Linearity of F4

Linearity of Fa
Fx satisfies the following basic properties called Linearity.
o (i) Fa(X+Y) = Fa(X) + Fa(¥)
o (ii) FA(AX) = AFa(X)
o (iii) FA(AX + py) = AFa(X) + pFa(y)
These three propeties are identical to the following.
o (i) AX+Yy)=A+ Ay
o (ii) A(AX) = \(AX)
o (i) A(AX + uy) = AM(AX) + u(Ay)
Moreover remark that (iii) can be easily derived from (i) and (ii).

AT + 17) = AAR) + A7) = MAR) + (A7)
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Proof for (i)
LHS = A

= +y1)d+ 4 (o + yn)an
=x131 + Y131+ + Xpdn + Yadn
=(x131 + -+ xp3n) + ()131 + - + Yndn)
= AX + Ay = RHS
Proof for (ii)
AX1
LHS =A| : | =(M)d1+ -+ (Axn)3n

AXn

= AN(x131) + -+ A(xp3n) = AM(x131 + - - + x,3,) = RHS
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Corollary

V. !
_
Let A be a m x n matrix, X1,...,%X € RY Then we have
Q (ii) A(Cl)?l +- X)) = Cl(A)_f]) + -+ c(AX)

(i) follows from linearity with the aid of induction on /.
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Associativity (1)

Thanks to the Linearity, we can prove the following theorem .
about Associativity.

Theorem: Associativity

Given a m x n matrix A and a n x ¢ matrix X. Then we have for
1€ € R,
‘ (AX)¢ = A(X?)

In fact,

RHS = A(Cl)?l “+ -4 Cn)?n)
= c1(A%) + -+ Co(AR,)
= (A% ... A%,)E = (AX)Z = LHS
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Multiplication: Matrix x Matrix

Multiplication: Matrix x Matrix
Take another matrix of type n x ¢ hro— awl Q toluw Q.

Then a m x ¢ matrix AX is defined by

31;1
AX = (A% ... A%)=| :
am>’<'1 am)_fg a—“’\ onuw‘“
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Linear Map defined by A

Linear Map defined by A

We can define a map

FA:Rn—>Rm

X —=AX=x131+ -+ Xpan
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Multiplication of matrices expressed by rows

€ |

On the other hand ¢ X = '
e > |
axy+ gyt anxa T

.—_al(xll XMN) / )(‘G_ N
R [ e

b

>
A

+ an X /./.T/X,'g) . _

@ .
—I—ag/()é e m i vas Kyg)

=(4 arxqj+ -4 aixg o+ ER U
A(@X, ... aX; ... a%) ‘
=aX
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Multiplication of matrices expressed by rows

In case A is a row vector

For a n dim. row vector a = (a1 ... a,) and a n x £ matrix

we have
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Associativity (2)

AR wx L Caxt — (AR)e

ot T
Given a m x n matrix A, a n X ¢ matrix B and a ¢ x t matrix C.
Then
AB)C = A(BC
(AB) (BC) % £ w % &
(proof)
A wm ¥R
LHS = ((AB)¢1 ... (AB)¢;
= (A(B¢1) ... A(B¢
((_’1) #( t) - ACRCY
( —I =A(B 1 «o- BCt)
L & A(BC) &
= ~ Y“wx T
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Multiplication of matrices expressed by rows

‘>Q”_’ N

In case A is a row vector

Incase A=a=(a; ... a,), we have for a n x ¢ matrix
X=X ... X)

aX =(axy ... axy)

SO, A T By,
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Multiplication of matrices expressed by rows

Multiplication of matrices

a1
For m x n matrix A= | : | and n x ¢ matrix|we have
am
-\ ~\
alx X:(}(--. L-Q'B
AX =

In fact
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Special Matrices

Om,n Zero Matrix

— ) ) 0 ... 0
Omyn:(o...o): : .
M wow S 0 ... 0
S . .

is called the zero matrix. It satisfies the identity

Om,nX = Om,b YOm,n = Ok,n P\ \ \

- =\ Y g )

for a n x ¢ matrix X and a kK x m matrix Y. (8 == % @ J

OmnX = Om ¢ follows from

"

OmnX=x0+ - +x,0=0
and YOp, n = Ok, from
YO=0p1+ - +0y,=0



Standard Unit Vectors

Standard Unit Vectors

In R3, we have

0 0
y é‘.2: 1 y 63: 0
0 1

—

e =

O O

called the standard unit vectors.

For m x 3 matrix X = (X1 X; X3), we have

Xer=1-4+0-%+0-X3=%x
Xea=0-4+1-%+0-X3=5%
Xe&s=0-%4+0-%+1-X3=X3
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L pv ) 20y | = B0
\' —>q“§ + 0\31‘3 )
Standard Unit Vectors

Standard Unit Vectors

In (R3)*, we have

es=(1 0 0), ee=(0 1 0), es=(0 0 1)

also called the standard unit vectors.

X1
For 3 x n matrix X = | x5 |, we have
X3

e X=1x14+0-%x24+0-x3=x1
e X =0-x1+1-x4+0-x3=xp
esX =0-x3+0-%x24+1-x3=x3
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Special Matrices 2

I, ldentity Matrix

L
0 1

is called the Identity Matrix. It enjoys, the identity
Xlp=X; ILY=Y

for a m x n matrix X and a n x £ matrix Y.
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Special Matrices 2

We have the identity

(B .. % ... %)8=0-

Xlg = (R osn B)(6 ss. By =8 s:« %) =X
On the other hand we have, for y € R”, the identity
Vy=xvi€1+  +yn€ =y
Thus we get the identity

WY =(h ... 7)) = ... 7)) =Y
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A s 2x 9 ueebAl>e
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AX=XA=T,

Regularity of Matrices, Uniqueness of Inverse

Regularity of Matrices

A n x n matrix A is called regular if there exists another n x n
matrix X satisfying

A f\Q«%’u(‘ﬁ/ it

AX=XA=I,

In this situation X is called the inverse of A.

o (i) (Uniqueness of the inverse) Assume
AX=XA=1l,, AY=YA=I,

Then X =Y. In fact, from AX =/, multiplied by Y from the
left follows

Y(AX) = Y1, @

On the other hand, Y(AX) = (YA)X = I,X :@
Accordingly X =Y.
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Elementary Matrices (1)

To exchange two rows and two columns

010 e
Sp=(1 0 0| =(&26 &)= |e
00 1 es

satisfies

= | qQ
! @
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9.al+l. b+ro.¢ =b

lvat+ 0.l + 0-€ =Qq
OC.aqr+0.bh+1-C =g



Elementary Matrices (1)

To exchange two rows and two columns

00 1 o
S3=|0 1 0)=(&&é&)=|e
1 00 e;

a Cc . .
Ss(b|=[b|, (3b&)Swn=(¢h3)
(o} a

What do we have for

1 00 e
523 = 0 01 = (51 63 62) = | e3 ?
010 e
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D (o)1

satisfies

Gl /¢
Ql
\
S B % =
> e )

Elementary Matrices (1)

To exchange two rows and two columns

S12, S13, Sp3 are regular.

For example
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Elementary Matrices (2)

- =)
f.R, ¢t AR,
To add Ax ith row to jth row

satisfies

Ro1(A) (
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Elementary Matrices (2)

satisfies §A(looy+(eo()

a a
Ra1()) (b):( b ) (3b&)Ru(N\)=(3+Ah7)
C Aa—+c

) x tee lstasmw odoed to tha I ed |
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Elementary Matrices (2)

To add AXx ith row to jth row

3 x 3 matrices Rj;(\) (i # j) are all regular.

For example we have
Ri2(A)Ri2(pt) = Riz(A + 1), Ri2(0) =15
Thus we get

Ri2(A)Ri2(—A) = Ria(—A)Ri2(A) = Ri2(0) = /5

Ri.Chy is ragorl (R(z()” Bh: Rlz(~>\ \
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Elementary Matrices (3)

To multiply jth row by A # 0

100 e
QA)=10 X 0] =(é1 X&; &) = | dez
00 1 B

satisfies
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