

Linearity of F_A

Linearity of F_A

F_A satisfies the following basic properties called **Linearity**.

- (i) $F_A(\vec{x} + \vec{y}) = F_A(\vec{x}) + F_A(\vec{y})$
- (ii) $F_A(\lambda \vec{x}) = \lambda F_A(\vec{x})$
- (iii) $F_A(\lambda \vec{x} + \mu \vec{y}) = \lambda F_A(\vec{x}) + \mu F_A(\vec{y})$

These three properties are identical to the following.

- (i) $A(\vec{x} + \vec{y}) = A\vec{x} + A\vec{y}$
- (ii) $A(\lambda \vec{x}) = \lambda(A\vec{x})$
- (iii) $A(\lambda \vec{x} + \mu \vec{y}) = \lambda(A\vec{x}) + \mu(A\vec{y})$

Moreover remark that (iii) can be easily derived from (i) and (ii).

$$A(\lambda \vec{x} + \mu \vec{y}) = A(\lambda \vec{x}) + A(\mu \vec{y}) = \lambda(A\vec{x}) + \mu(A\vec{y})$$

Nobuyuki TOSE

Matrices and their operations No. 2

(i) (ii)

$$A(\vec{x} + \vec{y})$$

$$(\vec{a}_1 \cdots \vec{a}_n)$$

Proof

Proof for (i)

$$\begin{aligned} LHS &= A \left(\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \right) = A \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix} \\ &= (x_1 + y_1)\vec{a}_1 + \cdots + (x_n + y_n)\vec{a}_n \\ &= x_1\vec{a}_1 + y_1\vec{a}_1 + \cdots + x_n\vec{a}_n + y_n\vec{a}_n \\ &= (x_1\vec{a}_1 + \cdots + x_n\vec{a}_n) + (y_1\vec{a}_1 + \cdots + y_n\vec{a}_n) \\ &= A\vec{x} + A\vec{y} = RHS \end{aligned}$$

Proof for (ii)

$$\begin{aligned} LHS &= A \begin{pmatrix} \lambda x_1 \\ \vdots \\ \lambda x_n \end{pmatrix} = (\lambda x_1)\vec{a}_1 + \cdots + (\lambda x_n)\vec{a}_n \\ &= \lambda(x_1\vec{a}_1) + \cdots + \lambda(x_n\vec{a}_n) = \lambda(x_1\vec{a}_1 + \cdots + x_n\vec{a}_n) = RHS \end{aligned}$$

Corollary

Corollary

Let A be a $m \times n$ matrix, $\vec{x}_1, \dots, \vec{x}_\ell \in \mathbf{R}^n$. Then we have

- (i) $A(\vec{x}_1 + \dots + \vec{x}_\ell) = A\vec{x}_1 + \dots + A\vec{x}_\ell$
- (ii) $A(c_1\vec{x}_1 + \dots + c_\ell\vec{x}_\ell) = c_1(A\vec{x}_1) + \dots + c_\ell(A\vec{x}_\ell)$

(i) follows from linearity with the aid of induction on ℓ .

$$\begin{aligned} &= A(c_1\vec{x}_1) + \dots + A(c_\ell\vec{x}_\ell) \\ &= c_1(A\vec{x}_1) + \dots + c_\ell(A\vec{x}_\ell) \end{aligned}$$

Nobuyuki TOSE Matrices and their operations No. 2

$$A \left(\begin{pmatrix} \vec{x}_1 & \dots & \vec{x}_\ell \end{pmatrix} \begin{pmatrix} c_1 \\ \vdots \\ c_\ell \end{pmatrix} \right) = (A\vec{x}_1 \dots A\vec{x}_\ell) \begin{pmatrix} c_1 \\ \vdots \\ c_\ell \end{pmatrix}$$

$$X = (\vec{x}_1 \dots \vec{x}_\ell) \quad A(X\vec{c}) = (A\vec{x}_1 \dots A\vec{x}_\ell)\vec{c}$$

Associativity (1)

Thanks to the Linearity, we can prove the following theorem .
about **Associativity**.

Theorem: Associativity

Given a $m \times n$ matrix A and a $n \times \ell$ matrix X . Then we have for $\vec{c} \in \mathbf{R}^\ell$.

$$(AX)\vec{c} = A(X\vec{c})$$

In fact,

$$\begin{aligned} RHS &= A(c_1\vec{x}_1 + \dots + c_n\vec{x}_n) \\ &= c_1(A\vec{x}_1) + \dots + c_n(A\vec{x}_n) \\ &= (A\vec{x}_1 \dots A\vec{x}_n)\vec{c} = (AX)\vec{c} = LHS \end{aligned}$$

Nobuyuki TOSE Matrices and their operations No. 2

$$m \times n \text{ matrix } A = (\vec{a}_1, \dots, \vec{a}_n) = \begin{pmatrix} a_{1,1} \\ \vdots \\ a_{1,n} \end{pmatrix}$$

Multiplication: Matrix \times Matrix

Multiplication: Matrix \times Matrix

Take another matrix of type $n \times \ell$: n rows and ℓ columns.

$$X = (\vec{x}_1 \dots \vec{x}_\ell) = \begin{pmatrix} \vec{x}_1 \\ \vdots \\ \vec{x}_n \end{pmatrix}$$

Then a $m \times \ell$ matrix AX is defined by

$$AX = (A\vec{x}_1 \dots A\vec{x}_\ell) = \begin{pmatrix} a_{1,1}\vec{x}_1 & \dots & a_{1,\ell}\vec{x}_\ell \\ \vdots & & \vdots \\ a_{m,1}\vec{x}_1 & \dots & a_{m,\ell}\vec{x}_\ell \end{pmatrix}$$

ith row and
jth column

In case $A = a_{1,1}$, $a_{1,1}X = (a_{1,1}\vec{x}_1 \dots a_{1,1}\vec{x}_\ell)$

Linear Map defined by A

Linear Map defined by A

We can define a map

$$F_A : \mathbf{R}^n \longrightarrow \mathbf{R}^m$$

$$\vec{x} \mapsto A\vec{x} = x_1\vec{a}_1 + \dots + x_n\vec{a}_n$$

$$a_1 x_1 + \dots + a_j x_j + \dots + a_n x_n$$

$$= a_1 (x_{11} \dots x_{1j} \dots x_{1e})$$

+ ...

$$+ a_j (x_{j1} \dots x_{ji} \dots x_{je})$$

+ ...

$$+ a_n (x_{n1} \dots x_{nj} \dots x_{ne})$$

i th component

$$= (\dots a_1 x_{1i} + \dots + a_j x_{ji} + \dots + a_n x_{ni} \dots)$$

$$= (\dots \overset{a_1}{\textcircled{a}_1} \overset{\vec{x}_i}{\vec{x}_i} \dots)$$

$$= a_1 (\vec{x}_1 \dots \vec{x}_i \dots \vec{x}_e)$$

$$= a_1 X.$$

$$= \begin{pmatrix} x_{1i} \\ \vdots \\ x_{di} \\ \vdots \\ x_{ni} \end{pmatrix}$$

$$a_1 X = (a_1 \vec{x}_1 \dots a_1 \vec{x}_e)$$

$$= a_1 x_1 + \dots + a_1 x_n$$

Added after class.

$$a_1 x_1 + \dots + a_j x_j + \dots + a_n x_n$$

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_i \\ \vdots \\ x_n \end{pmatrix} = (\vec{x}_1 \dots \vec{x}_e)$$

$$= a_1 (x_{11} \dots x_{1j} \dots x_{1e})$$

+ ...

$$+ a_j (x_{j1} \dots x_{ij} \dots x_{je})$$

+ ...

$$+ a_n (x_{n1} \dots x_{nj} \dots x_{ne})$$

$$= (\dots a_1 \vec{x}_j \dots) = a_1 X$$

$\boxed{a_1 x_{1j} + \dots + a_1 x_{ij} + \dots + a_n x_{nj}}$

j th component

$$(1 \ 0 \ 0) \begin{pmatrix} >C_1 \\ >C_2 \\ >C_3 \end{pmatrix} = >C_1$$

$$(\alpha \ \beta \ \gamma) \begin{pmatrix} >C_1 \\ >C_2 \\ >C_3 \end{pmatrix} = \alpha >C_1 + \beta >C_2 + \gamma >C_3.$$

Multiplication of matrices expressed by rows

On the other hand

$$\begin{aligned}
 & a_1 \mathbf{x}_1 + \cdots + a_j \mathbf{x}_j + \cdots + a_n \mathbf{x}_n \\
 & = a_1(x_{11} \dots x_{1j} \dots x_{1\ell}) \\
 & \quad \vdots \\
 & \quad + a_i(x_{i1} \dots x_{ij} \dots x_{i\ell}) \\
 & \quad \vdots \\
 & \quad + a_n(x_{n1} \dots x_{nj} \dots x_{n\ell}) \\
 & = (\dots a_1 x_{1j} + \cdots + a_i x_{ij} + \cdots + a_n x_{nj} \dots) \\
 & = (\mathbf{a} \vec{x}_1 \dots \mathbf{a} \vec{x}_j \dots \mathbf{a} \vec{x}_\ell) \\
 & = \mathbf{a} \mathbf{X}
 \end{aligned}$$

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_j \\ \vdots \\ \mathbf{x}_n \end{pmatrix}$$

Multiplication of matrices expressed by rows

In case A is a row vector

For a n dim. row vector $\mathbf{a} = (a_1 \dots a_n)$ and a $n \times \ell$ matrix

$$\mathbf{X} = (\vec{x}_1 \dots \vec{x}_\ell) = \begin{pmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{pmatrix}$$

we have

$$\begin{aligned}
 \mathbf{a} \mathbf{X} & = (\mathbf{a} \vec{x}_1 \dots \mathbf{a} \vec{x}_\ell) \\
 & = a_1 \mathbf{x}_1 + \cdots + a_n \mathbf{x}_n
 \end{aligned}$$

Associativity (2)

$$AB \text{ } m \times \ell \quad C \text{ } \ell \times t \rightarrow (AB)C \text{ } m \times t$$

Theorem: Associativity

Given a $m \times n$ matrix A , a $n \times \ell$ matrix B and a $\ell \times t$ matrix C .

Then

$$(AB)C = A(BC)$$

(proof)

$$\begin{aligned} LHS &= ((AB)\vec{c}_1 \dots (AB)\vec{c}_t) \\ &= (A(B\vec{c}_1) \dots A(B\vec{c}_t)) \\ &= A(B\vec{c}_1 \dots B\vec{c}_t) \\ &= A(BC) = RHS \end{aligned}$$

$$\begin{array}{c} BC \text{ } n \times t \\ A \text{ } m \times n \\ \rightarrow A(BC) \\ m \times t \end{array}$$

The lost theorem

$$ABC$$

Multiplication of matrices expressed by rows

$$X = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$$

In case A is a row vector

In case $A = \mathbf{a} = (a_1 \dots a_n)$, we have for a $n \times \ell$ matrix
 $X = (\vec{x}_1 \dots \vec{x}_\ell)$

$$\mathbf{a}X = (\mathbf{a}\vec{x}_1 \dots \mathbf{a}\vec{x}_\ell)$$

$$= a_1 \alpha_1 + \dots + a_n \alpha_n$$

Multiplication of matrices expressed by rows

Multiplication of matrices

For $m \times n$ matrix $A = \begin{pmatrix} \mathbf{a}_1 \\ \vdots \\ \mathbf{a}_m \end{pmatrix}$ and $n \times \ell$ matrix X we have

$$AX = \begin{pmatrix} \mathbf{a}_1 X \\ \vdots \\ \mathbf{a}_m X \end{pmatrix}$$

$$X = (\vec{x}_1 \cdots \vec{x}_\ell)$$

In fact

$$AX = \begin{pmatrix} \mathbf{a}_1 \vec{x}_1 & \cdots & \mathbf{a}_1 \vec{x}_\ell \\ \vdots & & \vdots \\ \mathbf{a}_i \vec{x}_1 & \cdots & \mathbf{a}_i \vec{x}_\ell \\ \vdots & & \vdots \\ \mathbf{a}_m \vec{x}_1 & \cdots & \mathbf{a}_m \vec{x}_\ell \end{pmatrix} = \begin{pmatrix} \mathbf{a}_1 X \\ \vdots \\ \mathbf{a}_i X \\ \vdots \\ \mathbf{a}_m X \end{pmatrix}$$

Nobuyuki TOSE

Matrices and their operations No. 2

$$= \mathbf{a}_1 ; X$$

Special Matrices

$O_{m,n}$ Zero Matrix

$m \times n$

$$O_{m,n} = (\vec{0} \cdots \vec{0}) = \begin{pmatrix} 0 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 0 \end{pmatrix}$$

m rows
 n columns

is called the zero matrix. It satisfies the identity

$$O_{m,n} X = O_{m,\ell}, \quad Y O_{m,n} = O_{k,n}$$

for a $n \times \ell$ matrix X and a $k \times m$ matrix Y .

$O_{m,n} X = O_{m,\ell}$ follows from

$$O_{m,n} \vec{x} = x_1 \vec{0} + \cdots + x_n \vec{0} = \vec{0}$$

and $Y O_{m,n} = O_{k,n}$ from

$$Y \vec{0} = 0 \vec{y}_1 + \cdots + 0 \vec{y}_n = \vec{0}$$

Nobuyuki TOSE

Matrices and their operations No. 2

Standard Unit Vectors

Standard Unit Vectors

In \mathbb{R}^3 , we have

$$\vec{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \vec{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \vec{e}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

called the standard unit vectors.

For $m \times 3$ matrix $X = (\vec{x}_1 \ \vec{x}_2 \ \vec{x}_3)$, we have

$$\begin{aligned} X\vec{e}_1 &= 1 \cdot \vec{x}_1 + 0 \cdot \vec{x}_2 + 0 \cdot \vec{x}_3 = \vec{x}_1 \\ X\vec{e}_2 &= 0 \cdot \vec{x}_1 + 1 \cdot \vec{x}_2 + 0 \cdot \vec{x}_3 = \vec{x}_2 \\ X\vec{e}_3 &= 0 \cdot \vec{x}_1 + 0 \cdot \vec{x}_2 + 1 \cdot \vec{x}_3 = \vec{x}_3 \end{aligned}$$

$$(\alpha \ \beta \ \gamma) \begin{pmatrix} \vec{e}_1 \\ \vec{e}_2 \\ \vec{e}_3 \end{pmatrix} = \alpha \vec{e}_1 + \beta \vec{e}_2 + \gamma \vec{e}_3.$$

Standard Unit Vectors

Standard Unit Vectors

In $(\mathbb{R}^3)^*$, we have

$$\mathbf{e}_1 = (1 \ 0 \ 0), \quad \mathbf{e}_2 = (0 \ 1 \ 0), \quad \mathbf{e}_3 = (0 \ 0 \ 1)$$

also called the standard unit vectors.

For $3 \times n$ matrix $X = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{pmatrix}$, we have

$$\mathbf{e}_1 X = 1 \cdot \mathbf{x}_1 + 0 \cdot \mathbf{x}_2 + 0 \cdot \mathbf{x}_3 = \mathbf{x}_1$$

$$\mathbf{e}_2 X = 0 \cdot \mathbf{x}_1 + 1 \cdot \mathbf{x}_2 + 0 \cdot \mathbf{x}_3 = \mathbf{x}_2$$

$$\mathbf{e}_3 X = 0 \cdot \mathbf{x}_1 + 0 \cdot \mathbf{x}_2 + 1 \cdot \mathbf{x}_3 = \mathbf{x}_3$$

Special Matrices 2

I_n Identity Matrix

$n \times n$ matrix

$$I_n = (\vec{e}_1 \dots \vec{e}_j \dots \vec{e}_n) = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

I_n $n \times n$

is called the **Identity Matrix**. It enjoys, the identity

$$XI_n = X, \quad I_n Y = Y$$

for a $m \times n$ matrix X and a $n \times \ell$ matrix Y .

$$X \vec{e}_j = \vec{x}_j$$

Special Matrices 2

We have the identity

$$(\vec{x}_1 \dots \vec{x}_j \dots \vec{x}_n) \vec{e}_j = 0 \cdot \vec{x}_1 + \dots + 1 \cdot \vec{x}_j + \dots + 0 \cdot \vec{x}_n = \vec{x}_j$$

This leads us to

$$XI_n = (\vec{x}_1 \dots \vec{x}_n) (\vec{e}_1 \dots \vec{e}_n) = (\vec{x}_1 \dots \vec{x}_n) = X$$

On the other hand we have, for $\vec{y} \in \mathbb{R}^n$, the identity

$$\vec{y} = y_1 \vec{e}_1 + \dots + y_n \vec{e}_n = I_n \vec{y}$$

Thus we get the identity

$$I_n Y = (I_n \vec{y}_1 \dots I_n \vec{y}_\ell) = (\vec{y}_1 \dots \vec{y}_\ell) = Y$$

$A = 2 \times 2$ matrix

A regular iff. There exists $X : 2 \times 2$
 $AX = XA = I_2$

Regularity of Matrices, Uniqueness of Inverse

Regularity of Matrices

A $n \times n$ matrix A is called **regular** if there exists another $n \times n$ matrix X satisfying

$$AX = XA = I_n$$

In this situation X is called the **inverse** of A .

- (i) (**Uniqueness of the inverse**) Assume

$$AX = XA = I_n, \quad AY = YA = I_n$$

Then $X = Y$. In fact, from $AX = I_n$ multiplied by Y from the left follows

$$Y(AX) = YI_n = Y$$

On the other hand, $Y(AX) = (YA)X = I_nX = X$.
Accordingly $X = Y$.

How to characterize regularity?

How to calculate the inverse.

Elementary Matrices (1)

To exchange two rows and two columns

$$S_{12} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = (\vec{e}_2 \ \vec{e}_1 \ \vec{e}_3) = \begin{pmatrix} \vec{e}_2 \\ \vec{e}_1 \\ \vec{e}_3 \end{pmatrix}$$

satisfies

$$S_{12} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \end{pmatrix} = \begin{pmatrix} \mathbf{b} \\ \mathbf{a} \\ \mathbf{c} \end{pmatrix}, \quad (\vec{a} \ \vec{b} \ \vec{c}) S_{12} = (\vec{b} \ \vec{a} \ \vec{c})$$

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} b_2 \\ a_1 \\ a_3 \end{pmatrix}$$

$$0 \cdot a_1 + 1 \cdot b_2 + 0 \cdot c_3 = b_2$$

$$1 \cdot a_1 + 0 \cdot b_2 + 0 \cdot c_3 = a_1$$

$$0 \cdot a_1 + 0 \cdot b_2 + 1 \cdot c_3 = c_3$$

Elementary Matrices (1)

To exchange two rows and two columns

$$S_{13} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} = (\vec{e}_3 \ \vec{e}_2 \ \vec{e}_1) = \begin{pmatrix} \mathbf{e}_3 \\ \mathbf{e}_2 \\ \mathbf{e}_1 \end{pmatrix}$$

satisfies

$$S_{13} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \end{pmatrix} = \begin{pmatrix} \mathbf{c} \\ \mathbf{b} \\ \mathbf{a} \end{pmatrix}, \quad (\vec{a} \ \vec{b} \ \vec{c}) S_{12} = (\vec{c} \ \vec{b} \ \vec{a})$$

What do we have for

$$S_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = (\vec{e}_1 \ \vec{e}_3 \ \vec{e}_2) = \begin{pmatrix} \mathbf{e}_1 \\ \mathbf{e}_3 \\ \mathbf{e}_2 \end{pmatrix} \quad ?$$

Nobuyuki TOSE Matrices and their operations No. 2

$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \end{pmatrix} = \begin{pmatrix} \mathbf{c} \\ \mathbf{b} \\ \mathbf{a} \end{pmatrix}$$

$$S_{23} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \end{pmatrix} = ?$$

Elementary Matrices (1)

To exchange two rows and two columns

S_{12} , S_{13} , S_{23} are regular.

For example

$$S_{13} S_{13} = S_{13} \begin{pmatrix} \mathbf{e}_3 \\ \mathbf{e}_2 \\ \mathbf{e}_1 \end{pmatrix} = \begin{pmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \\ \mathbf{e}_3 \end{pmatrix} = I_3$$

S_{13} is regular

$$(S_{13})^{-1} = S_{13}.$$

Elementary Matrices (2)

To add $\lambda \times$ ith row to jth row

$$R_{21}(\lambda) = \begin{pmatrix} 1 & 0 & 0 \\ \lambda & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = (\vec{e}_1 + \lambda \vec{e}_2 \ \vec{e}_2 \ \vec{e}_3) = \begin{pmatrix} \vec{e}_1 \\ \lambda \vec{e}_1 + \vec{e}_2 \\ \vec{e}_3 \end{pmatrix}$$

satisfies

$$R_{21}(\lambda) \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \end{pmatrix} = \begin{pmatrix} \mathbf{a} \\ \lambda \mathbf{a} + \mathbf{b} \\ \mathbf{c} \end{pmatrix}, \quad (\vec{a} \ \vec{b} \ \vec{c}) R_{21}(\lambda) = (\vec{a} + \lambda \vec{b} \ \vec{b} \ \vec{c})$$

$$1 \cdot \vec{e}_1 + \lambda \vec{e}_2$$

$$\lambda \vec{e}_1 + \vec{e}_2$$

Nobuyuki TOSE

Matrices and their operations No. 2

$$\begin{pmatrix} 1 & 0 & 0 \\ \lambda & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_1 \\ 1b \\ c \end{pmatrix} = \begin{pmatrix} a_1 \\ \lambda a_1 + 1b \\ c \end{pmatrix}$$

to add $\lambda \times$ 1st row to 2nd row
 a_1

Elementary Matrices (2)

To add $\lambda \times$ ith row to jth row

$$R_{31}(\lambda) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \lambda & 0 & 1 \end{pmatrix} = (\vec{e}_1 + \lambda \vec{e}_3 \ \vec{e}_2 \ \vec{e}_3) = \begin{pmatrix} \vec{e}_1 \\ \vec{e}_2 \\ \lambda \vec{e}_1 + \vec{e}_3 \end{pmatrix}$$

satisfies

$$\lambda (1 \ 0 \ 0) + (0 \ 0 \ 1)$$

$$R_{31}(\lambda) \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \end{pmatrix} = \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \lambda \mathbf{a} + \mathbf{c} \end{pmatrix}, \quad (\vec{a} \ \vec{b} \ \vec{c}) R_{31}(\lambda) = (\vec{a} + \lambda \vec{c} \ \vec{b} \ \vec{c})$$

$\lambda \times$ the 1st row added to the 3rd.

Nobuyuki TOSE

Matrices and their operations No. 2

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \lambda & 0 & 1 \end{pmatrix} \begin{pmatrix} a_1 \\ 1b \\ c \end{pmatrix} = \begin{pmatrix} a_1 \\ 1b \\ c \end{pmatrix}$$

$$\lambda \cdot a_1 + 0 \cdot 1b + 1 \cdot c \\ = \lambda a_1 + c$$

$$\begin{pmatrix} 1 & 0 & 0 \\ \lambda & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ \mu & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\lambda(1,0,0) + (\mu,1,0)} = (\lambda+\mu, 1, 0)$$

Elementary Matrices (2)

$$= \begin{pmatrix} 1 & 0 & 0 \\ \lambda+\mu & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

To add $\lambda \times$ ith row to jth row

3×3 matrices $R_{ij}(\lambda)$ ($i \neq j$) are all regular.

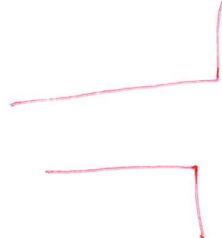
For example we have

$$R_{12}(\lambda)R_{12}(\mu) = R_{12}(\lambda + \mu), \quad R_{12}(0) = I_3$$

Thus we get

$$R_{12}(\lambda)R_{12}(-\lambda) = R_{12}(-\lambda)R_{12}(\lambda) = R_{12}(0) = I_3$$

$$R_{12}(\lambda) \text{ is regular } (R_{12}(\lambda))^{-1} = R_{12}(-\lambda)$$



Next
week

Elementary Matrices (3)

To multiply jth row by $\lambda \neq 0$

$$Q_2(\lambda) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & 1 \end{pmatrix} = (\vec{e}_1 \ \lambda \vec{e}_2 \ \vec{e}_3) = \begin{pmatrix} \mathbf{e}_1 \\ \lambda \mathbf{e}_2 \\ \mathbf{e}_3 \end{pmatrix}$$

satisfies

$$Q_2(\lambda) \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \end{pmatrix} = \begin{pmatrix} \mathbf{a} \\ \lambda \mathbf{b} \\ \mathbf{c} \end{pmatrix}, \quad (\vec{a} \ \vec{b} \ \vec{c}) Q_2(\lambda) = (\vec{a} \ \lambda \vec{b} \ \vec{c})$$