

Criterion for the regularity of matrices (1)

Theorem

The following conditions are equivalent for $A \in M_3(\mathbb{R})$

- (i) A is regular. \rightarrow
- (ii) $A\vec{v} = \vec{0} \Rightarrow \vec{v} = 0$
- (iii) $|A| \neq 0$

(iii) \Rightarrow (i) is already shown by using the cofactor matrix \tilde{A} of A . If the condition (i) is satisfied, we have

$$A \cdot A^{-1} = I_3$$

Then it follows from the determinants of the both hand side that

$$|A| \cdot |A^{-1}| = |I_3| = 1$$

Accordingly we find $|A| \neq 0$.

Criterion for the regularity of matrices(2)

(i) \Rightarrow (ii) We assume that the condition (i) is satisfied. Then

$$A\vec{v} = \vec{0} \rightarrow A^{-1}A\vec{v} = A^{-1}\vec{0} = \vec{0} \rightarrow \vec{v} = \vec{0}$$

(iii) \Rightarrow (ii) We assume that the condition (iii) is satisfied. Then we can apply the Cramer's Rule as follows.

$$A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \vec{0} \rightarrow x = \frac{1}{|A|} \cdot |\vec{0} \ \vec{a}_2 \ \vec{a}_3| = 0 \text{ etc.}$$

Criterion for the regularity of matrices(3)

(ii) \Rightarrow (iii) We prove the contraposition $\text{NOT(iii)} \Rightarrow \text{NOT(ii)}$. We assume that $|A| = 0$. Let $A = (\vec{a} \ \vec{b} \ \vec{c})$

(a) In case $a_1 \neq 0$ We get

$$0 \neq A = \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix} \rightarrow A_1 = \begin{pmatrix} a_1 & b_1 & c_1 \\ 0 & b'_2 & c'_2 \\ 0 & b'_3 & c'_3 \end{pmatrix} \quad R_2 \rightarrow \left(-\frac{a_2}{a_1}\right) R_1 + R_2, \\ R_3 \rightarrow \left(-\frac{a_3}{a_1}\right) R_1 + R_3$$

In this situation

$$0 = |A| = |A_1| = a_1 \begin{vmatrix} b'_2 & c'_2 \\ b'_3 & c'_3 \end{vmatrix}$$

Then it follows from $a_1 \neq 0$ that

$$\begin{vmatrix} b'_2 & c'_2 \\ b'_3 & c'_3 \end{vmatrix} = 0 \quad \neq 0$$

Criterion for the regularity of matrices(4)

Moreover we have the equivalence

$$A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \vec{0} \Leftrightarrow \begin{cases} a_1x + b_1y + c_1z = 0 \cdots (1) \\ b'_2y + c'_2z = 0 \cdots (2)' \\ b'_3y + c'_3z = 0 \cdots (3)' \end{cases}$$

Thanks to the condition $\begin{vmatrix} b'_2 & c'_2 \\ b'_3 & c'_3 \end{vmatrix} = 0$ we can find $(y, z) \neq (0, 0)$ satisfying $(2)'$ and $(3)'$. Now it suffices to put

$$x = -\frac{1}{a_1}(b_1y + c_1z)$$

Criterion for the regularity of matrices(5)

(b) In case $a_1 = 0, a_2 \neq 0$ We get

$$A = \begin{pmatrix} 0 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix} \rightarrow A_2 = \begin{pmatrix} a_2 & b_2 & c_2 \\ 0 & b_1 & c_1 \\ a_3 & b_3 & c_3 \end{pmatrix} \quad R_1 \leftrightarrow R_2$$

In this situation we have the equivalence

$$A\vec{v} = \vec{0} \Leftrightarrow A_2\vec{v} = \vec{0}$$

Moreover

$$a_2 \neq 0, \text{ and } |A_2| = -|A| = 0$$

This makes it possible to apply the case (a) to find $\vec{v} \neq \vec{0}$ satisfying $A_2\vec{v} = \vec{0}$.

$$\rightarrow A \vec{v} = \vec{0}$$

Criterion for the regularity of matrices(6)

(c) In case $a_1 = 0, a_2 = 0, a_3 \neq 0$ We get

$$A = \begin{pmatrix} 0 & b_1 & c_1 \\ 0 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix} \rightarrow A_3 = \begin{pmatrix} a_3 & b_3 & c_3 \\ 0 & b_2 & c_2 \\ 0 & b_1 & c_1 \end{pmatrix} \quad R_1 \leftrightarrow R_3$$

In this situation we have the equivalence

$$A\vec{v} = \vec{0} \Leftrightarrow A_3\vec{v} = \vec{0}$$

Moreover

$$a_3 \neq 0, \text{ and } |A_3| = -|A| = 0$$

This makes it possible to apply the case (a) to find $\vec{v} \neq \vec{0}$ satisfying $A_3\vec{v} = \vec{0}$.

$$\rightarrow A \vec{v} = \vec{0}$$

Criterion for the regularity of matrices(7)

(d) In case $a_1 = 0, a_2 = 0, a_3 = 0$ It suffices to remark that

$$A \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = (\vec{a} \ \vec{b} \ \vec{c}) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 1 \cdot \vec{a} + 0 \cdot \vec{b} + 0 \cdot \vec{c} = \vec{0}$$

Theorem Let
 $A \in M_n(\mathbb{R})$
 $n \times n$ matrix.

(i) A is regular

$$(ii) \quad A \vec{v} = \vec{0} \implies \vec{v} = \vec{0}$$

$$(iii) \quad |A| \neq 0.$$

Gram-Schmidt Orthogonalization

Nobuyuki TOSE

December 20, 2016

Nobuyuki TOSE Gram-Schmidt Orthogonalization

Problem

We are given two vectors

$$\vec{p}, \vec{q} \in \mathbb{R}^n \text{ satisfying } \vec{p} \nparallel \vec{q}$$

We define a subset in \mathbb{R}^n by

$$V := \{x\vec{p} + y\vec{q} \in \mathbb{R}^n; x, y \in \mathbb{R}\}$$

called the linear subspace spanned by \vec{p} and \vec{q} . We are given another vector $\vec{c} \in \mathbb{R}^n$. The problem is to find $\vec{c}_0 \in V$ satisfying

$$\vec{c} - \vec{c}_0 \perp V \quad \text{i.e. } (\vec{c} - \vec{c}_0, \vec{v}) = 0 \quad (\vec{v} \in V)$$

Remark that this condition is equivalent to

$$(\vec{c} - \vec{c}_0, \vec{p}) = (\vec{c} - \vec{c}_0, \vec{q}) = 0$$

$$\vec{p}, \vec{q} \in V$$

Nobuyuki TOSE Gram-Schmidt Orthogonalization

$$\begin{aligned} \forall \vec{v} \in V \quad \vec{v} &= \xi \vec{p} + \eta \vec{q} & \vec{c} &= \xi (\vec{c} - \vec{c}_0, \vec{p}) \\ (\vec{c} - \vec{c}_0, \vec{v}) &= (\vec{c} - \vec{c}_0, \xi \vec{p} + \eta \vec{q}) & & + \eta (\vec{c} - \vec{c}_0, \vec{q}) \\ &= 0 & & = 0 \end{aligned}$$

Orthonormal Basis (1)

We take the orthogonal projection of \vec{q} to the direction of \vec{p} :

$$\vec{w} = \frac{(\vec{p}, \vec{q})}{\|\vec{p}\|^2} \cdot \vec{p}$$

In this situation we have

$$\vec{q} - \vec{w} \perp \vec{p}$$

Moreover

$$\vec{q} - \vec{w} \neq 0$$

In fact if $\vec{q} = \vec{w} = * \vec{p}$, then $\vec{p} \parallel \vec{q}$. This contradicts the hypothesis.
We define two vectors

$$\vec{r}_1 = \frac{1}{\|\vec{p}\|} \vec{p}, \quad \vec{r}_2 = \frac{1}{\|\vec{q} - \vec{w}\|} (\vec{q} - \vec{w})$$

$\vec{r}_1 \neq \vec{q}$

called an orthonormal basis of V .

Nobuyuki TOSE

Gram-Schmidt Orthogonalization

Orthonormal Basis (2)

The orthonormal basis \vec{r}_1 and \vec{r}_2 enjoys the basic property

$$\|\vec{r}_1\| = \|\vec{r}_2\| = 1, \quad (\vec{r}_1, \vec{r}_2) = 0$$

We can express the vector $\vec{c}_0 \in V$ by

$$\vec{c}_0 = \xi \vec{r}_1 + \eta \vec{r}_2$$

Moreover $(\vec{c} - \vec{c}_0, \vec{r}_1) = (\vec{c} - \vec{c}_0, \vec{r}_2) = 0$ implies

$$0 = (\vec{c} - \vec{c}_0, \vec{r}_1) = (\vec{c} - \xi \vec{r}_1 - \eta \vec{r}_2, \vec{r}_1) = (\vec{c}, \vec{r}_1) - \xi$$

$$0 = (\vec{c} - \vec{c}_0, \vec{r}_2) = (\vec{c} - \xi \vec{r}_1 - \eta \vec{r}_2, \vec{r}_2) = (\vec{c}, \vec{r}_2) - \eta$$

Accordingly we find that

$$\vec{c}_0 = (\vec{c}, \vec{r}_1) \vec{r}_1 + (\vec{c}, \vec{r}_2) \vec{r}_2$$

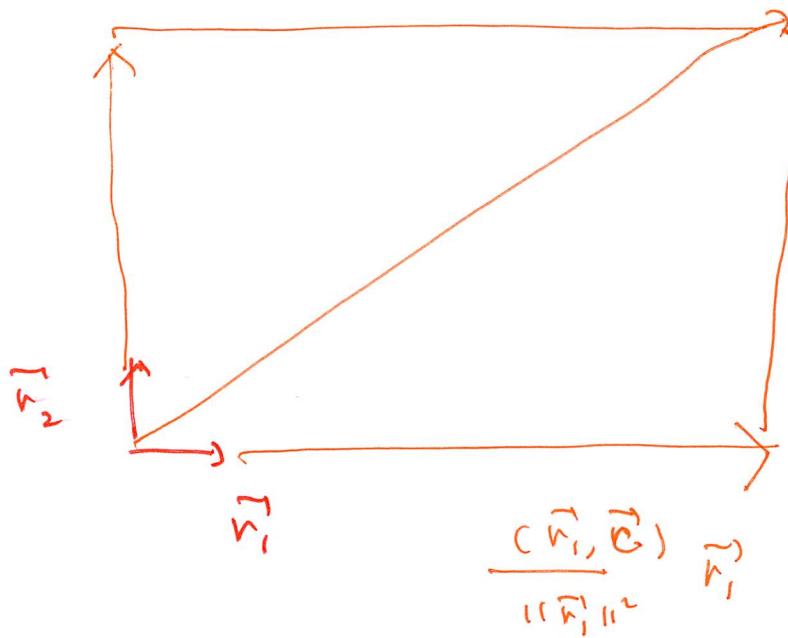
Nobuyuki TOSE

Gram-Schmidt Orthogonalization

$$\vec{c}_0 = (\vec{c}, \vec{r}_1) \vec{r}_1 + (\vec{c}, \vec{r}_2) \vec{r}_2$$

$$\begin{aligned} \|\vec{r}_1\| &= 1 \quad \Rightarrow \quad = \frac{(\vec{c}, \vec{r}_1)}{\|\vec{r}_1\|^2} \vec{r}_1 + \frac{(\vec{c}, \vec{r}_2)}{\|\vec{r}_2\|^2} \vec{r}_2 \\ &= \|\vec{r}_2\| = 1 \end{aligned}$$

orthogonal projection of \vec{c} along \vec{r}_1 orthogonal pr. of \vec{c} along \vec{r}_2



Eigenvalue Problems

Nobuyuki TOSE

December 20, 2016

Nobuyuki TOSE

Eigenvalue Problems

Review

Theorem

For $B \in M_2(\mathbb{R})$, the following conditions are equivalent:

- (i) B is regular.
- (ii) $B\vec{v} = \vec{0} \Rightarrow \vec{v} = \vec{0}$
- (iii) $|B| \neq 0$

Theorem

For $B \in M_2(\mathbb{R})$, the following conditions are equivalent:

- NOT(i) B is not regular (singular).
- NOT(ii) There exists $\vec{v} \neq \vec{0}$ satisfying $B\vec{v} = \vec{0}$.
- NOT(iii) $|B| = 0$

Nobuyuki TOSE

Eigenvalue Problems

Example (1)

Let $A = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$. We consider the system of equations:

$$A \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix}$$

First remark that the system is equivalent to

$$(\#) \quad (\lambda I_2 - A) \begin{pmatrix} x \\ y \end{pmatrix} = \vec{0}, \quad \text{where} \quad \lambda I_2 - A = \begin{pmatrix} \lambda - 1 & -2 \\ -4 & \lambda - 3 \end{pmatrix}$$

We also remark that

$$|\lambda I_2 - A| = \begin{vmatrix} \lambda - 1 & -2 \\ -4 & \lambda - 3 \end{vmatrix} = (\lambda + 1)(\lambda - 5)$$

$\lambda = -1, 5$ are the Eigen values of A .

Example (2)

In case $\lambda \neq -1, 5$ ($\#$) $\Leftrightarrow \begin{pmatrix} x \\ y \end{pmatrix} = \vec{0}$

In case $\lambda = -1$

$$(\#) \Leftrightarrow \begin{pmatrix} -2 & -2 \\ -4 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \vec{0} \Leftrightarrow x + y = 0$$

We put $y = t$ to get the solution

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -t \\ t \end{pmatrix} = t \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$A \begin{pmatrix} x \\ y \end{pmatrix} = - \begin{pmatrix} x \\ y \end{pmatrix}$$

Example (3)

In case $\lambda = 5$

$$(\#) \Leftrightarrow \begin{pmatrix} 4 & -2 \\ -4 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \vec{0} \Leftrightarrow 2x - y = 0$$

We put $y = t$ to get the solution

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} t \\ 2t \end{pmatrix} = t \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$A \begin{pmatrix} x \\ y \end{pmatrix} = 5 \begin{pmatrix} x \\ y \end{pmatrix}$$

Diagonalization (1)

We define two vectors

$$\vec{p}_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \quad \vec{p}_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \quad A \vec{p}_1 = -\vec{p}_1 \quad A \vec{p}_2 = 5\vec{p}_2$$

and a 2×2 matrix

$$P = (\vec{p}_1 \ \vec{p}_2) = \begin{pmatrix} -1 & 1 \\ 1 & 2 \end{pmatrix}$$

The matrix P is regular since

$$|P| = \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} = -3 \neq 0$$

Diagonalization (2)

$$\begin{aligned}
 AP &= A(\vec{p}_1 \ \vec{p}_2) = (A\vec{p}_1 \ A\vec{p}_2) \\
 &= (-\vec{p}_1 \ 5\vec{p}_2) \\
 &= (\vec{p}_1 \ \vec{p}_2) \begin{pmatrix} -1 & 0 \\ 0 & 5 \end{pmatrix} = P \begin{pmatrix} -1 & 0 \\ 0 & 5 \end{pmatrix}
 \end{aligned}$$

We multiply P^{-1} from the left to get

$$\begin{aligned}
 P^{-1}AP &= \begin{pmatrix} -1 & 0 \\ 0 & 5 \end{pmatrix} = P^{-1}P \begin{pmatrix} -1 & 0 \\ 0 & 5 \end{pmatrix} \\
 &= I_2 \begin{pmatrix} -1 & 0 \\ 0 & 5 \end{pmatrix}
 \end{aligned}$$

This process is called a diagonalization of A . To see how it does mean, we introduce the coordinate transform given by

$$\begin{pmatrix} x \\ y \end{pmatrix} = \xi \vec{p}_1 + \eta \vec{p}_2 = (\vec{p}_1 \ \vec{p}_2) \begin{pmatrix} \xi \\ \eta \end{pmatrix} = P \begin{pmatrix} \xi \\ \eta \end{pmatrix}$$

Nobuyuki TOSE Eigenvalue Problems

$$\begin{pmatrix} \xi \\ \eta \end{pmatrix} = P^{-1} \begin{pmatrix} x \\ y \end{pmatrix} \quad \text{the inverse transform}$$

Diagonalization (3)

In this situation the map

$$A = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + 2y \\ 4x + 3y \end{pmatrix}$$

can be clarified by using the coordinate transform as follows.

$$\begin{aligned}
 \begin{pmatrix} \xi' \\ \eta' \end{pmatrix} &= P^{-1} \begin{pmatrix} x' \\ y' \end{pmatrix} \\
 &= P^{-1}A \begin{pmatrix} x \\ y \end{pmatrix} \\
 &= P^{-1}AP \begin{pmatrix} \xi \\ \eta \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} \xi \\ \eta \end{pmatrix} = \begin{pmatrix} -\xi \\ 5\eta \end{pmatrix}
 \end{aligned}$$

Nobuyuki TOSE Eigenvalue Problems

$$\text{I} \quad A = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix}$$

Find $\lambda \in \mathbb{R}$ for which

$$\lambda I_3 - A \text{ is not regular}$$

$$\text{II.} \quad \vec{p} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad \vec{q} = \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix}$$

Find an orthonormal basis of

V spanned by \vec{p} and \vec{q}

$$\text{III} \quad \text{Diagonalize} \quad A = \begin{pmatrix} 3 & -2 \\ -4 & 1 \end{pmatrix}$$