
(1)Criterionfbrtheregularityofmatricesty

｢Theorem

Thefbl lowingconditionsareequivalentfbrAEM3(R)

o(i)Aisregular.
－う→

｡(ii)A7=0→7=0

e(iii) |A|≠0
~

(iii)→(i) isalreadyshownbyusingthecofactormatriXAofA. |f
thecondition(i) issatisfied,wehave

可

A・A-1=/3

Then itfbl lowsfromthedeterminantsofthebothhandsidethat

|Al ･ |A-'|=|/31=1

Accordinglywefind lA|≠0.
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CriterionfOrtheregularityofmatrices(2)matrlCe

(i)→(ii)Weassumethatthatthecondition(i) issatisfiedThen

Aザ＝0→A-'AV=A-'6=6→ザ=0

Weassumethatthecondition(i i i) issatisfiedThenwe
theCramer'sRuleasfbl lowS.

(iii)→(ii)
canapply
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＝0→×＝同
→

0壷玉|=0etc
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Criterionfbrtheregularityofmatrices(3)

(ii)→(iii) contrapositi9nNOT(iii)→NOT(ii)WeWe-provathe

at｣A|=OjLetA=(目醐assumeth

(a) |ncaseai≠ひWeget y
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0=|A|=|A,| ＝弓＝

Then itfbl lwosfroma,≠0that
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CriterionfOrtheregularityofmatrices(4)y

Moreoverwehavetheequivalence

②-'薑{．、雛孝二I増IA

bム E#|=OweCanfind(j,,z)≠(0,0)ThankStothecondition

bi c&
satisfying(2)'and(3)(Nowitsufficestoput

×＝－坐(6,y+c,z)
al
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(5)Criterionfbrtheregularityofmatrices

｡
(b) |ncaseal=0, a2≠OWeget
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c2

C1

c3

R1←>R2

|nthiSsituationwehavetheequivalence

→ →

Aザ=0<=>A27=0

Moreover

a2≠0,andlA21=-|A|=0

Thismakesitpossibletoapplythecase(a)tofind
→

satisfyingA2ザ=0.－も A●三○
一、

→

ワ≠0
′
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CriterionfOrtheregularityofmatrices(6)

(C) |ncaSeal=0, a2=0, a3≠OWeget
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D1 C1

０
０
鞠ＩＡ R1<->R3

|nthissituationwehavetheequivalence

→ →

A7=0くこ>A3ザ=0

Moreover

a3≠0,andlA31=-|A|=0

Thismakes itpossibletoapplythecase(a)tofind
→

satisfyingA37=Q

～ぅ AF二百

→

ザ≠0
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(7)Criterionfbrtheregularityofmatrices

(d)|ncaseal=0, a2=0, 33=01tsufficestoremarkthat
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Problem

Wearegiventwovectors

β,3ER" satisfying Pll5

Wedefineasubset inR"by

駕惑2準y匡鼎－1』
v:={xp

cal ledthe linearsubspaces#nedbyPand"Wearegiven
anothervectorEER".TheproblemistofindEbEVsatisfying

E-Eb_LV ie (5－酌,7)=0 (7Ev)

arkthatthiscondition isequivalentto

(E-",5)=(E一節,3)=0

Ve
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(1)OrthnormalBaSis

Wetaketheorthogonal prQjectionof'tothedirectionof｡

→ （β,可）

w=1FF
一

p

|nthissituationwehave

可一'"_Lp

Moreover ・司

可一”≠01

1nfact ifa=W=*P, thenPl l'Thiscontradictsthehypothesi

＞Wedefinetwovectors ミ
ロ掛も'i=mp' 'n=| |可｣"| | (3-")

1 －． －．→

cal ledanorthonormal baSisofV
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Theorthonormal baSiSmandnenjoysthebasicproperty

| |H| |=| |"| |=1, (H,E)=0

WecanexpressthevectormEVby r-=Cでh~､'ｰﾍ
い！ ）-‐→

－＆"="+'〃垣
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Moreover (E-Eb,H)=(后一両,")=0imp
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Nob''yuklTOSE I EigenvalueProblems

Review

｢Theorem
ForBEA'h(R), thefbl lowingconditionsareequivalent

。(i)Bisregular.
→ →

｡(ii)Bv=0→ワ=0

e(iii) |B|≠0

面 I

’｢Theorem

ForBEMb(R), thefbl lowingconditionsareequivalent

｡NOT(i)Bisnotregular(singular)"
一 一ゆ

｡NOT(ii)Thereexists7≠Osatisfy ngB7=0.

●NOT(iii) IB|=0
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Example(1)

(遇）LetA= WeconSiderthesystemofequations

（》)=入(；）
／

A

＝（ば）－（
First｢emarkthatthesystemlsequivalentto/

(;)-6, "､…ﾊ〃-A=(ﾊﾕ』 ﾊぞ＄）(#) (M2-A)

（2

斗、 ）

WealSoremarkthat

入－1 －2

－4 入－3
|入ら－A|= ＝(入十1)(入－5）
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入二一'／『。､/､ノー -r{-全Ei8塁へv壱~s'-z-4-JL｡jA

Example(2)

‘割-( ＝＊‐
／

Incase入≠－1,5

2斗＝○
IncaseA=-1

／（#)今

ザ…y=ttoge

II%H，

-<-l･ ')C一《t3=othesolution
一

ｔ

（》)=(7‘)=「(I'）

(；）
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Example(3)

IncaseA=5

“ ｡計〃'－，
(;)(A)(:)

／
〃
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レ

ム叩=盲(1)
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(1)Diagonalization
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ThematrixPisregularSince

|P|= ＝－3≠0
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(2)Diagonalization

2）AP=

:＝＝

(万』 :）P＝＝

。
ご
Ｑ
ぐ

Rp~(P （も
=L(3

１
１

WemultiplyP-'fromthe left

P-1AP

Thisprocess iscalledadiagonalizationofA.Tbseehowitdows

mean,we introducethecoordinatetransfbrmgivenby

")(:)=P(;)(》） ＝甲,＋ﾉβ2＝(両
NobllyukiTOSE l EigenvalueProbI臼ns
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(3)Diagonalization

（塁）A=lnthissituationthemap

蝿鴬、 ）(il)=AC) -
canbeclarifiedbyusingthecoordinatetransfbrmasfbl lows.ゾ

（“)=P-1(#I)
ち

りノ

（》）=P-1A

（夷〕）（:)=(万Ⅲ :)(； ‐=P-1AP
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