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0.1 関数の凸性

　 I を Rの区間とします。I 上で定義さ

れた関数

f : I −→ R

について考えます。f が凸関数であると

は I に含まれる任意の閉区間 [a, b]に対
して

f(t) � f(a) +
f(b) − f(a)

b − a
(t − a) (a � t � b) (1)

が成立するときです。また f が狭義の凸関数であるとは、(1) の代わりに

f(t) < f(a) +
f(b) − f(a)

b − a
(t − a) (a < t < b) (2)

が成立するときです。f が狭義の凸関数であるならば、f は凸関数となります。

区間 I が開区間で、関数 f が C2級であるとします。このとき次の定理に

より、f の凸性と f ′′の符号とは密接に関係しています。

定理 0.1. (i) f ′′(t) � 0が全ての t ∈ I に対して成立するとします。この

とき f は凸関数となります。

(ii) f ′′(t) > 0が全ての t ∈ I に対して成立するとします。このとき f は

狭義の凸関数となります。

(ii)だけを証明します。I に含まれる任意の閉区間 [a, b]をとります。この
とき平均値の定理から、a < c < bを満たす cに対して

f ′(c) =
f(b) − f(a)

b − a

が成立することが導かれます。このとき

F (t) = f(a) +
f(b) − f(a)

b − a
(t − a) − f(t)

と定めると

F (t) = f(a) + f ′(c)(t − a) − f(t)

が成立します。f が C2 級ですから導関数、第 2次導関数が存在して

F ′(t) = f ′(c) − f ′(t), F ′′(t) = −f ′′(t) < 0

となります。F ′′(t) < 0より F ′(t)は単調増加であることが分ります。また
F ′(c) = 0から

t < c =⇒ F ′(t) > F ′(c) = 0
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t > c =⇒ F ′(t) < F ′(c) = 0

となります。これから増減表を書くと

t a c b

F ′ + + 0 − −
F 0 ↗ F (c) ↘ 0

となります。この増減表から

a < t < b =⇒ F (t) > 0

が従い

f(t) < f(a) +
f(b) − f(a)

b − a
(t − a) (a < t < b) (3)

を得ます。

0.2 Lagrangeの未定乗数法（十分条件）

制約条件

g(x, y) = 0

の下で、極値問題

z = f(x, y)

を考えます。曲線 g(x, y) = 0以上の滑らかな点 (a, b)がこの問題の停留点で
あるとします。すなわち

gx(a, b)2 + gy(a, b)2 �= 0, g(a, b) = 0

が成立して、 {
fx(a, b) = λgx(a, b)
fy(a, b) = λgy(a, b)

(4)

が成立すると仮定します。この状況で (a, b)が極小であるか、極大であるか
を判定する十分条件を与えます。そのために gy(a, b) �= 0の場合を考えます
（gy(a, b) �= 0の場合も同様です）。陰関数定理を用いると、(a, b)の近くで曲
線は

y = ϕ(x)

と表示されます。これを用いて

F (t) := f(t, ϕ(t))
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と定めると

F ′(t) = fx(t, ϕ(t)) + fy(t, ϕ(t)) · ϕ′(t) (5)

と計算されます。また

g(t, ϕ(t)) ≡ 0

から

gx(t, ϕ(t)) + gy(t, ϕ(t)) · ϕ′(t) ≡ 0 (6)

が成立して、特に

ϕ′(a) = −gx(a, b)
gy(a, b)

が成立します。このことから

F ′(a) = fx(a, b) + fy(a, b) · ϕ′(a) = fx(a, b) − fy(a, b)
gx(a, b)
gy(a, b)

= fx(a, b) − λgx(a, b) (λ =
fy(a, b)
gy(a, b)

を用いる)

= 0 (fx(a, b) = λgx(a, b)を用いる)

を示すことができます。

次に F ′′(a)の符号を調べます。(5)の両辺を tで微分すると

F ′′(t) = fxx(t, ϕ(t)) + fxy(t, ϕ(t))ϕ′(t)

+ϕ′(t) (fyx(t, ϕ(t)) + fyy(t, ϕ(t))ϕ′(t)) + fy(t, ϕ(t))ϕ′′(t)

= fxx(t, ϕ(t)) + 2fxy(t, ϕ(t))ϕ′(t)

+fyy(t, ϕ(t)) (ϕ′(t))2 + fy(t, ϕ(t))ϕ′′(t)

と計算されます。この式の ϕ′′(t)を求めるために(6)の両辺を tで微分すると

gxx(t, ϕ(t)) + gxy(t, ϕ(t))ϕ′(t)

+ϕ′(t) (gyx(t, ϕ(t)) + gyy(t, ϕ(t))ϕ′(t)) + gy(t, ϕ(t))ϕ′′(t)

= gxx(t, ϕ(t)) + 2gxy(t, ϕ(t))ϕ′(t)

+gyy(t, ϕ(t)) (ϕ′(t))2 + gy(t, ϕ(t))ϕ′′(t)

≡ 0

を得ます。この式から

ϕ′′(a) = − 1
gy(a, b)

(
gxx(a, b) + 2gxy(a, b)ϕ′(a) + gyy(a, b)(ϕ′(a))2

)
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が従い、さらに F ′′(a)の式に代入すると

F ′′(a) = fxx(a, b) + 2fxy(a, b)ϕ′(a) + fyy(a, b)(ϕ′(a))2

−fy(a, b)
gy(a, b)

((
gxx(a, b) + 2gxy(a, b)ϕ′(a) + gyy(a, b)(ϕ′(a))2

))
= fxx(a, b) + 2fxy(a, b)ϕ′(a) + fyy(a, b)(ϕ′(a))2

−λ
(
gxx(a, b) + 2gxy(a, b)ϕ′(a) + gyy(a, b)(ϕ′(a))2

)
が導かれる。ここで λ = − fy(a,b)

gy(a,b) を用いていることに注意しよう。さらに

L(x, y) = f(x, y) − λg(x, y)と定めると

F ′′(a)

= Lxx(a, b) + 2Lxy(a, b) · ϕ′(a) + Lyy(a, b) · (ϕ′(a))2

= Lxx(a, b) + 2Lxy(a, b) ·
(
−gx(a, b)

gy(a.b)

)
+ Lyy(a, b) ·

(
−gx(a, b)

gy(a.b)

)2

= −Lxx(a, b)gy(a, b)2 − 2Lxy(a, b)gx(a, b)gy(a, b) + Lyy(a, b)gx(a, b)2

(gy(a.b))2

= − 1
(gy(a.b))2

∣∣∣∣∣∣∣
0 gx(a, b) gy(a, b)

gx(a, b) Lxx(a, b) Lxy(a, b)
gy(a, b) Lyx(a, b) Lyy(a, b)

∣∣∣∣∣∣∣
が導かれる。このことから

B(a, b) =

∣∣∣∣∣∣∣
0 gx(a, b) gy(a, b)

gx(a, b) Lxx(a, b) Lxy(a, b)
gy(a, b) Lyx(a, b) Lyy(a, b)

∣∣∣∣∣∣∣ (7)

と定めると

F ′′(a) ≷ 0 ⇔ B(a, b) ≶ 0

を得る。一般に、C2 級の 1変数関数 F (t)が

F (a) = 0, F ′′(a) > 0 (resp. F ′′(a) < 0)

を満たすとき F は t = aで極小 (resp. 極大)であることが分る。以上から次
の定理が示された。
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定理 0.2. 条件

gx(a, b)2 + gy(a, b)2 �= 0, g(a, b) = 0

を仮定します。また (a, b)において{
fx(a, b) = λgx(a, b)
fy(a, b) = λgy(a, b)

(8)

が成立していると仮定します。このとき(7)において定まる B(a, b)が

B(a, b) < 0 (resp. B(a, b) < 0)

を満たすならば、制約条件つき極値問題

z = f(x, y) subject tog(x, y) = 0

は (a, b)で極小値 (resp. 極大値)をとります。

例 0.1. 制約条件
g(x, y) = x2 + y2 − 1 = 0

の下で

z = f(x, y) = x3 + y3

の極値問題を考えましょう。

まず gと f の偏導関数を求めると

gx = 2x, gy = 2y

fx = 3x2, fy = 3y2

と計算されます。(x, y)で極値をとるとすると、Lagrangeの条件から

3x2 = λ · 2x (9)

3y2 = λ · 2y (10)

となります。これらの条件は

(9) ⇔ x = 0 または λ =
3
2
x

(10) ⇔ y = 0 または λ =
3
2
y

より、(9)かつ(10)の必要十分条件は

(x = y = 0) または (x = 0, λ =
3
2
y)

または (y = 0, λ =
3
2
x) または (λ =

3
2
x =

3
2
y)
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であることが分かります。このことから場合分けをします。

(i) x = y = 0のとき　制約条件 x2 + y2 = 1を満たしません。
(ii) x = 0, λ = 3

2yのとき　x = 0を制約条件x2+y2 = 1に入れるとy = ±1
となります。このとき Lagrangeの条件を λ = ± 3

2 で満たします。

(iii) y = 0, λ = 3
2xのとき 　 y = 0 を制約条件 x2 + y2 = 1 に入れると

x = ±1となります。このとき Lagrangeの条件を λ = ± 3
2 で満たします。

(iv) λ = 3
2x = 3

2yのとき x = yが必要で、制約条件 x2 + y2 = 1に代入して
y2 = 1

2 を得ます。これから

x = y =
1√
2

となり、Lagrangeの条件を λ = 3
√

2
4 で満たします。

次に十分条件を調べます。まず gと f の 2階の偏導関数を求めると

gxx = 2, gxy = 0, gyy = 2

fxx = 6x, fxy = 0, fyy = 6y

と計算されます。よって

Lxx = 2 − λ · 6x = 2 − 6λx, Lxy = 0, Lyy = 2 − λ · 6y = 2 − 6λy

となります。十分条件を (iv)

(x, y) = (±
√

2
2

,±
√

2
2

), λ = ±3
√

2
4

の場合に調べてみましょう。

gx = gy = ±√
2

Lxx = 2 − 6

(
±3

√
2

4

)(
±
√

2
2

)
= −5

2
, Lxy = 0, Lyy = −5

2

と計算されます。このことから

B(±
√

2
2

,±
√

2
2

) =

∣∣∣∣∣∣∣
0 ±√

2 ±√
2

±√
2 − 5

2 0
±√

2 0 − 5
2

∣∣∣∣∣∣∣
=

(
±√

2
)(

±√
2
) ∣∣∣∣∣∣∣

0 1 1
1 − 5

2 0
1 0 − 5

2

∣∣∣∣∣∣∣ = 10 > 0

より、(±
√

2
2 ,±

√
2

2 )で極大値をとることが示された。
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7月 14日（経済数学 I）小テスト解答

制約条件制約条件 g(x, y) = 2x2 + y2 − 1 = 0の下で

z = f(x, y) = xy

の極値問題を考える。極値を取る点を求めよ。

f と gの偏導関数を求めると

fx = y, fy = x

gx = 4x, gy = 2y

となる。Lagrangeの条件は

y = λ · 4x すなわち y = 4λx (11)

x = λ · 2y すなわち x = 2λy (12)

となる。(11)を(12)に代入すると

x = 8λ2x

が必要条件であることが分かる。これは

x = 0 または λ = ±
√

2
4

と同値である。これを用いて場合分けを行う。

(i) x = 0のとき(11) から y = 0 が従う。ところが x = y = 0 は制約条件
2x2 + y2 = 1を満たさない。
(ii) λ =

√
2

4 のとき(11)と(12)は y =
√

2xと同値である。これを制約条件に
入れると

2x2 + 2x2 = 1 すなわち x = ±1
2

を得る。y =
√

2xに代入すると

y = ±
√

2
2

となる。以上で、この場合は停留点が

(x, y) = (±1
2
,±

√
2

2
)

であることが分かった。

(iii) λ = −
√

2
4 のとき(11)と(12)は y = −√

2xと同値である。これを制約条

件に入れると

2x2 + 2x2 = 1 すなわち x = ±1
2
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を得る。y =
√

2xに代入すると

y = ∓
√

2
2

となる。以上で、この場合は停留点が

(x, y) = (±1
2
,∓

√
2

2
)

であることが分かった。

以上で得た停留点に対して、十分条件を適用してみよう。そのために f と

gの 2階の偏導関数を求めると

fxx = fyy = 0, fxy = 1

gxx = 4, gyy = 2, gxy = 0

となる。これから L = f − λgは

Lxx = −4λ, Lyy = 1, Lyy = −2λ

となる。ここで上の (ii)と (iii)の場合分けを行う。
(ii)　 (x, y) = (± 1

2 ,±
√

2
2 )、λ =

√
2

4 のとき

B(±1
2
,±

√
2

2
) =

∣∣∣∣∣∣∣
0 ±2 ±√

2
±2 −√

2 1
±√

2 1 −
√

2
2

∣∣∣∣∣∣∣
= (±√

2)2

∣∣∣∣∣∣∣
0

√
2 1√

2 −√
2 1

1 1 −
√

2
2

∣∣∣∣∣∣∣ = 8
√

2 > 0

より、この 2点は極大点である。
(iii)　 (x, y) = (± 1

2 ,∓
√

2
2 )、λ =

√
2

4 のとき

B(±1
2
,∓

√
2

2
) =

∣∣∣∣∣∣∣
0 ±2 ∓√

2
±2

√
2 1

∓√
2 1

√
2

2

∣∣∣∣∣∣∣
= (±

√
2)2

∣∣∣∣∣∣∣
0

√
2 −1√

2
√

2 1
−1 1

√
2

2

∣∣∣∣∣∣∣ = −8
√

2 < 0

より、この 2点は極小点である。


