Poverty traps with Local Allocation Tax grants in Japan

Takero Doi
(Keio University)
http://web.econ.keio.ac.jp/staff/tdoi/

1. Introduction

- Economic and fiscal disparities among regions
- Local Allocation Tax (LAT) grants from the central government have a function of interregional income redistribution.
- Defects of the LAT grants

Poverty traps in the Japanese intergovernmental system
- Suggestion of the former governor of Tottori prefecture Yoshihiro Katayama
 (his presentation at the Decentralization Reform Committee on September 18, 2007)

In this paper,
- Investigate poverty traps with the LAT grants
- Explain the system of the LAT grants
- Effects of the LAT grants on economic growth using a simple dynamic model
- Implement Granger (non-)causality test with panel data in Japan to confirm poverty traps with the LAT grants

2. System of Local Allocation Tax grants

<table>
<thead>
<tr>
<th>Table 1 Calculation of the Standard Financial Need (Outline)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Police expenses = unit cost of police officer * number of police officers * adjustment coefficient</td>
</tr>
<tr>
<td>Education expenses = unit cost of teacher * number of teachers * adjustment coefficient</td>
</tr>
<tr>
<td>Public works expenses = …</td>
</tr>
<tr>
<td>Agriculture, forestry, and fishery expenses = …</td>
</tr>
<tr>
<td>Commerce and industry expenses = …</td>
</tr>
<tr>
<td>Debt-service expenses = …</td>
</tr>
<tr>
<td>…</td>
</tr>
<tr>
<td>Sum of the above amount = the Standard Financial Need of this local government</td>
</tr>
</tbody>
</table>

Note: * means ‘multiplied by’.

Source: Doi and Ihori (2009)
3. A simple model of poverty traps with LAT grants

3.1 Basic framework

The local government of region i (in a small open economy)

$$\max U_i = \sum_{t=1}^{\infty} \frac{u(g_i)}{(1+\rho)^t} \quad \rho > 0$$ (1)

s.t. $h_i = g_i + x_i + (1+r)b_{i-1} - \tau_L y_i - h_i$

where b_i: outstanding local government debt at the end of period t

h_i: fiscal transfer from the central government

τ_L: local tax rate (constant over time), y_i: regional income in period t

g_i: welfare-improving (but unproductive) government consumption

x_i: productive government investment

r is the interest rate, given exogenously

Employ a Solow-Swan growth model

$$k_i = (1-\delta)k_{i-1} + s_i(1-\tau_L-\tau_C)y_i$$

where τ_C: national tax rate for fiscal transfer from the central government. ($\tau_L + \tau_C$)

$$\sum_{i=1}^{N} \tau_C y_i = \sum_{i=1}^{N} h_i$$

Production function in this region

$y_i = f_i(k_{i-1}, x_{i-1})$ (3)

$\frac{\partial y_i}{\partial k_{i-1}} > 0, \quad \frac{\partial^2 y_i}{\partial k_{i-1}^2} < 0, \quad \frac{\partial y_i}{\partial x_{i-1}} > 0, \quad \frac{\partial^2 y_i}{\partial x_{i-1}^2} < 0$.

k_{i-1} is capital equipped by private firms at the end of period $t-1$

The Benchmark case: h_i is a lump-sum transfer

max (1) subject to (2) and (3)

FOC

$$\frac{u'(g_i)}{u'(g_{i-1})} = \frac{1+r}{1+r}$$ (5)

$$\frac{\partial y_i}{\partial k_{i-1}} = \frac{1+r}{\tau_L}$$ (6)

3.2 Effects of the Standard Financial Revenue in the LAT grants

The amount of the (ordinary) LAT grant: the difference between the SFN and the SFR

$h_i = \eta g_i - \theta \tau_L y_i$

$
\eta > 0, \quad 1 > \theta > 0$

Substituting (7) into (2),

$b_i = (1-\eta)g_i + x_i + (1+r)b_{i-1} - (1-\theta)\tau_L y_i$

max (1) subject to (2') and (3)

FOC

$$\frac{u'(g_i)}{u'(g_{i-1})} = \frac{1+r}{1+r}$$ (5')

$$\frac{\partial y_i}{\partial k_{i-1}} = \frac{1+r}{(1-\theta)\tau_L}$$ (6')

The condition for government investment is distorted by the LAT grants (the SFR).

(8) implies the government investment x_i decreases compared with the benchmark case.

Specify a function form

The production function is assumed to be the following AK function.

$y_i = A_i(x_{i-1})k_{i-1}$ $A_i(x_{i-1})$ is a function of x_{i-1} with $A_i'(x_{i-1}) > 0$, and $A_i''(x_{i-1}) < 0$.

$k_i = (1-\delta)k_{i-1} + s_i(1-\tau)A_i(x_{i-1})k_{i-1}$ (4')

The growth rate of capital

$$\frac{k_i}{k_{i-1}} = 1-\delta + s_i(1-\tau)A_i(x_{i-1})$$

$A_i(x_{i-1})$ decreases due to the LAT grants. If $1-\delta + s_i(1-\tau)A_i(x_{i-1}) < 1$, $k_i < k_{i-1}$.

Ex. when $\delta = 0.05$, $s_i = 0.1$, $\tau = 0.3$, $A_i(x_{i-1}) = 0.6$, $1-\delta + s_i(1-\tau)A_i(x_{i-1}) < 1$.

Ex.
(8) is replaced by
\[\hat{y}_{i,t} = A'(x_{i,t-1})k_{i,t-1} = \frac{1+r}{(1-\theta)\tau_L} \]
(8')

If \(k_{i,t} < k_{i,t-1} \), \(A'(x_{i,t}) > A'(x_{i,t-1}) \) from (8').

Hence \(x_{i,t} < x_{i,t-1} \) under this specification. It implies \(y_{i,t} < y_{i,t-1} \).

In this situation, the steady state of regional income is zero. That is a kind of poverty traps due to the LAT grants like the kleptocratic poverty trap, introduced by Azariadis (2006).

3.3 Effects of the Standard Financial Need in the LAT grants

In addition to (7), including compensation for government investment
\[h_{i,t} = \eta g_{i,t} + \omega x_{i,t-1} - \theta \tau_L y_{i,t} \quad \eta > 0, 1 > \theta > 0, \omega > 0 \]
(7')

Substituting (7') into (2),
\[b_{i,t} = (1-\eta)g_{i,t} + x_{i,t} - \omega x_{i,t-1} + (1+r)b_{i,t-1} - (1-\theta)\tau_L y_{i,t} \]
(2'')

max (1) subject to (2'') and (3).

FOC
\[\frac{u'_i(g_{i,t})}{u'_i(g_{i,t-1})} = \frac{1+r}{1+r} \]
\[\frac{\hat{y}_{i,t}}{\hat{y}_{i,t-1}} = \frac{1+r-\omega}{(1-\theta)\tau_L} \]
(9)

If \(\omega > (1+r)\theta \), \(\frac{1+r-\omega}{(1-\theta)\tau_L} < \frac{1+r}{\tau_L} \). If \(\omega \leq (1+r)\theta \), \(\frac{1+r-\omega}{(1-\theta)\tau_L} \geq \frac{1+r}{\tau_L} \).

4. Empirical analyses of poverty traps

Confirm whether the LAT grants enhance or deteriorate regional economic growth by using panel data on the Japanese regional economy and local public finance.

4.1 Panel Granger (non-)causality test

Hurlin and Venet (2004), and Hurlin (2005, 2008)
\[Y_{i,t} = \sum_{j=1}^{J} \gamma_j Y_{i,j-1} + \sum_{j=1}^{J} \beta_j X_{i,j-1} + \mu_i + \epsilon_{i,t} \]
(10)

Analog from Im, Pesaran, and Shin (2003) to test the unit root hypothesis. Set the following null hypothesis in (10) (the homogenous non-causality (HNC) hypothesis)
\[H_0: \beta = 0 \quad \forall i = 1, 2, \ldots, N \text{ where } \beta = \left(\beta_1, \beta_2, \ldots, \beta_J \right)^T \]

The alternative hypothesis is
\[H_1: \beta = 0 \quad \forall i = 1, 2, \ldots, N_1 \text{ (} N_1 < N \) \]
\[\beta \neq 0 \quad \forall i = N_1+1, N_1+2, \ldots, N \]

The average of individual Wald statistics to test the HNC hypothesis for individuals, such that
\[W_{i,T} = \frac{1}{N} \sum_{i=1}^{N} W_{i,T} \]

where \(W_{i,T} \) denotes the individual Wald statistics for the ith cross section unit associated to the individual test \(H_0: \beta = 0 \).

For a small \(T \) sample (\(T > 5 + 2J \)), compute the following approximated standardized statistic
\[\tilde{Z}_{J,T} = \left[\frac{N}{J} \left(\frac{J-2J-5}{2J} \right) \right] \left(\frac{J-2J-3}{2J-1} \right) W_{J,T} \]
\[\tilde{Z}_{N,T} \sim d_{N \to \infty} N(0,1) \]

These causality tests are applied in Peltrault and Venet (2005), Bhaduri and Durai (2006), and Suliman (2008).

4.2 Prefectural data

Sample period: from fiscal 1990 to 2006, By prefecture

LATGP: per capita real LAT grants received by prefectures (deflated by the prefectural GDP deflator)
LATGT: per capita real LAT grants received by prefectures and municipalities

Population Ministry of Internal Affairs and Communications “Basic Resident Registers.”

Tokyo, Kanagawa, Aichi, and Osaka prefectures (non-receiving bodies) are excluded.
4.3 Test results

<table>
<thead>
<tr>
<th>Statistic</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP</td>
<td>-3.852</td>
</tr>
<tr>
<td>LATGP</td>
<td>-4.048</td>
</tr>
<tr>
<td>LATGT</td>
<td>-3.076</td>
</tr>
</tbody>
</table>

The panel Granger non-causality test

<table>
<thead>
<tr>
<th>Statistic</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LATGP to GDP</td>
<td>$\tilde{Z}_{N,T}^{\text{Hc}}$</td>
</tr>
<tr>
<td>GDP to LATGP</td>
<td>$\tilde{Z}_{N,T}^{\text{Hc}}$</td>
</tr>
<tr>
<td>LATGT to GDP</td>
<td>$\tilde{Z}_{N,T}^{\text{Hc}}$</td>
</tr>
<tr>
<td>GDP to LATGT</td>
<td>$\tilde{Z}_{N,T}^{\text{Hc}}$</td>
</tr>
</tbody>
</table>

Estimate equations based on (10)

$$\text{GDP}_{it} = \sum_{j=1}^{\tau} \alpha_j \text{GDP}_{i,t-j} + \sum_{j=1}^{\tau} \beta_j \text{LATGX}_{i,t-j} + \mu_{\text{GDP}}^{\text{GDP}} + \varepsilon_{\text{GDP}}^{\text{GDP}}$$

$$\text{LATGX}_{it} = \sum_{j=1}^{\tau} \gamma_j \text{GDP}_{i,t-j} + \sum_{j=1}^{\tau} \zeta_j \text{LATGX}_{i,t-j} + \mu_{\text{LATGX}}^{\text{LATGX}} + \varepsilon_{\text{LATGX}}^{\text{LATGX}}$$

(Where LATGX means LATGP or LATGT)

Identify their lag length (Schwarz Information Criterion for Identification)

5. Concluding remarks

- Examine poverty traps with the LAT grants.
- Show that the LAT grants give a disincentive to increase their estimated tax revenue and regional income by a theoretical model.
- From the panel Granger (non-)causality tests proposed, we find that there are poverty traps due to the LAT grants.
- To break out of poverty traps in the Japanese rural regions, the calculation of the LAT grants should be revised in future decentralization reform

Reference

Hurlin, C., 2005, Un test simple de l’hypothèse de non-causalité dans un modèle de panel hétérogène (A simple test of the non-causality hypothesis in a heterogeneous panel model), *Revue Economique* vol.56, pp.1-11

