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1 Introduction

Theory of repeated games, a core area of game theory, has made remarkable progress in

the past thirty to forty years.1 Perhaps the most important contribution of the theory

is to enable us to understand how cooperation is sustained in non-cooperative way, i.e.,

without any binding contracts, through long-run interactions among players. There are

many elements known to affect sustainability and degree of cooperation, e.g., discount

factors, number of players, observability of actions, and so forth. Among those investi-

gated in the literature, we focus on the effect of payoff perturbations on the sustainability

of cooperation. Payoff perturbation can be easily caused by (economic, social) environ-

mental changes of the game, as well as players’ subjective uncertainty. However, there

are few papers that analyzed the effect of the structure of payoff perturbation on the

sustainability and degree of cooperation.

Payoff perturbation is first introduced into repeated games by Green and Porter

(1984). They consider infinitely repeated Cournot games with stochastic demand fluc-

tuations in which firms can observe neither the demand function nor the rival’s output.

In their model, each firm can infer rival’s output only through her own output and a

publicly observable signal, a market price. This imperfect (public) monitoring structure

makes cooperation difficult because finding and punishing a defector is cumbersome; the

players must punish each other when the signal is bad even if no player had actually

deviated, which necessarily entails efficiency loss.2 That is, fluctuated demand functions

are bad for cooperation.

When payoff perturbation does not create a monitoring problem, it can still be bad

for cooperation, as Rotemberg and Saloner (1986) show. They study infinitely repeated

duopoly games (both price-setting and quantity-setting games) with stochastic demand

fluctuations, and show that cooperation becomes more difficult when demand is high

rather than low.3 This is because the temptation to deviate is great when the demand is

high. Their results also imply that the optimal expected profit under demand fluctuation

is weakly lower than the one under the fixed demand function. While Rotemberg and

1Pearce (1992) is an excellent survey on repeated games. For the recent developments of repeated
games with private monitoring, see Kandori (2002) and Mailath and Samuelson (2006, part 3).

2See Abreu, Pearce and Stacchetti (1986) for the complete characterization of optimal collusive pay-
offs.

3This counter cyclical result depends on their i.i.d. assumption of stochastic demand shocks. See
Bagwell and Staiger (1997), Haltiwanger and Harrington (1991), and Kandori (1991) for variations of
Rotemberg and Saloner (1986) model with correlated demand fluctuations.
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Saloner (1986) did not examine the range of discount factors that sustain cooperation,

we show in Section 4.1 that introducing payoff perturbations never decreases the lower

bound of the discount factor in the class of oligopoly games they consider.4 That is,

payoff perturbations are bad for cooperation.

In this paper, we examine a variant of repeated Prisoner’s Dilemma whose stage game

payoffs are subject to vary, and analyze how payoff perturbations affect sustainability of

cooperation. As a main result, we show that mutual cooperation may become easier to

sustain in the perturbed game than in the ordinary repeated Prisoner’s Dilemma (without

perturbations). Specifically, consider some discount factor under which no cooperation

is possible if the game is the ordinary repeated Prisoner’s Dilemma. Then, our theorem

states that for the same discount factor (i) introducing perturbation never makes it pos-

sible for the players to achieve mutual cooperation in every realization of the stage game,

but (ii) perturbation enables them to sustain cooperation in some realization under a

certain condition. In this sense, a payoff perturbation may enhance cooperation, which is

opposed to the shared view in the literature that payoff perturbations make cooperation

more difficult to sustain.

The paper is organized as follows. In Section 2, we present two simple examples to

show the intuition of our main result. Then, Section 3 introduces the formal model of

repeated Prisoner’s Dilemma with perturbed payoffs and establishes the main theorem.

Applying this result, Section 4 examines two specific classes of perturbed games: linearly

perturbed games and public good games. The final section concludes the paper.

2 Examples

In this section, we present two simple examples which give an intuition to understand

why payoff perturbations may make cooperation difficult (Example 1) or easy (Example

2) depending on how we perturb the game. Each example considers a modified repeated

Prisoner’s Dilemma where players randomly play one of the two stage games in each

period. Although realized stage game payoffs are different in two examples, their expected

values are identical and expressed by the following table:

4See also Example 5.5.1 in Mailath and Samuelson (2006), p.176-177.
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C D

C 3, 3 −3, 6

D 6,−3 0, 0

Benchmark Prisoner’s Dilemma G

If this game is repeated infinitely many times without payoff perturbation, then the

usual C-trigger strategy combination becomes a subgame perfect equilibrium if and only

if

(1 − δ)3 + δ · 3 ≥ (1 − δ)6 + δ · 0 (1)

⇒ δ ≥ 6 − 3

6 − 0
=

1

2
(=: δ0),

which gives us the minimum discount factor to sustain (C,C) at least once in this game.

In what follows, we calculate the minimum discount factor under different payoff pertur-

bation, and compare it with the benchmark value of δ0 = 1
2
.

2.1 Example 1: Perturbation makes cooperation difficult

The following example, motivated by Rotemberg and Saloner (1986), illustrates that a

payoff perturbation makes cooperation more difficult to sustain. Suppose that, in each

period, the stage game is either one of the two games, GH and GL, with the equal

probability. One can interpret that H is a “high” demand game and L is a “low” demand

game. Both of these are a linear transformation of the benchmark G.

C D

C 4, 4 −4, 8

D 8,−4 0, 0
GH

C D

C 2, 2 −2, 4

D 4,−2 0, 0
GL

If players sustain (C,C) only in GH and play (D,D) in GL, then the minimum discount

factor δH must satisfy

(1 − δ)4 + δ
4 + 0

2
≥ (1 − δ)8 + δ · 0

⇒ δ ≥ 2

3
= δH .
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Similarly, the minimum discount factor δL to sustain (C,C) only in GL can be calculated

by

(1 − δ)2 + δ
2 + 0

2
≥ (1 − δ)4 + δ · 0

⇒ δ ≥ 2

3
= δL.

Hence both δH and δL are larger than δ0.

If players aim to achieve (C,C) in every period irrespective of the stage game, then

the discount factor must satisfy the following two conditions:

(1 − δ)4 + δ
4 + 2

2
≥ (1 − δ)8 + δ · 0

⇒ δ ≥ 4

7
=: δH .

and

(1 − δ)2 + δ
4 + 2

2
≥ (1 − δ)4 + δ · 0

⇒ δ ≥ 2

5
=: δL.

Therefore, the minimum discount factor δ to sustain (C,C) in every stage game is

δ = max{δH , δL},

which is 4
7

and again larger than δ0.

2.2 Example 2: Perturbation makes cooperation easy

Let us consider a different type of perturbation, whose stage game payoffs are expressed

in the next table:

C D

C 3, 3 −3, 6 + ε

D 6 + ε,−3 0, 0
G(+)

C D

C 3, 3 −3, 6 − ε

D 6 − ε,−3 0, 0
G(−)
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where ε takes a value between 0 and 3. Note that the expectation of these two games

coincides with the benchmark Prisoner’s Dilemma for any ε.5 Now, it is easy to see that

cooperation can be sustained in G(−) for small δ (which is smaller than δ0) when ε is large

enough, since the deviation gain is almost negligible then. More specifically, when ε = 2,

the same calculation as we did in Example 1 gives us:6

δ(+) =
10

13
, δ(−) =

2

5
, δ(+) =

5

8
, δ(−) =

1

4
.

It is clear that δ(−) is now smaller than δ0 while δ(+) and max{δ(+), δ(−)} are larger

than δ0. This means that when a discount factor takes a value between δ(−) and δ0, no

cooperation is possible in the ordinary repeated Prisoner’s Dilemma G while it is possible

to sustain (C,C) in the one of two stage games in our perturbed game.

This example illustrates that, as players give up cooperation in some realized state

(G(+) in our case), it may become easier for them to cooperate in the other realization of

stage game (G(−)). That is, choosing when to cooperate may effectively relax the players’

incentive constraints in a perturbed game so that cooperation becomes easier to achieve,

as compared to the original non-perturbed game in which such a strategic choice is not

available.7 To the best of our knowledge, this is the first paper which sheds light on the

positive aspect of payoff perturbations in repeated games by showing that they can be

good for cooperation.8

In the next section, we introduce the formal model and investigate the above issues

in detail.

5We would like to thank Ichiro Obara for showing us this intuitive example and for pointing out
the connection between our model and the multimarket model introduced by Bernheim and Whinston
(1990).

6For arbitrary ε ∈ (0, 3), these cutoffs are given by

δ(+) =
6 + 2ε

9 + 2ε
, δ(−) =

6 − 2ε

9 − 2ε
, δ(+) =

3 + ε

6 + ε
, δ(−) =

3 − ε

6 − ε
.

7The difference between a perturbed and a non-perturbed game discussed here is similar to the one
between a single market and a multi-market contact analyzed in Bernheim and Whinston (1990).

8Fujiwara-Greve and Yasuda (2009) introduce outside options into the repeated Prisoner’s Dilemma,
and show that increasing the volatility of option values may enhance cooperation.
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3 Model and Result

3.1 Model

We consider a repeated Prisoner’s Dilemma with payoff perturbations denoted by Γ.

Suppose two players 1 and 2 engage in an infinitely repeated Prisoner’s Dilemma game

whose stage game is randomly selected from two different games in each period in the

following way. At the beginning of each period, stage game G1 is chosen with probability

p, and game G2 realizes with the rest of probability, 1 − p. Assume that both players

observe the realization of each stage game prior to choosing their actions in that period.

Payoffs in stage game Gi, i = 1, 2 are given in the next table.

Gi :=

C D

C ci, ci `i, gi

D gi, `i di, di

We impose the regularity assumptions ci < gi, `i < di, and di < gi ∀i. The first two

inequalities guarantee that D becomes a dominant strategy in both stage games. The last

inequality combined with the first two implies that di is a min-max payoff in Gi, i = 1, 2.

We do not necessarily require each realized stage game to be a Prisoner’s Dilemma. For

instance, we do not exclude the case in which ci < di, i.e., mutual cooperation yields

strictly lower payoff than mutual deviation does. Instead, we require the average of these

two stage game payoffs satisfy the conditions of Prisoner’s Dilemma. To be precise, we

assume g > c > d > `, 2c > g + ` > 2d where x(= c, d, g, `) is the “mean payoff” defined

as

x := px1 + (1 − p)x2. (2)

Let us denote this non-perturbed counterpart of our perturbed stage games as G0

and its corresponding infinite repeated game as Γ0. That is, Γ0 is an ordinary infinitely

repeated Prisoner’s Dilemma without payoff perturbations.

G0 :=

C D

C c, c `, g

D g, ` d, d
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A common discount factor δ ∈ (0, 1) is given, and player i tries to maximize the

expected average payoff Ui defined as

Ui := (1 − δ)E[
∞∑

t=1

δt−1ut
i(s

t
i, s

t
−i)], i = 1, 2,

where ut
i and st

i denote i’s stage game payoff and strategy in period t. In what follows, we

investigate subgame perfect equilibria of Γ and Γ0. Let δ(Γ) (resp. δ(Γ0)) be the minimum

discount factor that sustains (C,C) at least once in a subgame perfect equilibrium of Γ

(resp. Γ0). Similarly, we define δ(Γ) (resp. δ(Γ0)) as the minimum discount factor that

sustains (C,C) in every period. By definition, δ(Γ) ≥ δ(Γ) must hold. Note that in Γ0

cooperation can be achieved at least once if and only if it is sustained in every period, since

Γ0 is an ordinary repeated Prisoner’s Dilemma. So, we denote by δ0 (:= δ(Γ0) = δ(Γ0))

the minimum discount factor that sustains (C,C) at least once (also in every period) in

a subgame perfect equilibrium of Γ0.

3.2 Main Result

We are now ready to show our main result.

Theorem 1 (i) δ(Γ) ≥ δ0 always holds. Moreover, this inequality is strict if and only

if g1 − c1 6= g2 − c2.

(ii) δ(Γ) < δ0 if and only if

min{ g1 − c1

g1 − {(1 − p)c1 + pd1}
,

g2 − c2

g2 − {pc2 + (1 − p)d2}
} <

g − c

g − d
.

Proof. (i) Let us first consider Γ0. Since Γ0 is an ordinary repeated Prisoner’s Dilemma,

(C,C) is sustained (at least once) in an equilibrium if and only if

c = (1 − δ)g + δd

⇐⇒ δ = g − c

g − d
=: δ0.

In Γ, (C,C) is sustained in both G1 and G2 if and only if

(1 − δ)ci + δc = (1 − δ)gi + δd for i = 1, 2. (3)
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Multiplying both sides by p and (1 − p) respectively, we obtain

p[(1 − δ)c1 + δc] = p[(1 − δ)g1 + δd], and

(1 − p)[(1 − δ)c2 + δc] = (1 − p)[(1 − δ)g2 + δd].

Adding each side gives us

c = (1 − δ)g + δd,

which proves the first part of (i). For the second part, note that (3) is written as

δ ≥ gi − ci

gi − ci + c − d
for i = 1, 2. (4)

It is clear that the right hand side takes different value across different stage game if and

only if g1 − c1 6= g2 − c2. This means that for given δ, if (3) is satisfied for i = 1, 2 and

g1 − c1 6= g2 − c2, then the condition holds with strict inequality in at least one of the

stage games, which eventually implies

c > (1 − δ)g + δd ⇔ δ > δ0.

(ii) Alternatively, (C,C) can be played in only one type of the two possible stage

games. Namely, an equilibrium play that (C,C) in G1 and (D,D) in G2 is sustained if

and only if

(1 − δ)c1 + δ{pc1 + (1 − p)d2} = (1 − δ)g1 + δd

⇔ δp(c1 − d1) = (1 − δ)(g1 − c1)

⇔ δ = g1 − c1

g1 − {(1 − p)c1 + pd1}
:= δ1(Γ),

where we use the property that d = pd1 + (1 − p)d2 from the first to the second line.

Similarly, (C,C) in G2 and (D,D) in G1 is sustained if and only if

(1 − δ)c2 + δ{(1 − p)c2 + pd1} = (1 − δ)g2 + δd

⇔ δ(1 − p)(c2 − d2) = (1 − δ)(g2 − c2)

⇔ δ = g2 − c2

g2 − {pc2 + (1 − p)d2}
:= δ2(Γ).
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Thus, δ(Γ) = min{δ1(Γ), δ2(Γ)}, which establishes the theorem.

The above theorem shows that a perturbation makes cooperation easier only if players

can selectively cooperate in a perturbed repeated game. To be more precise, the first

part claims that when (C,C) can be sustained in both G1 and G2 in an equilibrium under

some discount factor δ, then (C,C) is also sustained in Γ0 under the same δ. In other

words, whenever players can fully cooperate in a perturbed game, cooperation can also

be sustained in the corresponding non-perturbed game. Furthermore, achieving the full

cooperation in Γ is strictly more difficult than in Γ0 when the deviation gains are strictly

different across stage games.

The second part provides a necessary and sufficient condition for the selective coop-

eration being strictly easier in a perturbed game than in a non-perturbed game. Note

that the condition tends to be easily satisfied when the deviation gain are volatile across

stage games in Γ0. In the next section, we apply these results and examine two specific

classes of perturbed games.

4 Applications

In this section, applying Theorem 1, we investigate two specific perturbed games, 1)

linearly perturbed (affine transformed) games, and 2) public good games with perturbed

valuations.

4.1 Linearly Perturbed Games

Assume that payoffs in one stage game are linear (affine) transformations of the payoffs

in another stage game. That is, for xi = ci, di, gi, li, i = 1, 2,

x2 = αx1 + β for α > 0. (5)

Then, the mean payoff x(= c, d, g, l) can be written as

x = px1 + (1 − p)x2

= {p + (1 − p)α}x1 + (1 − p)β. (6)
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When β = 0 payoffs vary proportionally across stage games. Many models fall into

this proportionally perturbed games. For instance, in repeated duopoly (oligopoly, in

general) games with linear demand shifts investigated by Rotemberg and Saloner (1986)

and others, profits under high demand are proportionally increased from those under low

demand. Repeated games with fluctuated discount factors examined by Dal Bó (2007)

have a similar structure as well. In his model, changing discount factors proportionally

increases or decreases the continuation payoffs starting from the next period compared

to the current period payoffs.

The next proposition shows that, under these linearly perturbed games, a payoff

perturbation never makes cooperation easier.

Proposition 1 In any linearly perturbed games, δ(Γ) ≥ δ0. Moreover, this inequality is

strict if and only if α 6= 1.

To show Proposition 1, let us first establish the following lemma.

Lemma 1 In any linearly perturbed games, c > d ⇔ c1 > d1 ⇔ c2 > d2.

Proof. By (5),

c2 − d2 = α(c1 − d1).

Since α > 0, c1 > d1 if and only if c2 > d2. By (6),

c − d = {p + (1 − p)α}(c1 − d1).

Since p + (1 − p)α > 0, c > d if and only if c1 − d1, which concludes the proof.

Now we show Proposition 1.

Proof of Proposition 1. By (5),

g2 − c2

g2 − d2

=
αg1 + β − (αc1 + β)

αg1 + β − (αc1 + β)
=

g1 − c1

g1 − d1

.
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By (6),

δ0 =:
g − c

g − d
=

{p + (1 − p)α}(g1 − c1)

{p + (1 − p)α}(g1 − d1)

=
g1 − c1

g1 − d1

(=
g2 − c2

g2 − d2

).

Now, by Theorem 1-(ii), it is enough to show that δi(Γ) > gi−ci

gi−di
, for i = 1, 2.

δ1(Γ) =:
g1 − c1

g1 − {(1 − p)c1 + pd1}

>
g1 − c1

g1 − d1

(since c1 > d1 by Lemma 1).

By the same argument, we can show δ2(Γ) > g2−c2
g2−d2

, which concludes the proof of the first

part. For the second part, we know from Theorem 1-(i) that δ(Γ) > δ0 if and only if

(g1 − c1) − (g2 − c2) 6= 0 ⇔ (1 − α)(g1 − c1) 6= 0.

Since (g1 − c1) > 0 by assumption, the condition holds if and only if α 6= 1.

Proposition 1 implies that, as long as we consider linearly perturbed games, the

shared view in the literature is indeed correct since the payoff perturbation never makes

cooperation easier to sustain. However, this claim does not necessarily hold in general

non-linearly perturbed games including the next application.

4.2 Public Good Games

Assume that each player obtains a public good when at least one player chooses to

contribute (action C). A public good’s valuation takes either v1 or v2, with probability

p and 1 − p respectively. The total cost of producing a public good in each period is 2c,

which is equally shared by players who choose C. Therefore, each stage game Gi, i = 1, 2,

can be expressed by the following payoff matrix.

Gi :=

C D

C vi − c, vi − c vi − 2c, vi

D vi, vi − 2c 0, 0
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We do not necessarily require that each stage game must be Prisoner’s Dilemma, but

assume that the non-perturbed counterpart is Prisoner’s Dilemma. That is, v − c > 0 >

v − 2c where v = pv1 + (1 − p)v2. The next proposition shows a necessary and sufficient

condition such that a payoff perturbation makes cooperation (public good provision)

easier.

Proposition 2 In public good games (with perturbed valuations), δ(Γ) < δ0 if and only

if c > min{v1, v2}.

Proof. By Theorem 1-(ii), δ(Γ) < δ0 if and only if

min{ c

pv1 + (1 − p)c
,

c

(1 − p)v2 − pc
} <

c

pv1 + (1 − p)v2

.

Then, c
pv1+(1−p)c

< c
pv1+(1−p)v2

if and only if c > v2. Similarly, c
(1−p)v2−pc

< c
pv1+(1−p)v2

if

and only if c > v1, which concludes the proof.

An interpretation of this model is that players have small doubt about the efficiency of

cooperation (producing a public good); one of the stage games, say G1 has the property

that v1 < c. The theorem shows that such small doubt makes it easier to cooperate in

G2, when they are assured that cooperation is efficient, while they can happily defect in

G1. This is a new insight in repeated games with some uncertainty.

5 Conclusion

In this paper, we show how payoff perturbations affect sustainability of cooperation in

the repeated Prisoner’s Dilemma. Specifically, we provide the necessary and sufficient

condition such that a payoff perturbation strictly reduces the minimum discount factor

to sustain mutual cooperation. Although we assume a binary and i.i.d. distribution on

stage games, one can straightforwardly extend our analyses to the cases in which there are

more than two possible stage games or there is some (exogenous) correlation among stage

games. In these general models, calculating the exact condition inevitably becomes more

complicated than in our simple model. However, we believe that the basic insight remains

to be unchanged. Namely, a perturbation makes cooperation easier only if players can

selectively cooperate in some of the possible stage games.
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