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Determinants for pairs of 2dim. vectors

For 3,5 € R?

ar b
a b

= = ai a1l a12
A = (31 32) = =
az az1 a2

A 2 x 2 matrix is given in the following ways.

|3 E| = :alb2—32b1

o (i) Combining two column vectors 3, 3, € R?

@ (ii) Combining two row vectors a; and ap

e (iii) Giving 2 x 2 components.
NB aj; is used for the component of the ith row and of the jth
column.
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a a xa a
= X () 4 (2 = 11 + yai
a1 az Xap1 + ya
a1
_ y
a2
y
Here we use the multiplication of a row vector and a column vector
defined by

(a B) (;) = ax + fBy
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Review 3: Multiplication of two 2 x 2 matrices

Take another 2 x 2 matrix

Then

Nobuyuki TOSE Vectors and their operations



R™ is the set of all n-dimensional column vectors.

X1
X2
X = € R”
Xn
Take another y € R”. Then
x1t w1 AXq
X2 3 Y2 )\XQ
X+ty= i , AX = i
Xn :i: _yn )\Xn
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Basic Properties of the vector operations (1)

la. (commutativity)

1b. (associativity)

1lc.

1d.
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Basic Properties of the vector operations (2)

2a.
IX=X
2b.
A(px) = ()X
3a.
(A4 p)X = AX + pX
3b.

AR+ 7) = AR+ Ay
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Linear independence for vectors

7, Z €R"

71, , Zs are linearly independent iff
MZA+ - +AZ=0 = M=---=X=0
Z1,- -+, Zs are linearly dependent iff

A121+‘~-+A525:6

with some A; # 0.
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In case s = 2, i.e. two vectors

Assume that 3, b € R” are linearly dependent.
x3+yb=0 AND (x+#£0ORy #0)

In case x # 0,

i=-2b
X
In case y # 0,
- X
b=—-3
y

Conclusion

e 3 and b are linearly dependent iff 3 || b.

o 3and b are linearly independent iff 3 }f b.
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Linear (In)Dependence and Linear Equations

@ Incase s =2, n=2, i.e. 2 dimensional case,
o (a1 z_ (b
() 5= (5)

xapa + ybp = 0
<:){Xaz + ybo = 0

Then

(=)

x3+yB:

@ In case s =2, n=3, i.e. 3 dimensional case,

a by
3= a1, b= b2
as b3
Then
xap + ybh = 0

(=]
o

xé’—l—yl;: S oxay + yby =

xa3 + ybs = 0
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Cramer’s Rule

Cramer's Rule

al b1
If D:= = ai1b, — asb 0,
o 102 2b1 #
xay + ybhh = « 1l la b 1la; o
= = — s —
{X32+yb2:,6 XDﬁbzyDazﬁ

We consider the homogeneous equations i.e. o = 5 = 0.

Homogeneous equations

If D # 0,
{xal 4+ ybi = 0

Xxap + ybp = 0 = x=y=0
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Theorems on linear (in)dependence and determinants

We have proved the following Theorem 1.

_lar b
If D:= 2 by

‘ = ai1by — axb; # 0, then

a, b are linearly independent.

The following Theorem 2 shows that the inverse of Theorem 1
holds. Theorem 2 is particularly important in higher leveled
mathematics for economists, such as eigen-value problems.

Theorem 2 (proof is to be given in a couple of weeks)

If D :=

A bl‘ = a1bp — axb; = 0, then
an b2

a, b are linearly dependent.
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- [(t=2\ » [ =3
Leta(_4>,b(t_1),then

t—2 =3 ‘

—4 t-1
= (t—=2)(t—1)— (—4)(-3)=t> =3t —10 = (t - 5)(t +2).

Accordingly
3, b are linearly independent <> t # —2 AND t # 5 (1)

3, b are linearly dependent <& t = —2 OR t =5 (2)
What happens when t = —2 or t =57
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General Theorems on lin. (in)dependence and det.

In case of general n-dimensional vectors, we have the following
Theorem 3. Let

aj b;
i#]%

= 0 for some i, j with i # j, then

aj bj

3, b are linearly independent.
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Consider
1 -2
i=|2], b=|3]|eR®
1 -2
The it follows from
1 -2
> Sl

that

o
oL

are linearly independent.
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In case of s = 3, three vectors.

Let 3, b, ¢ € R".

Linearly independent case

d, b, ¢ are linearly independent

& <X3+y5+25:6 :>x:y:z:0)
Linearly dependent case

a, B, C are linearly dependent
= (xé’—i—yB—i—zE: G AND ((x # 0) OR (y # 0) OR (z # 0)))
In case x #£ 0, we get

- Yy -
a=—-=b—-C
X

X IN
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1 -2 7
letd= 2], b=|(3 ]|, =4
1 -2 7
Then
x3+yb+z¢=0
x — 2y + 7z = 0 ---(i)
& 2x + 3y + 4z = 0 ---(ii)
x — 2y + Tz = 0 ---(iif)
o { X — 2y + Tz = 0 ---(i
Ty — 10z = 0 ---(if) = (i) — (i) x (=2)

(y,z) = (10,7) satisfies (ii)’. Moreover it follows from (/) that
x=2y—7z=2x10—-7 x 7= —29. Thus we have

2054+ 10b+7¢=0
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1 0 2
Letd=\{2]|, b=|-1], ¢c=1|-1
3 3 2
Then
x3+yb+2zE=0
X + 2z = (i)
& 2x — y — z = 0 ---(ii)
3x + 3y + 2z = 0 (iif)
X + 2z = 0 ---(i)
& — y = 5z = 0 --(ii) = (i) = (i) x (=2)
3y — 4z = 0 ---(iii) = (iii) — (i) x (=3)
1 -5 . o
It follows from 3 4= 19 # 0 that (i/)" AND (iii)" implies

y = z = 0. Moreover by

() x=—-2z=-2x0=0. Thus

(1), (i), (iii) implies x =y =z = 0.
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