確率変数の極限 Le 16 Décembre

戸瀬 信之

確率変数の極限Le 16 Décembre – p.1/6

平均2乗収束

- Z₁, Z₂, · · · 確率変数の列、 Z 確率変数
- $Z_n \longrightarrow Z$ (平均2乗収束) $\Leftrightarrow E[(Z_n - Z)^2] \longrightarrow 0$

大数の平均2乗法則

- X₁, X₂, · · · 独立な確率変数の列
- $E[X_n] = \mu$, $V[X_n] = \sigma^2$
- $\Rightarrow \frac{1}{n} \{ X_1 + \cdots + X_n \} \longrightarrow \mu$ 平均 2 乗収束
- 証明 $S_n := X_1 + \dots + X_n$ $E[S_n] = \frac{1}{n} E[X_1 + \dots + X_n]$ $= \frac{1}{n} \cdot (E[X_1] + \dots + E[X_n]) = \frac{1}{n} \cdot n\mu = \mu$
- $E[(\frac{1}{n}S_n \mu)^2] = V[\frac{1}{n}S_n]$ = $n^{-2}V[X_1 + \dots + X_n] =$ $n^{-2}(V[X_1] + \dots + V[X_n]) = n^{-2}n\sigma^2 = n^{-1}\sigma^2$ $\longrightarrow 0$

確率変数の極限Le 16 Décembre – p.3/6

Chwbyshev's inequality

- Y 確率変数、 $E[Y^2] < +\infty$ ⇒ 全ての a > 0 に対して $P(Y \ge a) \le \frac{1}{a^2} \cdot E[Y^2]$
- 証明 $A = \{\omega \in \Omega; |Y(\omega)| \ge a\}$ $E[Y^2] = E[Y^2|A] \cdot P(A) + E[Y^2|A^c] \cdot P(A^c)$ $\ge E[Y^2|A] \cdot P(A) \ge a^2 P(A)$

確率収束

- Z₁, Z₂, · · · 確率変数の列
- ・ 任意の $\epsilon > 0$ に対して $P(|Z_n Z| > \epsilon) \longrightarrow 0 \quad (n \to +\infty)$ ⇒ $Z_n \to Z$ (確率収束)
- 定理確率変数 Z_1, Z_2, \cdots $Z_n \to Z$ 平均 2 乗収束 $\Rightarrow Z_n \to Z$ 確率収束
- 証明 $\epsilon > 0$ に対して $P(|Z_n Z| > \epsilon) \leq \frac{1}{\epsilon^2} E((Z_n Z)^2)$

確率変数の極限Le 16 Décembre – p.5/6

大数の弱法則

- X₁, X₂, · · · 独立な確率変数
- $E[X_n] = \mu, \ V[X_n] = \sigma^2 \implies$

$$\frac{1}{n}\cdot (X_1+\cdots+X_n)\longrightarrow \mu$$
 確率収束