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g) Then by C-H we have

|Al= 8.0 - 3.9

I
(o

A -
A2 _TA+ 6l =0,
We associate the eigen-polynomial to A by
Pa(A) =X —TA4+6=(A—1)(\—6).

The factorization above tells us that 1 +6 =7 and 1-6 = 6. Thus
the equation deduced from C-H is written by g

J§
A2—(1+6)A+1-6(=02 =

which can be interpreted in two ways by
A(A—h)=6(A—h), A(A-6hL)=(A-6h),
Nobuyuki TOSE Theorem of Cayley and Hamilton
2. = ¢ A -
A=A = tA-6T, = 6Ca-1,1

\\

ACA-T.Y
AT-6n = A- 6T, — ACA-6TIT A-6T,

Example(2)
We try to find A"(A— k) and A"(A —61).

AA-hb)=A AA-hL)=A-6(A-h)=6-A(A—h)
=6-6(A—h)=6%A—-h)

ABA-L)=A AA-k)=A 6%(A—hk)=6%-A(A—h)
=62-6(A—h)=6" CA-T, 3

A"(A — b) :.6"(A — b)

We find that
A"(A—1hL)=6"(A—6l)

We can find more easily

A"(A —6l) = (A —6l)

Nobuyuki TOSE Theorem of Cayley and Hamilton



Example (3)

In the previous slides we have shown @
A"A—h)=6"(A—h), A"(A—06h)=(A—|h)

which is views as

ATl An = 67(A—h) (1)
ATl _6A" = (A—6k) (2)

Finally (1)—(2) is

6[1

BA"=6"(A—h)—(A—6h) ie A"=(A-bh) L a_6h)

5

Nobuyuki TOSE Theorem of Cayley and Hamilton

a—&
:ch

Let Ai M>(R) be a 2 x 2 matrix and assume its eigen polynomial

has two simple roots:

da(N) = Xe — (a+ d)A\ + (ad — bc) ==}~
=(\—a)(A— betd) with a#p

Then A" is in the form (3
A" =a"Xg + ﬁ”Xl

with Xp, X1 € Ma(R) independent of n.

Nobuyuki TOSE Theorem of Cayley and Hamilton



Polynomials of matrices

We can form polynomials in the matrix A € Mp(R).

For any polynomial
FA) = 3pA" + -+ + a1) + 30 CaéelR

we define
f(A) = aA"+ -+ a1A+ agh

Basic properties of this operation is given in the following theorem.

For f, g polynomials in A\, we have

A uJLT\'F/Q«CLe\j(V\
(f +&)(A) = f(A) +g(A), (fQe)(A) = f(/“)% e Mg (R)

\.. Mt o cochie=  wn
Nobuyuki TOSE Theorem of Cayley and Hamilton

FCry= Q5= X + P°(7V1°\M(¢vQ.

FCaAaN= AY-NH+ 21

Eigenpolynomials

Definition and a remark

_[a b a ©
For A= (c d> wedefine its eigenpolynomial by < ( c B 3

R @)_\ J

=X —(a+d)\+ad — bc
=X —(a+d)\+|A

By Theorem of C-H we have

Nobuyuki TOSE Theorem of Cayley and Hamilton



by C=Ff)
(AT (A-2T Y = (M-aprt T, =0

Application

[Al= (<3~ ([ (=)= C{-—

. Then we have by Theorem of C-H Ly 2
) d Pr (Y= AT-ent 4

1 -1
LetA~(1 3
A2 _4A44hb =0, ie (A—2b)2 =0, =CA-2)

We divide A" by (A — 2)2. Then there exist a polynomial g()) and
a, b € R satisfying

A" =q(A) (A =2 +ar+ b (1)
We get the derivative of this equation to get

A" = ¢ (A (A =27+ g(\) (=2 + a (2)
20N ~20)

Nobuyuki TOSE Theorem of Cayley and Hamilton

Application

We substitute 2 for A in (1) to get h = 9 " 9 - = 2"‘"\
2"=2a+b (3)
and in (2) to get
m" =, (4)
Thus we get
a=n2""1, b=(1=n)2" (5)

Accordingly we have
A= g(A) (A —2)%2 + 2" I\ + (1 —n)2"
We substitute A for A to derive

A" = g(A) (A —2hL)2 + 2" TA+ (1= n)2"h = " TA+ (1 — n)2"h;

Nobuyuki TOSE Theorem of Cayley and Hamilton
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Matrices and their operations No. 2

m x n Matrices

Nobuyuki TOSE
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Nobuyuki TOSE Matrices and their operations No. 2

m X n matrices: How to make them

m X n Matrices

a
A = 5 5 = £ = .
(31 ) : FTW N~
am
A m x n matrix is given in the following ways. 6‘4.\,\ tolwu w .
o (i) Combining n column vectors a;, ..., 3, € R™
@ (ii) Combining m row vectors ai,...,am

o (iii) Giving m x n components.
NB 3 is used for the component of the ith row and of the jth
column, and sometimes called (7, /) component.
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X1 aix

Al xi | =xda+--+xd+ - +x3,=| ajX | €R”

XGi amX
Here we use multiplication of row vectors and column vectros:

X1
(1 ... an)| P | =1xa 4+ anxy

Xn

—~ TN\ = 2 ~ A -3
CoC R ) ‘%3~>&o\*aﬂ* R C

a, € ¢

\

( Ne
Qo AN Qz»(ﬁ):»
Q
3 L6 %
'65 n

Multiplication: Matrix x Column Vector

= x 4+ 96, + ¢,
x1 (Ca, + ye, + Q)
Al

p 63-&{(}

=x131 + -+ X3+ + Xndn

x @
Xn e

aij a
<: *\’\ CW?QM@} 1j 1n
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Multiplication: Matrix x Matrix

Multiplication: Matrix x Matrix

Take another matrix of type n x ¢:

X1

X = ()—51 .. —‘g) =

= %

£ = Mm
Then a m x ¢ matrix AX is defined by
81)_('1 T al)_(‘g
AX = (AXy ... A%) =

am)?l R am)_fg

M oy & Qo\uv\s

- Nebuyuki TOSE Matrices and thei operations No. 2
At me®@ WD 2
W\r\,owg) \2 C°\UWS W howsl,Q(L°(uw~5

- AX m PowsS SLQ°(\*WS~

Linear Map defined by A
[Lineat Niap defiied by Aot

Linear Map defined by A
We can define a map

FA:Rn—>Rm

X = AX=x131+ -+ Xp3,

Nobuyuki TOSE Matrices and their operations No. 2
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