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m X n Matrices

m X n matrices: How to make them

air ... ay .- diln
ai

A= (a3 Zh)l = =\ an ajj din
am

amil Amj amn

A m X n matrix is given in the following ways.

@ (i) Combining n column vectors a1, ..., 3, € R”

@ (ii) Combining m row vectors ag,...,am

e (iii) Giving m x n components.
NB aj; is used for the component of the ith row and of the jth
column, and sometimes called (7, j) component.
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Multiplication: Matrix x Column Vector

Multiplication of n-dim. col. vectors to m X n matrices

X1 arx
A Xij :X1§1+"‘+Xj§j+"‘+xn5n: ai)_(' € R™
Xn amX

Here we use multiplication of row vectors and column vectros:

X1
(a1 ... ap) | T | =aaxi+ -+ apxp

Xn
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Multiplication: Matrix x Column Vector

an aij ain
:X]_ ail ++XJ aij ++Xn ain

aml amj dmn

= | xan1+---+Xxa;+ -+ Xpain | = a;x

Nobuyuki TOSE Matrices and their operations No. 2



Multiplication: Matrix x Matrix

Multiplication: Matrix x Matrix

Take another matrix of type n x £:

X1
X =04 Xp) =
Xn
Then a m x £ matrix AX is defined by
a1>?1 e a1>"<'g
AX = (AX ... AX) =
am>?1 000 am)_Q
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Linear Map defined by A

Linear Map defined by A

We can define a map

FA:Rn—>Rm

X = AX=x131+ -+ xpan
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Linearity of Fj

F4 satisfies the following basic properties called Linearity.
o (i) Fa(X+y) = Fa(X) + Fa(¥)
o (ii) Fa(AX) = A\Fa(X)
o (iii) FA(AX + 1y) = AFa(X) + pFa(y)
These three propeties are identical to the following.
o (i) A(X+Yy)=AX+ Ay
o (ii) A(AX) = A(AX)
o (iii) A(AX + py) = A(AX) + u(AY)
Moreover remark that (iii) can be easily derived from (i) and (ii).

AR + 1y) = A(AR) + A(ry) = MAX) + u(AY)
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Proof for (i)
X1 N X1+ y1
LHS=A[|:|+]:|]|=A]|
Xn Yn Xn + Yn
=(x1+y1)dr+ -+ (%o + yn)an
= x1d1 + Y131+ + Xpdp + Ynan
= (X181 + -+ + Xndp) + (Y181 + - + yndn)
= AX+ Ay = RHS
Proof for (ii)
AXq
LHS=A| | =(Ox1)dr + - + (\xn)3n
AXp

= )\(X131) —+ -+ )\(Xngn) = )\(X151 + -+ Xngn) = RHS



Corollary

Corollary

Let A be a m x n matrix, X1,...,X, € R". Then we have
o (AL + -+ X)=Ad+ -+ A%
o (II) A(Cl)?l —+ -+ Cg)?g) = Cl(A)?l) + -+ Cg(A)_Q)

(i) follows from linearity with the aid of induction on /.
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Associativity (1)

Thanks to the Linearity, we can prove the following theorem
about Associativity.

Theorem: Associativity

Given a m X n matrix A and a n x £ matrix X. Then we have for
¢ e R
(AX)c = A(X<)

In fact,

RHS = A(C]_)?l —+ -+ Cn)?n)
— G(ARL) + - + co(AR))
— (AR ... AR))E = (AX)Z = LHS
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Associativity (2)

Theorem: Associativity

Given a m x n matrix A, a n x £ matrix B and a ¢ x t matrix C.
Then
(AB)C = A(BC)

(proof)
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Multiplication of matrices expressed by rows

In case A is a row vector

Incase A=a = (a; ... an), we have for a n x ¢ matrix
X=0(1 ... %)

aX =(ax; ... axXp)
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Multiplication of matrices expressed by rows

On the other hand

aiXy + -+ aiXj + -+ anXp

:al(xll S VA Xlg)
+a,~(x,-1 e Xjjoeee X,'g)
+an(Xn1 --. Xnj .. Xng)
:( aixy+ -+ aix;+ -+ anxne )
=(axy ... ax; ... axy)
=aX
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Multiplication of matrices expressed by rows

In case A is a row vector

For a n dim. row vector a=(a; ... ap) and a n x ¢ matrix
X1
X=F ... %) =|:
Xn
we have
aX =(axy ... axp)
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Multiplication of matrices expressed by rows

Multiplication of matrices

a1
For m x n matrix A= | : | and n x ¢ matrix we have
am
a1X
AX = :
anX
In fact
ai1Xxi a1 Xy a1X
AX = | a;x1 axy | =1 aX
amX1 ... amXy apX
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Special Matrices

Om.n Zero Matrix

0 ... 0

Omn=1(0 ...

)

6): : :
0O ... 0

is called the zero matrix. It satisfies the identity

Om,nX = Om,ﬂa YOm,n = Ok,n

)

for a n x £ matrix X and a kK X m matrix Y.
Om,nX = Omy follows from
Omn% = 10+ -+ a0 = 0
and YOm n = Ok p from
YO = 07+ +07, = 0



Standard Unit Vectors

Standard Unit Vectors
In R3, we have

1 0 0
g=10], &=(1], &=10
0 0 1

called the standard unit vectors.
For m x 3 matrix X = (X1 X2 X3), we have
Xéi=1-\+0-%4+0-X3=2Xx;

X&=0-14+1-%4+0-X3=%

Xés=0-3+0-%+1-X3=2Xx3
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Standard Unit Vectors

Standard Unit Vectors

In (R3)*, we have
e1:(1 0 0), e2:(0 1 0), e3:(0 0 1)

also called the standard unit vectors.

X1
For 3 x n matrix X = | x» |, we have
X3

e X=1-x1+40-x+0-x3=x31
e X =0-x1+1-x+0-x3=x5
e3X =0-x14+0-x2+1-x3=x3
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Special Matrices 2

In ldentity Matrix

1 0 ... 0

. . . 01 0
Ih=(E ... § &) = o
0 0 1

is called the Identity Matrix. It enjoys, the identity
X=X, LY=Y

for a m x n matrix X and a n x £ matrix Y.
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Special Matrices 2

We have the identity

On the other hand we have, for y € R”, the identity
y:y1§1+"'+YnEn: Iny
Thus we get the identity

WY =it . )= - F)=Y
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Regularity of Matrices, Uniqueness of Inverse

Regularity of Matrices

A n x n matrix A is called regular if there exists another n x n
matrix X satisfying

AX=XA=I,

In this situation X is called the inverse of A.
o (i) (Uniqueness of the inverse) Assume
AX=XA=1, AY =YA=I,

Then X =Y. In fact, from AX = I, multiplied by Y from the
left follows
Y(AX)=VYl,=Y

On the other hand, Y(AX) = (YA)X = I,X = X.
Accordingly X =Y.
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Elementary Matrices (1)

To exchange two rows and two columns

010 e
512 = 1 0 0] = (éz 51 53) = 1€
0 01 e;s
satisfies
a b
512 b]=1|a 9 (5 b 5)512 = (b a E)
(o} (o}
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Elementary Matrices (1)

To exchange two rows and two columns

0 0 1 e3
S3=10 1 0] =(&&¢€)=|e
1 00 e
satisfies
a c . .
Ss{b]=|[b]|, (gb¢<)Si2=(Cb3a)
C a

What do we have for

100 e
523 =10 0 1| = (51 53 52) = \|e3 ?
010 e
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Elementary Matrices (1)

To exchange two rows and two columns

S12, S13, So3 are regular.

For example

e3 e
S513S513=Si3|ex| =|ex] =4
e e3
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Elementary Matrices (2)

To add Ax ith row to jth row

1 0 0 e
R21(/\) =X 1 0] = (51 +\é& & 33) = | de1 + e
0 01 es3
satisfies
a a
Ray(A) [b] =|Xa+b |, (8bc)Ru(N)=(a+ Abb <)
(o (o

Nobuyuki TOSE Matrices and their operations No. 2



Elementary Matrices (2)

To add Ax ith row to jth row

1 0 0 e
R31(/\) =10 1 0| = (@1 + A& & 33) = e
A0 1 e + e3
satisfies
a a . .
Rsi(A\) [ b | = b , (@b C)R31(\)=(a+ AC b T)
c Aa+c
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Elementary Matrices (2)

To add Ax ith row to jth row
3 x 3 matrices Rjj(\) (i # j) are all regular.

For example we have
Ri2(A)Ria(p) = Ria(A+ i), Ri2(0) =1k
Thus we get

R12(A)R12(—A) = Rio(—=A)Ri2(X) = Ri2(0) = 13

Nobuyuki TOSE Matrices and their operations No. 2



Elementary Matrices (3)

To multiply jth row by A # 0

satisfies
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Elementary Matrices (3)

To multiply jth row by A # 0
Qi(N\) (i = 1,2,3) are regular.

In fact we have
Q@A) Q(p) = Q(An), @(1)=4h

Thus
Q@A) = Q)@ = @u(1) =
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Scalar Multiplication to Matirces

Scalar Multiplication to m x n Matrices

Given a m X n matix

ai a1 - din

am dml *°°  dmn
we define a scalar multiplication by A to A as follows:

a; Aai1 -0 Aaig

Aan Aami -+ Admn
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Scalar Multiplication to Matirces

o (i) (M)Z = A(A%) = A(AX)
o (ii) (MA)X = A(AX) = A(AX)

The proof for (i) is given as follows:

(AA)X = (Ad1 ... A3p)X

1(Ad1) + -+ + xn(Adn) = (%)
(x181) + - - + A(xndn)

(X131 + -+ Xngn) = )\(A)?)

Moreover the property (ii) is derived easily from (i).
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Other Basic Properties of Scalar Multiplication

o (iii) (A +pu)A=AA+ uA
o (iv) (A)A = A(uA)
o (v) 1A=Aand 0A= Opp
These properties can derived from the following corresponding

properties for vectors. It is necessary to define the addition of
matrices to understand (iii), and we put it off for the moment.

o (iii) (\+ )3 = A3+ 3

o (iv) (Au)a = A(pad
o (v)13=3and 03=0
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Addition of two m X n Matrices

Given two m X n matrices

agy e Ay cec A
ai : : 5

A= (3 an) = — [311 ajj dim
am : : :

Gmi ' Ami c*c  amn

b1 - by --- b1y
by : : :

B=(b ... by)=| : | = [b,l b bim
bm : : :

by -+ bmj -+ bmn
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Addition of two m X n Matrices

Then

a;+b;
A+B=(31+by ... 3.+ by) = :
amp+bpy
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Basic Properties (1)

Basic Properties (1)
o ()(A+B)+C=A+(B+C)
o (i) A+ Omn=0mn+A=A
o (i) A+B=B+A
o (iv) N(A+ B) = A+ \B
o (V) A+ u)A=2A+ A
(i) follows from (3+b) + &= 3+ (b+ &).
(ii) follows from 5+ 0 =0+ 4= 4.
(iii) follows from @+ b= b+ &.
(v) follows from (A + )3 =
LHS =A(...3;+b;...)= (... X3 +

J
= (... A3+ Abj...)=(...A3j...)+ (... \bj...) = RHS
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Basic Properties (2)

Basic Properties (2)

@ (vi) For n x ¢ matrices X and Y, we have
AX+Y)=AX+AY
@ (vii) For s x m matrices P and Q, we have

(P+Q)A=PA+ QA
(vi) follows from A(X + y) = AX + Ay. In fact

LH5:A(>?k+)7k):(A()?k+)7k))
(A% A AT ) = (AR )+ (. AVi...) = RHS
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Basic Properties (2)

(vii) follows from the identity (P + Q)3 = P3+ Q& which is
derived in the following way.

LHS = (1 + G1 -+ B + Gm)3
= al(l_jl + C_il) +--+ am(ﬁm + C_im)

=--=(a1Ppr1+ -+ amPm) + (81G1 + - - + amGm)
= RHS
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