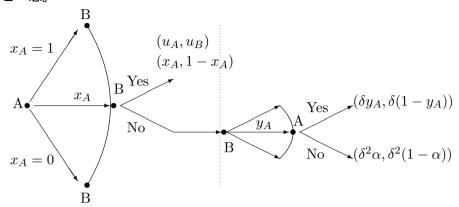
2011年度 ゲームの理論 a 演習第3回解答

グレーヴァ香子

1. Ståhl=Rubinstein の交互提案交渉ゲームの簡略版である。樹形図の概略は以下のようになる。ここまでできればあと一息。



最後の意思決定者は A 君であり、 y_A という提案を見たらどうするかを考える。 No を言うと $\delta^2\alpha$ であるから、これ以上の利得があれば、すなわち $y_A \ge \delta\alpha$ であれば Yes を言うのが最適である。正確には、二通りの最適条件付き行動があって

$$BR_A(y_A) = \left\{ \begin{array}{ll} Yes & \text{if } y_A \geqq \delta \alpha \\ No & \text{if } y_A < \delta \alpha \end{array} \right., \quad BR_A'(y_A) = \left\{ \begin{array}{ll} Yes & \text{if } y_A > \delta \alpha \\ No & \text{if } y_A \leqq \delta \alpha \end{array} \right.$$

であるが、講義でもやったように B 君の最適行動が存在するのは BR_A の方だけであるからこちらを考える。

1 つ前に戻ると B 君の意思決定である。 $y_A \ge \delta \alpha$ を提案すれば妥結するがこのときは最大でも利得は $(y_A = \delta \alpha$ ちょうどを提案したときで) $\delta(1-\delta \alpha)$ である。もっと小さい分け前を A 君に提案すると No と言われて、このときは $\delta^2(1-\alpha)$ がもらえるはずである。これらを比較すると $\delta < 1$ であるから $\delta(1-\delta \alpha) > \delta^2(1-\alpha)$ となり、 $y_A = \delta \alpha$ ちょうどを提案するのが最適である。

第1回に戻る。ここでの最後の意思決定者は B 君で、上の分析から No を言えば $\delta(1-\delta\alpha)$ がもらえることがわかる。 x_A を提案されたときに Yes と言うべきなのは $1-x_A \ge \delta(1-\delta\alpha)$ のとき、すなわち $x_A \le 1-\delta(1-\delta\alpha)$ のときである。(また、等号をつけない場合もあるが A 君の最適行動が存在するのは等号付きの条件の戦略である。) まとめて、1回目の B 君の最適な条件付き行動は

$$BR_B(x_A) = \begin{cases} Yes & \text{if } x_A \leq 1 - \delta(1 - \delta\alpha) \\ No & \text{if } x_A > 1 - \delta(1 - \delta\alpha) \end{cases}$$

最初に戻って A 君は、 $x_A \leq 1-\delta(1-\delta\alpha)$ を提案すればすぐに妥結して x_A をもらえる。これは $x_A=1-\delta(1-\delta\alpha)$ ちょうどを提案すると最大で、そのときの利得は $1-\delta(1-\delta\alpha)$ である。これより大きい分け前を提案すると No と言われ、次回に $y_A=\delta\alpha$ で妥結するはずである。このときもらえる利得は $\delta^2\alpha$ である。これと $1-\delta(1-\delta\alpha)$ を比べると $\delta\in(0,1)$ であるから $1-\delta(1-\delta\alpha)>\delta^2\alpha$ である。ゆえに $x_A=1-\delta(1-\delta\alpha)$ ちょうどを提案するのが最適である。

まとめると後ろ向きの帰納法の解はただ一つ存在して、各プレイヤーの各回の提案、条件付き行動を順にならべると

$$b_A = (1 - \delta(1 - \delta\alpha), BR_A(\cdot)), b_B = (BR_B(\cdot), \delta\alpha)$$

である。

2. G のナッシュ均衡は (B,B) であるから、歴史に B が含まれているような部分ゲームについては、問題中のグリム・トリガー戦略は任意の δ についてナッシュ均衡である。そこで、第 1 期あるいは歴史が (A,A) だけからなっているときの部分ゲームのみを考える。相手がグリム・トリガー戦略をしていると仮定して、自分もそれに従うのが最適である条件を求める。動的計画法により、次期以降はグリム・トリガー戦略に従うとして今期の行動を考える。今期もグリム・トリガー戦略に従うとするとA を行い (相手も A であるから) 今期の利得は 3、来期以降も、歴史が (A,A) だけからなっているときの部分ゲームに行くので今後ずっと 3 をもらうことになる。この割引総利得は

$$3 + \delta \cdot 3 + \delta^2 \cdot 3 + \dots = \frac{3}{1 - \delta}$$

である。今期、B に逸脱すると x>3 をもらえるが、来期以降は毎期 1 をもらうことになる。

$$x + \delta \cdot 1 + \delta^2 \cdot 1 + \dots = x + \frac{\delta}{1 - \delta}.$$

グリム・トリガー戦略が最適であるのは

$$\frac{3}{1-\delta} \ge x + \frac{\delta}{1-\delta} \iff \delta \ge \frac{x-3}{x-1}$$

が成立するときである。これが求める下限である。

3. p = 60 であるから、利得関数は以下のような形になる。

優良中古車 (0.7)

事故車 (0.3)

P1\P2	Trade	Not	
Trade	20,60	0, 50	
Not	0, 50	0, 50	

	` /	
$P1\P2$	Trade'	Not'
Trade	-20,60	0, 0
Not	0, 0	0, 0

例えば、事前の期待利得最大化でやってみる。どちらのケースでも取引が成立しないような戦略の組み合わせでは P1 の期待利得は 0、 P2 の期待利得は (0.7)50+(0.3)0=35 である。残りの戦略の組み合わせについて期待利得を求める。

$$Eu_B(T,TT') = (0.7)20 + (0.3)(-20) = 8$$

$$Eu_S(T,TT') = (0.7)60 + (0.3)60 = 60$$

$$Eu_B(T,TN') = (0.7)20 + (0.3)0 = 14$$

$$Eu_S(T,TN') = (0.7)60 + (0.3)0 = 42$$

$$Eu_B(T,NT') = (0.7)0 + (0.3)(-20) = -6$$

$$Eu_S(T,NT') = (0.7)50 + (0.3)60 = 53$$

まとめると、事前の期待利得によるベイジアンゲームは

$P1\P2$	(T,T')	(T,N')	(N,T')	(N,N')
Trade	<u>8, 60</u>	<u>14</u> , 42	-6, 53	0, 35
Not	$0, \underline{35}$	$0, \underline{35}$	$\underline{0}, \underline{35}$	<u>0</u> , <u>35</u>

となり、純戦略によるベイジアン・ナッシュ均衡は (T,TT')、(N,NT')、(N,NN') の 3 つである。 つまり価格が十分高ければ、両方のタイプの車が取引される均衡が存在し、逆選抜が起きない。

2