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m × n Matrices

m × n matrices: How to make them

A = (~a1 . . . ~an) =

a1
...
am

 =


a11 . . . a1j . . . a1n

...
...

...
ai1 . . . aij . . . ain
...

...
...

am1 . . . amj . . . amn


A m × n matrix is given in the following ways.

(i) Combining n column vectors ~a1, . . . , ~an ∈ Rm

(ii) Combining m row vectors a1, . . . , am

(iii) Giving m × n components.

NB aij is used for the component of the ith row and of the jth
column, and sometimes called (i , j) component.
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Multiplication: Matrix × Column Vector

Multiplication of n-dim. col. vectors to m × n matrices

A


x1
...
xi
...
xn

 = x1~a1 + · · ·+ xj~aj + · · ·+ xn~an =


a1~x

...
ai~x

...
am~x

 ∈ Rm

Here we use multiplication of row vectors and column vectros:

(α1 . . . αn)

x1
...
xn

 = α1x1 + · · ·+ αnxn
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Multiplication: Matrix × Column Vector

A

x1
...
xn

 = x1~a1 + · · ·+ xj~aj + · · ·+ xn~an

= x1


a11

...
ai1
...

am1

+ · · ·+ xj


a1j
...
aij
...

amj

+ · · ·+ xn


a1n

...
ain
...

amn



=


...

x1ai1 + · · ·+ xjaij + · · ·+ xnain
...

 =


...

ai~x
...


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Multiplication: Matrix × Matrix

Multiplication: Matrix × Matrix

Take another matrix of type n × `:

X = (~x1 . . . ~x`) =

x1
...
xn


Then a m × ` matrix AX is defined by

AX = (A~x1 . . . A~x`) =

a1~x1 . . . a1~x`
...

...
am~x1 . . . am~x`


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Linear Map defined by A

Linear Map defined by A

We can define a map

FA : Rn −→ Rm

~x 7→ A~x = x1~a1 + · · ·+ xn~an
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Linearity of FA

Linearity of FA

FA satisfies the following basic properties called Linearity.

(i) FA(~x + ~y) = FA(~x) + FA(~y)

(ii) FA(λ~x) = λFA(~x)

(iii) FA(λ~x + µ~y) = λFA(~x) + µFA(~y)

These three propeties are identical to the following.

(i) A(~x + ~y) = A~x + A~y

(ii) A(λ~x) = λ(A~x)

(iii) A(λ~x + µ~y) = λ(A~x) + µ(A~y)

Moreover remark that (iii) can be easily derived from (i) and (ii).

A(λ~x + µ~y) = A(λ~x) + A(µ~y) = λ(A~x) + µ(A~y)
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Proof

Proof for (i)

LHS = A


x1

...
xn

+

y1
...
yn


 = A

x1 + y1
...

xn + yn


= (x1 + y1)~a1 + · · ·+ (xn + yn)~an

= x1~a1 + y1~a1 + · · ·+ xn~an + yn~an

= (x1~a1 + · · ·+ xn~an) + (y1~a1 + · · ·+ yn~an)

= A~x + A~y = RHS

Proof for (ii)

LHS = A

λx1...
λxn

 = (λx1)~a1 + · · ·+ (λxn)~an

= λ(x1~a1) + · · ·+ λ(xn~an) = λ(x1~a1 + · · ·+ xn~an) = RHS
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Corollary

Corollary

Let A be a m × n matrix, ~x1, . . . ,~x` ∈ Rn. Then we have

(i) A(~x1 + · · ·+ ~x`) = A~x1 + · · ·+ A~x`

(ii) A(c1~x1 + · · ·+ c`~x`) = c1(A~x1) + · · ·+ c`(A~x`)

(i) follows from linearity with the aid of induction on `.
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Associativity (1)

Thanks to the Linearity, we can prove the following theorem
about Associativity.

Theorem: Associativity

Given a m × n matrix A and a n × ` matrix X . Then we have for
~c ∈ R`.

(AX )~c = A(X~c)

In fact,

RHS = A(c1~x1 + · · ·+ cn~xn)

= c1(A~x1) + · · ·+ cn(A~xn)

= (A~x1 . . . A~xn)~c = (AX )~c = LHS
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Associativity (2)

Theorem: Associativity

Given a m × n matrix A, a n × ` matrix B and a `× t matrix C .
Then

(AB)C = A(BC )

(proof)

LHS = ((AB)~c1 . . . (AB)~ct)

= (A(B~c1) . . . A(B~ct))

= A(B~c1 . . . B~ct)

= A(BC )
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Multiplication of matrices expressed by rows

In case A is a row vector

In case A = a = (a1 . . . an), we have for a n × ` matrix
X = (~x1 . . . ~x`)

aX = (a~x1 . . . a~x`)
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Multiplication of matrices expressed by rows

On the other hand

a1x1 + · · ·+ aixi + · · ·+ anxn

=a1(x11 . . . x1j . . . x1`)

...

+ ai (xi1 . . . xij . . . xi`)

...

+ an(xn1 . . . xnj . . . xn`)

=(. . . a1x1j + · · ·+ aixij + · · ·+ anxn` . . . )

=(a~x1 . . . a~xj . . . a~x`)

=aX
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Multiplication of matrices expressed by rows

In case A is a row vector

For a n dim. row vector a = (a1 . . . an) and a n × ` matrix

X = (~x1 . . . ~x`) =

x1
...
xn


we have

aX = (a~x1 . . . a~x`)

= a1x1 + · · ·+ anxn
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Multiplication of matrices expressed by rows

Multiplication of matrices

For m × n matrix A =

a1
...
am

 and n × ` matrix we have

AX =

a1X
...

amX


In fact

AX =


a1~x1 . . . a1~x`

...
...

ai~x1 . . . ai~x`
...

...
am~x1 . . . am~x`

 =


a1X

...
aiX

...
amX


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Special Matrices

Om,n Zero Matrix

Om,n = (~0 . . . ~0) =

0 . . . 0
...

...
0 . . . 0


is called the zero matrix. It satisfies the identity

Om,nX = Om,`, YOm,n = Ok,n

for a n × ` matrix X and a k ×m matrix Y .

Om,nX = Om,` follows from

Om,n~x = x1~0 + · · ·+ xn~0 = ~0

and YOm,n = Ok,n from

Y~0 = 0~y1 + · · ·+ 0~yn = ~0
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Standard Unit Vectors

Standard Unit Vectors

In R3, we have

~e1 =

1
0
0

 , ~e2 =

0
1
0

 , ~e3 =

0
0
1


called the standard unit vectors.

For m × 3 matrix X = (~x1 ~x2 ~x3), we have

X~e1 = 1 · ~x1 + 0 · ~x2 + 0 · ~x3 = ~x1

X~e2 = 0 · ~x1 + 1 · ~x2 + 0 · ~x3 = ~x2

X~e3 = 0 · ~x1 + 0 · ~x2 + 1 · ~x3 = ~x3
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Standard Unit Vectors

Standard Unit Vectors

In
(
R3
)∗

, we have

e1 =
(
1 0 0

)
, e2 =

(
0 1 0

)
, e3 =

(
0 0 1

)
also called the standard unit vectors.

For 3× n matrix X =

x1
x2
x3

, we have

e1X = 1 · x1 + 0 · x2 + 0 · x3 = x1

e2X = 0 · x1 + 1 · x2 + 0 · x3 = x2

e3X = 0 · x1 + 0 · x2 + 1 · x3 = x3
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Special Matrices 2

In Identity Matrix

In = (~e1 . . . ~ej . . . ~en) =


1 0 . . . 0
0 1 . . . 0
...

. . .
...

0 0 1


is called the Identity Matrix. It enjoys, the identity

XIn = X , InY = Y

for a m × n matrix X and a n × ` matrix Y .
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Special Matrices 2

We have the identity

(~x1 . . . ~xj . . . ~xn)~ej = 0 · ~x1 + · · ·+ 1 · ~xj + · · ·+ 0~xn = ~xj

This leads us to

XIn = (~x1 . . . ~xn)(~e1 . . .~en) = (~x1 . . . ~xn) = X

On the other hand we have, for ~y ∈ Rn, the identity

~y = y1~e1 + · · ·+ yn~en = In~y

Thus we get the identity

InY = (In~y1 . . . In~y`) = (~y1 . . . ~y`) = Y
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Regularity of Matrices, Uniqueness of Inverse

Regularity of Matrices

A n × n matrix A is called regular if there exists another n × n
matrix X satisfying

AX = XA = In

In this situation X is called the inverse of A.

(i) (Uniqueness of the inverse) Assume

AX = XA = In, AY = YA = In

Then X = Y . In fact, from AX = In multiplied by Y from the
left follows

Y (AX ) = YIn = Y

On the other hand, Y (AX ) = (YA)X = InX = X .
Accordingly X = Y .
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Elementary Matrices (1)

To exchange two rows and two columns

S12 =

0 1 0
1 0 0
0 0 1

 = (~e2 ~e1 ~e3) =

e2
e1
e3


satisfies

S12

a
b
c

 =

b
a
c

 , (~a ~b ~c)S12 = (~b ~a ~c)
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Elementary Matrices (1)

To exchange two rows and two columns

S13 =

0 0 1
0 1 0
1 0 0

 = (~e3 ~e2 ~e1) =

e3
e2
e1


satisfies

S13

a
b
c

 =

c
b
a

 , (~a ~b ~c)S12 = (~c ~b ~a)

What do we have for

S23 =

1 0 0
0 0 1
0 1 0

 = (~e1 ~e3 ~e2) =

e1
e3
e2

 ?
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Elementary Matrices (1)

To exchange two rows and two columns

S12, S13, S23 are regular.

For example

S13S13 = S13

e3
e2
e1

 =

e1
e2
e3

 = I3
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Elementary Matrices (2)

To add λ× ith row to jth row

R21(λ) =

1 0 0
λ 1 0
0 0 1

 = (~e1 + λ~e2 ~e2 ~e3) =

 e1
λe1 + e2

e3


satisfies

R21(λ)

a
b
c

 =

 a
λa + b

c

 , (~a ~b ~c)R21(λ) = (~a + λ~b ~b ~c)
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Elementary Matrices (2)

To add λ× ith row to jth row

R31(λ) =

1 0 0
0 1 0
λ 0 1

 = (~e1 + λ~e3 ~e2 ~e3) =

 e1
e2

λe1 + e3


satisfies

R31(λ)

a
b
c

 =

 a
b

λa + c

 , (~a ~b ~c)R31(λ) = (~a + λ~c ~b ~c)
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Elementary Matrices (2)

To add λ× ith row to jth row

3× 3 matrices Rij(λ) (i 6= j) are all regular.

For example we have

R12(λ)R12(µ) = R12(λ+ µ), R12(0) = I3

Thus we get

R12(λ)R12(−λ) = R12(−λ)R12(λ) = R12(0) = I3
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Elementary Matrices (3)

To multiply jth row by λ 6= 0

Q2(λ) =

1 0 0
0 λ 0
0 0 1

 = (~e1 λ~e2 ~e3) =

 e1
λe2
e3


satisfies

Q2(λ)

a
b
c

 =

 a
λb
c

 , (~a ~b ~c)Q2(λ) = (~a λ~b ~c)
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Elementary Matrices (3)

To multiply jth row by λ 6= 0

Qi (λ) (i = 1, 2, 3) are regular.

In fact we have

Q2(λ)Q2(µ) = Q2(λµ), Q2(1) = I3

Thus

Q2(λ)Q2(
1

λ
) = Q2(

1

λ
)Q2(λ) = Q2(1) = I3
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Scalar Multiplication to Matirces

Scalar Multiplication to m × n Matrices

Given a m × n matix

A = (~a1 . . . ~an) =

a1
...
am

 =

a11 · · · a1n
...

...
am1 · · · amn

 ,

we define a scalar multiplication by λ to A as follows:

λA = (λ~a1 . . . λ~an) =

λa1...
λam

 =

λa11 · · · λa1n
...

...
λam1 · · · λamn


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Scalar Multiplication to Matirces

Theorem

(i) (λA)~x = λ(A~x) = A(λ~x)

(ii) (λA)X = λ(AX ) = A(λX )

The proof for (i) is given as follows:

(λA)~x = (λ~a1 . . . λ~an)~x

= x1(λ~a1) + · · ·+ xn(λ~an) = (∗)
= λ(x1~a1) + · · ·+ λ(xn~an)

= λ(x1~a1 + · · ·+ xn~an) = λ(A~x)

(∗) = (λx1)~a1 + · · ·+ (λxn)~an = A(λ~x)

Moreover the property (ii) is derived easily from (i).
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Other Basic Properties of Scalar Multiplication

Theorem

(iii) (λ+ µ)A = λA + µA

(iv) (λµ)A = λ (µA)

(v) 1A = A and 0A = Om,n

These properties can derived from the following corresponding
properties for vectors. It is necessary to define the addition of
matrices to understand (iii), and we put it off for the moment.

(iii) (λ+ µ)~a = λ~a + µ~a

(iv) (λµ)~a = λ(µ~a)

(v) 1~a = ~a and 0~a = ~0
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Addition of two m × n Matrices

Definition

Given two m × n matrices

A = (~a1 . . . ~an) =

a1
...
am

 =


a11 · · · a1j · · · a1n

...
...

...
ai1 · · · aij · · · aim
...

...
...

am1 · · · amj · · · amn



B = (~b1 . . . ~bn) =

b1
...
bm

 =


b11 · · · b1j · · · b1n

...
...

...
bi1 · · · bij · · · bim
...

...
...

bm1 · · · bmj · · · bmn


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Addition of two m × n Matrices

Definition

Then

A + B = (~a1 + ~b1 . . . ~an + ~bn) =

 a1 + b1
...

am + bm



=


...

· · · aij + bij · · ·
...


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Basic Properties (1)

Basic Properties (1)

(i) (A + B) + C = A + (B + C )

(ii) A + Om,n = Om,n + A = A

(iii) A + B = B + A

(iv) λ(A + B) = λA + λB

(v) (λ+ µ)A = λA + µA

(i) follows from (~a + ~b) + ~c = ~a + (~b + ~c).
(ii) follows from ~a +~0 = ~0 +~a = ~a.
(iii) follows from ~a + ~b = ~b +~a.
(v) follows from (λ+ µ)~a = λ~a + µ~a. (iv) is proved as follows.

LHS = λ(. . .~aj + ~bj . . . ) = (. . . λ(~aj + ~bj) . . . )

= (. . . λ~aj + λ~bj . . . ) = (. . . λ~aj . . . ) + (. . . λ~bj . . . ) = RHS
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Basic Properties (2)

Basic Properties (2)

(vi) For n × ` matrices X and Y , we have

A(X + Y ) = AX + AY

(vii) For s ×m matrices P and Q, we have

(P + Q)A = PA + QA

(vi) follows from A(~x + ~y) = A~x + A~y . In fact

LHS = A(. . .~xk + ~yk . . . ) = (. . .A(~xk + ~yk) . . . )

= (. . .A~xk + A~yk . . . ) = (. . .A~xk . . . ) + (. . .A~yk . . . ) = RHS
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Basic Properties (2)

(vii) follows from the identity (P + Q)~a = P~a + Q~a which is
derived in the following way.

LHS = (~p1 + ~q1 · · ·~pm + ~qm)~a

= a1(~p1 + ~q1) + · · ·+ am(~pm + ~qm)

= · · · = (a1~p1 + · · ·+ am~pm) + (a1~q1 + · · ·+ am~qm)

= RHS
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