
ベクトルの転置 n次元列ベクトル

�a =

⎛
⎜⎜⎜⎜⎝

a1

a2

...
an

⎞
⎟⎟⎟⎟⎠

の転置 (transposition)は n次元行ベクトル

t�a = (a1 a2 · · · an)

のことです。また n次元行ベクトル

a = (a1 a2 · · · an)

の転置は n次元列ベクトル

ta =

⎛
⎜⎜⎜⎜⎝

a1

a2

...
an

⎞
⎟⎟⎟⎟⎠

のことです。転置を 2度繰り返すと、元に戻ることに注意しましょう。

t
(
t�a

)
= �a, t

(
ta

)
= a

実ベクトルの場合は、内積と関連させることが重要です。すなわち�a, �b ∈ R
n

に対して (
�a,�b

)
= t�a �b (1)

が成立します。

行列の転置　m × n行列 A = (aij)を考えます。この行列の転置行列とは、
Aの列ベクトル表示 A = (�a1 �a2 · · ·�an)を用いて

tA :=

⎛
⎜⎜⎜⎜⎝

t�a1

t�a2

...
t�an

⎞
⎟⎟⎟⎟⎠

によって定義される n × m行列です。Aの行ベクトル表示
⎛
⎜⎜⎜⎜⎝

a1

a2

...
am

⎞
⎟⎟⎟⎟⎠
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を用いると
tA =

(
ta1

ta2 · · · tam

)

と tAは列ベクトル表示されます。tAの j 行 i列の成分は Aの i行 j 列 aij

となることにも注意しましょう。

行列の転置の基本的な性質についていくつか説明します。

(i) Aをm × n行列とするとき

t
(
tA

)
= A (2)

と転置を 2度施すと元に戻ります。
(ii) B を上で考えた n × �行列とします。このとき積 AB が定義されますが

t(AB) = tB · tA (3)

が成立します。

実際このことを Aの行ベクトル表示および B の列ベクトル表示

A =

⎛
⎜⎜⎜⎜⎝

a1

a2

...
am

⎞
⎟⎟⎟⎟⎠

, B = (�b1
�b2 · · ·�b�)

を用いて証明しましょう。まず AB は

AB =

⎛
⎜⎜⎜⎜⎝

a1
�b1 a1

�b2 · · · a1
�b�

a2
�b1 a2

�b2 · · · a2
�b�

...
...

...
am

�b1 am
�b2 · · · am

�b�

⎞
⎟⎟⎟⎟⎠

から ABの (i, k)成分は ai
�bk となります。従って t(AB)の (k, i)成分は ai

�bk

となります。

他方 tBtAを考えると

tBtA =

⎛
⎜⎜⎜⎜⎝

t�b1

t�b2

...
t�b�

⎞
⎟⎟⎟⎟⎠

(
ta1

ta2 · · · tam

)
=

⎛
⎜⎜⎜⎜⎝

t�b1
ta1

t�b1
ta2 · · · t�b1

tam

t�b2
ta1

t�b2
ta2 · · · t�b2

tam

...
...

...
t�b�

ta1
t�b�

ta2 · · · t�b�
tam

⎞
⎟⎟⎟⎟⎠

となりますから、tBtAの (k, i)成分は t�bk
tai であることが分かります。以上

の計算から

ai
�bk = t�bk

tai

を示せばよいことが分かります。これは、一般に n次元行ベクトル aと n次

元列ベクトル�bに対して

a �b = t�b ta
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が成立することから分かります。

なぜ転置行列が重要になのかについて説明しましょう。実数値のm× n行

列のAには右から n次元列ベクトル �v ∈ R
nを掛けることができ、A�v ∈ R

m

となります。他方、n × m行列の tAには右からm次元列ベクトル �w ∈ R
m

をかけることができ、tA�w ∈ R
n となります。このとき

(A�v, �w) = (�v, tA�w) (4)

が成立します。等式の左辺はR
mの内積、右辺はR

nの内積です。この (4)は、
(1)で与えた内積の表示を用いて

(A�v, �w) = t(A�v)�w = (t�vtA)�w = t�v(tA�w) = (�v, tA�w)

と証明します。
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