 = (\vec{c}, \vec{r}_1) \vec{r}_1 + (\vec{c}, \vec{r}_2) \vec{r}_2$$