
Matrices and their operations No. 2
m × n Matrices

Nobuyuki TOSE

October 25, 2016

Nobuyuki TOSE Matrices and their operations No. 2



m × n Matrices

m × n matrices: How to make them

A = (~a1 . . . ~an) =

a1
...
am

 =


a11 . . . a1j . . . a1n

...
...

...
ai1 . . . aij . . . ain
...

...
...

am1 . . . amj . . . amn


A m × n matrix is given in the following ways.

(i) Combining n column vectors ~a1, . . . , ~an ∈ Rm

(ii) Combining m row vectors a1, . . . , am

(iii) Giving m × n components.

NB aij is used for the component of the ith row and of the jth
column, and sometimes called (i , j) component.
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Multiplication: Matrix × Column Vector

Multiplication of n-dim. col. vectors to m × n matrices

A


x1
...
xi
...
xn

 = x1~a1 + · · ·+ xj~aj + · · ·+ xn~an =


a1~x

...
ai~x

...
am~x

 ∈ Rm

Here we use multiplication of row vectors and column vectros:

(α1 . . . αn)

x1
...
xn

 = α1x1 + · · ·+ αnxn
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Multiplication: Matrix × Column Vector

A

x1
...
xn

 = x1~a1 + · · ·+ xj~aj + · · ·+ xn~an

= x1


a11

...
ai1
...

am1

+ · · ·+ xj


a1j
...
aij
...

amj

+ · · ·+ xn


a1n

...
ain
...

amn



=


...

x1ai1 + · · ·+ xjaij + · · ·+ xnain
...

 =


...

ai~x
...


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Multiplication: Matrix × Matrix

Multiplication: Matrix × Matrix

Take another matrix of type n × `:

X = (~x1 . . . ~x`) =

x1
...
xn


Then a m × ` matrix AX is defined by

AX = (A~x1 . . . A~x`) =

a1~x1 . . . a1~x`
...

...
am~x1 . . . am~x`


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Linear Map defined by A

Linear Map defined by A

We can define a map

FA : Rn −→ Rm

~x 7→ A~x = x1~a1 + · · ·+ xn~an
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Linearity of FA

Linearity of FA

FA satisfies the following basic properties called Linearity.

(i) FA(~x + ~y) = FA(~x) + FA(~y)

(ii) FA(λ~x) = λFA(~x)

(iii) FA(λ~x + µ~y) = λFA(~x) + µFA(~y)

These three propeties are identical to the following.

(i) A(~x + ~y) = A~x + A~y

(ii) A(λ~x) = λ(A~x)

(iii) A(λ~x + µ~y) = λ(A~x) + µ(A~y)

Moreover remark that (iii) can be easily derived from (i) and (ii).

A(λ~x + µ~y) = A(λ~x) + A(µ~y) = λ(A~x) + µ(A~y)
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Proof

Proof for (i)

LHS = A


x1

...
xn

+

y1
...
yn


 = A

x1 + y1
...

xn + yn


= (x1 + y1)~a1 + · · ·+ (xn + yn)~an

= x1~a1 + y1~a1 + · · ·+ xn~an + yn~an

= (x1~a1 + · · ·+ xn~an) + (y1~a1 + · · ·+ yn~an)

= A~x + A~y = RHS

Proof for (ii)

LHS = A

λx1...
λxn

 = (λx1)~a1 + · · ·+ (λxn)~an

= λ(x1~a1) + · · ·+ λ(xn~an) = λ(x1~a1 + · · ·+ xn~an) = RHS
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Corollary

Corollary

Let A be a m × n matrix, ~x1, . . . ,~x` ∈ R`. Then we have

(i) A(~x1 + · · ·+ ~x`) = A~x1 + · · ·+ A~x`

(ii) A(c1~x1 + · · ·+ c`~x`) = c1(A~x1) + · · ·+ c`(A~x`)

(i) follows from linearity with the aid of induction on `.
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Associativity (1)

Thanks to the Linearity, we can prove the following theorem
about Associativity.

Theorem: Associativity

Given a m × n matrix A and a n × ` matrix X . Then we have for
~c ∈ R`.

(AX )~c = A(X~c)

In fact,

RHS = A(c1~x1 + · · ·+ cn~xn)

= c1(A~x1) + · · ·+ cn(A~xn)

= (A~x1 . . . A~xn)~c = (AX )~c = LHS
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Associativity (2)

Theorem: Associativity

Given a m × n matrix A, a n × ` matrix B and a `× t matrix C .
Then

(AB)C = A(BC )

(proof)

LHS = ((AB)~c1 . . . (AB)~ct)

= (A(B~c1) . . . A(B~ct))

= A(B~c1 . . . B~ct)

= A(BC )
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Multiplication of matrices expressed by rows

In case A is a row vector

In case A = a = (a1 . . . an), we have for a n × ` matrix
X = (~x1 . . . ~x`)

aX = (a~x1 . . . a~x`)
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Multiplication of matrices expressed by rows

On the other hand

a1x1 + · · ·+ ajxj + · · ·+ anxn

=a1(x11 . . . x1j . . . x1`)

...

+ ai (xi1 . . . xij . . . xi`)

...

+ an(xn1 . . . xnj . . . xn`)

=(. . . a1x1j + · · ·+ aixij + · · ·+ anxn` . . . )

=(a~x1 . . . a~xj . . . a~x`)

=aX
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Multiplication of matrices expressed by rows

In case A is a row vector

For a n dim. row vector a = (a1 . . . an) and a n × ` matrix

X = (~x1 . . . ~x`) =

x1
...
xn


we have

aX = (a~x1 . . . a~x`)

= a1x1 + · · ·+ anxn
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Multiplication of matrices expressed by rows

Multiplication of matrices

For m × n matrix A =

a1
...
am

 and n × ` matrix we have

AX =

a1X
...

amX


In fact

AX =


a1~x1 . . . a1~x`

...
...

ai~x1 . . . ai~x`
...

...
am~x1 . . . am~x`

 =


a1X

...
aiX

...
amX


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Special Matrices

Om,n Zero Matrix

Om,n = (~0 . . . ~0) =

0 . . . 0
...

...
0 . . . 0


is called the zero matrix. It satisfies the identity

Om,nX = Om,`, YOm,n = Ok,n

for a n × ` matrix X and a k ×m matrix Y .

Om,nX = Om,` follows from

Om,n~x = x1~0 + · · ·+ xn~0 = ~0

and YOm,n = Ok,n from

Y~0 = 0~y1 + · · ·+ 0~yn = ~0
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Standard Unit Vectors

Standard Unit Vectors

In R3, we have

~e1 =

1
0
0

 , ~e2 =

0
1
0

 , ~e3 =

0
0
1


called the standard unit vectors.

For m × 3 matrix X = (~x1 ~x2 ~x3), we have

X~e1 = 1 · ~x1 + 0 · ~x2 + 0 · ~x3 = ~x1

X~e2 = 0 · ~x1 + 1 · ~x2 + 0 · ~x3 = ~x2

X~e3 = 0 · ~x1 + 0 · ~x2 + 1 · ~x3 = ~x3
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Standard Unit Vectors

Standard Unit Vectors

In
(
R3
)∗

, we have

e1 =
(
1 0 0

)
, e2 =

(
0 1 0

)
, e3 =

(
0 0 1

)
also called the standard unit vectors.

For 3× n matrix X =

x1
x2
x3

, we have

e1X = 1 · x1 + 0 · x2 + 0 · x3 = x1

e2X = 0 · x1 + 1 · x2 + 0 · x3 = x2

e3X = 0 · x1 + 0 · x2 + 1 · x3 = x3
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Special Matrices 2

In Identity Matrix

In = (~e1 . . . ~ej . . . ~en) =


1 0 . . . 0
0 1 . . . 0
...

. . .
...

0 0 1


is called the Identity Matrix. It enjoys, the identity

XIn = X , InY = Y

for a m × n matrix X and a n × ` matrix Y .
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Special Matrices 2

We have the identity

(~x1 . . . ~xj . . . ~xn)~ej = 0 · ~x1 + · · ·+ 1 · ~xj + · · ·+ 0~xn = ~xj

This leads us to

XIn = (~x1 . . . ~xn)(~e1 . . .~en) = (~x1 . . . ~xn) = X

On the other hand we have, for ~y ∈ Rn, the identity

~y = y1~e1 + · · ·+ yn~en = In~y

Thus we get the identity

InY = (In~y1 . . . In~y`) = (~y1 . . . ~y`) = Y
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Regularity of Matrices, Uniqueness of Inverse

Regularity of Matrices

A n × n matrix A is called regular if there exists another n × n
matrix X satisfying

AX = XA = In

In this situation X is called the inverse of A.

(i) (Uniqueness of the inverse) Assume

AX = XA = In, AY = YA = In

Then X = Y . In fact, from AX = In multiplied by Y from the
left follows

Y (AX ) = YIn = Y

On the other hand, Y (AX ) = (YA)X = InX = X .
Accordingly X = Y .
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Elementary Matrices (1)

To exchange two rows and two columns

S12 =

0 1 0
1 0 0
0 0 1

 = (~e2 ~e1 ~e3) =

e2
e1
e3


satisfies

S12

a
b
c

 =

b
a
c

 , (~a ~b ~c)S12 = (~b ~a ~c)
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Elementary Matrices (1)

To exchange two rows and two columns

S13 =

0 0 1
0 1 0
1 0 0

 = (~e3 ~e2 ~e1) =

e3
e2
e1


satisfies

S13

a
b
c

 =

c
b
a

 , (~a ~b ~c)S12 = (~c ~b ~a)

What do we have for

S23 =

1 0 0
0 0 1
0 1 0

 = (~e1 ~e3 ~e2) =

e1
e3
e2

 ?
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Elementary Matrices (1)

To exchange two rows and two columns

S12, S13, S23 are regular.

For example

S13S13 = S13

e3
e2
e1

 =

e1
e2
e3

 = I3
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Elementary Matrices (2)

To add λ× ith row to jth row

R21(λ) =

1 0 0
λ 1 0
0 0 1

 = (~e1 + λ~e2 ~e2 ~e3) =

 e1
λe1 + e2

e3


satisfies

R21(λ)

a
b
c

 =

 a
λa + b

c

 , (~a ~b ~c)R21(λ) = (~a + λ~b ~b ~c)
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Elementary Matrices (2)

To add λ× ith row to jth row

R31(λ) =

1 0 0
0 1 0
λ 0 1

 = (~e1 + λ~e3 ~e2 ~e3) =

 e1
e2

λe1 + e3


satisfies

R31(λ)

a
b
c

 =

 a
b

λa + c

 , (~a ~b ~c)R31(λ) = (~a + λ~c ~b ~c)
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Elementary Matrices (2)

To add λ× ith row to jth row

3× 3 matrices Rij(λ) (i 6= j) are all regular.

For example we have

R12(λ)R12(µ) = R12(λ+ µ), R12(0) = I3

Thus we get

R12(λ)R12(−λ) = R12(−λ)R12(λ) = R12(0) = I3
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Elementary Matrices (3)

To multiply jth row by λ 6= 0

Q2(λ) =

1 0 0
0 λ 0
0 0 1

 = (~e1 λ~e2 ~e3) =

 e1
λe2
e3


satisfies

Q2(λ)

a
b
c

 =

 a
λb
c

 , (~a ~b ~c)Q2(λ) = (~a λ~b ~c)
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Elementary Matrices (3)

To multiply jth row by λ 6= 0

Qi (λ) (i = 1, 2, 3) are regular.

In fact we have

Q2(λ)Q2(µ) = Q2(λµ), Q2(1) = I3

Thus

Q2(λ)Q2(
1

λ
) = Q2(

1

λ
)Q2(λ) = Q2(1) = I3

Nobuyuki TOSE Matrices and their operations No. 2



Scalar Multiplication to Matirces

Scalar Multiplication to m × n Matrices

Given a m × n matix

A = (~a1 . . . ~an) =

a1
...
am

 =

a11 · · · a1n
...

...
am1 · · · amn

 ,

we define a scalar multiplication by λ to A as follows:

λA = (λ~a1 . . . λ~an) =

λa1...
λam

 =

λa11 · · · λa1n
...

...
λam1 · · · λamn


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Scalar Multiplication to Matirces

Theorem

(i) (λA)~x = λ(A~x) = A(λ~x)

(ii) (λA)X = λ(AX ) = A(λX )

The proof for (i) is given as follows:

(λA)~x = (λ~a1 . . . λ~a2)~x

= x1(λ~a1) + · · ·+ xn(λ~an) = (∗)
= λ(x1~a1) + · · ·+ λ(xn~an)

= λ(x1~a1 + · · ·+ xn~an) = λ(A~x)

(∗) = (λx1)~a1 + · · ·+ (λxn)~an = A(λ~x)

Moreover the property (ii) is derived easily from (i).
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Other Basic Properties of Scalar Multiplication

Theorem

(iii) (λ+ µ)A = λA + µA

(iv) (λµ)A = λ (µA)

(v) 1A = A and 0A = O2

These properties can derived from the following corresponding
properties for vectors. It is necessary to define the addition of
matrices to understand (iii), and we put it off for a couple of weeks.

(iii) (λ+ µ)~a = λ~a + µ~a

(iv) (λµ)~a = λ(µ~a)

(v) 1~a = ~a and 0~a = ~0
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