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1 Introduction

Since Savage’s (1954) pioneering work, most studies on economics under uncertainty have

considered agents who choose their actions to maximize the expected utility with a unique prior.

Ellsberg’s (1961) example, however, highlighted a plausible situation where agents may not have

a belief about the uncertain situation that is summarized by a single prior because they have only

too imprecise information. Methods for explaining Ellsberg’s example of decision making under

imprecise information did not appear until 20 years later, in the seminal papers by Schmeidler

(1982, 1989) and Gilboa and Schmeidler (1989). They axiomatized the maxmin expected utility

(MEU) preference, under which agents attempt to maximize the expected utility minimized

over a set of priors, not a unique prior.1 Although the class of preferences with multiple priors

includes the class of expected utility preferences with a unique prior as a special case, the

situation where an agent’s belief is summarized by a set of priors (and not by a unique prior) is

now called ambiguity .2

This remarkable advance in decision theory has been welcomed in a broad range of disci-

plines including economics, game theory and finance.3 In the last two decades, implications of

ambiguity have been explored in several general equilibrium settings. As shown by Dow and

Werlang (1992), Tallon (1998), Chateauneuf, Dana and Tallon (2000) and Dana (2004), one of

the most important findings in the existing literature is that indeterminacy of equilibria can

be generated in the static Arrow-Debreu economy under ambiguity when there is no aggregate

uncertainty.4 Here, no aggregate uncertainty means that the total endowment does not change

over the state space.5 However, Rigotti and Shannon (2012) argued that such indeterminacy

1To be more precise, axiomatizations of the MEU preference by Schmeidler (1982, 1989) and Gilboa and
Schmeidler (1989) were demonstrated in the framework of Anscombe and Aumann (1963), not in Savage’s. Fur-
thermore, Schmeidler (1989) a xiomatized the Choquet expected utility (CEU) preference and showed the class
of convex CEU preferences belongs to the class of MEU preferences. By relaxing Savage’s postulates, the MEU
preference was axiomatized in Savage’s framework by Casadesus-Masanell, Klibanoff and Ozdenoren (2000) and
Alon and Schmeidler (2014).

2According to the terminologies proposed by Knight (1921), the situation where the agents’ beliefs are not
summarized by a single probability measure is called Knightian uncertainty. Thus, ambiguity is a special case of
Knightian uncertainty, and the MEU preference is a special case of ambiguity.

3There are good literature surveys such as Epstien and Shneider (2010), Gilboa and Marinacci (2013) and
Guidolin and Rinaldi (2013). Etner, Jeleva and Tallon (2012) surveyed an ever growing literature regarding
decision theory under ambiguity after the papers by Schmeidler (1989) and Gilboa and Schmeidler (1989) and
they also considered applications of ambiguity to economics.

4See also Billot, Chateauneuf, Gilboa and Tallon (2000).
5Epstein and Wang (1994) use similar logic to no aggregate uncertainty in order to show indeterminacy of equi-
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is not robust in the canonical Arrow-Debreu economy; i.e., the equilibrium is generically de-

terminate. Roughly speaking, this means that indeterminacy would disappear if the economy

was “shaken” only a little bit. In fact, the set of Arrow-Debreu economies with no aggregate

uncertainty has zero Lebesgue measure. This suggests the importance of examining what kind

of mechanisms can generate robust equilibrium indeterminacy under ambiguity by embedding

it into the general equilibrium framework. The main subject of this paper is to present such a

mechanism by embedding ambiguity into a stochastic overlapping generations (OLG) economy.

The OLG model is an intertemporal general equilibrium model that has a demographic

structure with overlapping generations. Although the OLG model can be considered at various

levels of generality, this paper emphasizes the role of ambiguity by considering a simple but rather

canonical stationary pure-endowment stochastic OLG model. Time is divided into discrete dates

and runs from 1 to infinity. At each date, one of the finite states is realized. A history of states

is called a “date-event.” At each date-event, a single perishable commodity is available and

a new agent that lives for two consecutive dates is born. Each agent has the opportunity to

trade a single infinitely-lived outside asset (money), which has a constant supply and yields no

dividend. There exists neither storage technology nor production. Therefore, the ingredients

of our model are almost the same as those found in a canonical stochastic OLG model. A

remarkable departure of this paper from the standard stochastic OLG model is that each agent

is endowed with the MEU preference.

This paper will make four main achievements. Firstly, we show that a stationary mone-

tary equilibrium is characterized by a system of inclusions, not by that of equations. As the

second and central achievement, we show the robust indeterminacy of the stationary monetary

equilibrium, which is a time-invariant equilibrium with circulating money. To make the mean-

ing of robustness clear, let us call a pair of initial endowments in the first and second periods

of the agent’s life an economy . Then the second result is that there is a nonempty open set

of economies, each element of which generates a continuum of stationary monetary equilibria.

libria in an intertemporal general equilibrium model with an infinitely-lived representative agent. Note, however,
that they only demonstrated nominal indeterminacy in this setting; i.e., they demonstrated the indeterminacy of
the equilibrium asset prices but not of the equilibrium allocation. In their model, the single representative agent
consumes the sum of the initial endowment and the dividend at each date along the equilibrium price path, and
hence, real indeterminacy does not occur by the definition of the equilibrium.
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Furthermore, we argue that such economies exhibit aggregate uncertainty. Thirdly, we conduct

comparative statics of the ambiguity. We show that an increase in ambiguity (in the sense that

the set of priors dilates) increases the sizes of both the range of the stationary monetary equilib-

ria and the set of economies generating a continuum of stationary monetary equilibria. Finally,

we show that each of these stationary monetary equilibria is conditionally Pareto optimal. In

other words, the equilibria are not Pareto comparable with each other.

The paper is organized as follows. Section 2 presents some relevant results from the existing

literature. Section 3 describes the details of our model. Section 4 provides two-state examples

that illustrate the mechanism generating indeterminacy of equilibria. Section 5 demonstrates

that stationary monetary equilibrium can be characterized by a system of inclusions and then

shows the existence and robust indeterminacy of stationary monetary equilibria. Section 6

conducts comparative statics that illustrates the effect of greater ambiguity on the equilibrium

outcomes. Section 7 examines the optimality of stationary monetary equilibria. Proofs are

collected in the final section.

2 Related Literature

This paper builds on a number of contributions. As mentioned in the Introduction, the static

Arrow-Debreu model under ambiguity can generate indeterminacy of equilibria (for example,

when there exists no aggregate uncertainty). However, such indeterminacy is not robust. To

generate robust indeterminacy in a general equilibrium setting under ambiguity, “some other

ingredient has to be inserted” as proposed by Mukerji and Tallon (2004, P.285). The most

recent studies found some situations that exhibit robust indeterminacy in a general equilibrium

setting under ambiguity. Mukerji and Tallon (2001, Theorem) incorporated an idiosyncratic

component of the asset returns into the Arrow-Debreu model to argue the incompleteness of

financial markets and indeterminacy of equilibria.6 Furthermore, Mandler (2013, Proposition 1)

6See Rinaldi (2009) for additional information. Note, however, that since the MEU preference is a special case
of the variational preference axiomatized by Maccheroni, Marinacci and Rustihici (2006) and since any variational
preference may be approximated arbitrarily well by another smooth variational preference, Rinaldi’s (2009) result
is not a confirmation that Mukerji and Tallon’s (2001) result works for the whole class of variational preferences.
In a similar fashion, the robust indeterminacy in this paper is concerned with the robustness with respect to only
the initial endowments and not the robustness with respect to both the initial endowments and the preferences.
That is, the preferences are supposed to be fixed. The authors are grateful to an anonymous referee for making
this point clear.
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recently developed a near Arrow-Debreu model by introducing a productive asset and sequential

trades. He found robust indeterminacy of equilibria. In his model, the production was used to

drive the economy to a point where agents face decision-making in a setting in which there exist

no aggregate uncertainty. The observation made in this paper contributes to this line of the

literature by providing a new mechanism which generates robust indeterminacy of equilibria in

a general equilibrium model under ambiguity. That is, we use the intuition obtained from the

static Arrow-Debreu model and embed ambiguity into a stochastic OLG model with money.

We can adjust the value of money in each state to make the environment similar to the one

with no aggregate uncertainty. One may consider that this mechanism is, in some sense, similar

to Mandler’s (2013). However, they are quite distinct from each other because, in our model,

the flexible adjustment of the real price of money (not the production) makes the environment

with which the agents is faced similar to the static one. In a summary, we could say that, by

introducing a demographic structure with overlapping generations and an infinitely-lived asset

(money) in a constant supply to an intertemporal general equilibrium setting, we can generate

robust indeterminacy of equilibria under ambiguity.

Our observations also contribute to studies on stochastic OLG models of the general equi-

librium. The proposed model is simple but rather canonical and similar to those considered in

the literature. For examples, see Magill and Quinzii (2003), Labadie (2004) and Ohtaki (2011).

However, the central subjects of these preceding works are different from ours.7 We should note

that this paper is the first that introduces the MEU preferences to the stochastic OLG model

with money.8

Our model is canonical except for the preferences, but the density of the stationary mon-

etary equilibria is quite different from the preceding studies. In representative agent models,

Manuelli (1990, Proposition 1), Magill and Quinzii (2003, Proposition 1) and Ohtaki (2011,

Proposition 1′) reported several sufficient conditions for the uniqueness of stationary monetary

equilibrium.9 Furthermore, Gottardi (1996, Theorem 1) showed that a stationary monetary equi-

7Labadie (2004) explored financial arrangements that could realize the optimal allocations. Magill and Quinzii
(2003) examined the asymptotic properties of monetary equilibrium processes.

8Fukuda (2008) introduced firms with convex Choquet expected utility preferences to Diamond’s (1965) OLG
model with a capital accumulation.

9Interested readers may also see Ohtaki (2013b).
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librium generically exists and is locally isolated in a more complicated stochastic OLG model

with many one-period securities and many agents endowed with smooth preferences. With the

MEU preferences which is known to be nonsmooth, in contrast, we show that the indeterminacy

of stationary monetary equilibria can arise even when the sufficient conditions provided in the

preceding works for the uniqueness of stationary monetary equilibrium are satisfied.

Finally, we mention our observation on the optimality of equilibria. Optimality of equilibrium

allocations has been characterized by Manuelli (1990), Aiyagari and Peled (1991), Chattopad-

hyay and Gottardi (1999), Demang and Laroque (1999) and Ohtaki (2013a) among others.

These studies presumed that the preferences were smooth. However, the MEU preferences are

nonsmooth as mentioned in the previous paragraph. Therefore, we cannot directly apply the

characterization results developed in these preceding studies to the current model.10 Instead

of applying the established characterization results, we have more directly demonstrated the

optimality of stationary monetary equilibria by tailoring Sakai’s (1988) proof to our model.

3 The Model

We consider a stationary, pure-endowment, stochastic overlapping generations economy with

money, where agents’ beliefs about uncertain situations are represented by multiple priors, not

by a single prior.11

3.1 Stochastic Environment

Time is discrete and runs from t = 1 to infinity. Uncertainty is modeled by a date-event

tree with a time-invariant finite state space S. For each t ≥ 1, we denote the state realized in

period t as st. This is called the period t state, where the (conceptually defined) period 0 state

s0 ∈ S is treated as given. To be more precise, the date-event tree, denoted by Γ, is defined as

follows. (i) The root of the tree is s0; (ii) the set of nodes at date t is denoted by Σt (where we

set Σ1 := {s0}×S and Σt := Σt−1×S for t ≥ 2); and (iii) Σ :=
∪

t≥1Σt and Γ := {s0}∪Σ.12 In
10Recently, Ohtaki and Ozaki (2013) extended the standard dominant root characterization of the optimal

allocations to the economy under ambiguity.
11Except for the preferences, the ingredients of our model are similar to those in Labadie’s work (2004). However,

her objective was to examine the financial arrangements that could result in the optimal allocations, not to examine
the in/determinacy of stationary monetary equilibrium.

12This definition of the date-event tree is standard, and can be seen in, for example, Chattopadhyay (2001).
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each period, we assume that the state is realized at the beginning of the period. We denote the

set of all probability measures on S as ∆S . There is a single perishable commodity, called the

consumption good in each period. No storage technology nor production technology is available.

In each period, one new agent enters the economy after the state is realized and lives for

two periods. In the rest of this paper, we concentrate on the stationary situation. Therefore,

agents are distinguished by the state in which they are born, and not the time nor the past

history of the realized states. An agent born in state st and period t is endowed with ωy
st units

of the consumption good in the first period of their life, and ωo
st+1

in state st+1 in the second

period. We assume that (ωy
s , (ωo

s′)s′∈S) ∈ ℜ++ × ℜS
++ for all s ∈ S. Note that the second-

period endowment is assumed to be independent of the shock in the first period. Therefore, the

economy is represented by a point (ωy
s , ωo

s′)s,s′∈S in the positive orthant of the finite-dimensional

Euclidean space, ℜS×S
++ , given the agent’s preferences described below.

3.2 Preferences

We denote the contingent consumption stream of an agent born in state st at date t as

cst = (cyst , (c
o
sts′

)s′∈S) ∈ ℜ+ × ℜS
+. Each agent born in state st at date t is assumed to rank the

consumption streams cst according to their lifetime utility function U st : ℜ+ × ℜS
+ → ℜ. Fur-

thermore, each agent born in state s is assumed to form a belief about an occurrence of the next

period’s state that is represented by a set of priors which are totally subjective, given the state

realized in the period when they were born.13 Throughout this paper, we assume that an agent

born in state s has an MEU preference.14 That is, there exists a strictly monotone increasing

and strictly concave real-valued function u on ℜ+ ×ℜ+, which is continuously differentiable on

the interior of its domain, and a compact and convex subset Ps of ∆S ∩ ℜS
++ such that

(∀cs ∈ ℜ+ ×ℜS
+) U s(cs) = min

πs∈Ps

∑
s′∈S

u(cys , c
o
ss′)πss′ . (1)

Note that we assume that u is common to all agents. When Ps is a singleton for each s ∈ S, the

preference degenerates into the standard subjective expected utility. In such a case, Ps = {πs}
13That is, the formation of the belief is independent of the past history of realized states. Further, the set of

priors may not be common to all agents who are distinguished by the states at which they are born.
14Gilboa and Schmeidler (1989) axiomatized the MEU preferences over lottery acts and Casadesus-Masanell,

Klibanoff and Ozdenoren (2000) axiomatized the MEU preferences over Savage acts. Their axiomatization does
not depend on whether the state space is finite or infinite, and hence, it may be applied to our situation with a
finite state space.
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for some πs ∈ ∆S for each s and we may write U s(cs) as U(πs)(c) since U s does not depend on

s directly by the commonality of u. Then, because U(πs)(cs) is clearly continuous in πs for each

cs and because Ps is compact by the assumption, the minimum in (1) can be actually achieved.

And hence, U s is well-defined. We often write U s(cs) as UPs(cs) again because U s depends on

Ps, not directly on s. We define the nonempty set of priors which achieve the minimum in (1)

by M as follows:

(∀s ∈ S)(∀cs ∈ ℜ+ ×ℜS
+) Ms(cs) := argmin

πs∈Ps

U(πs)(cs) .

One can easily verify that this lifetime utility function is strictly concave because of the strict

concavity of u. We will use this fact when we characterize the equilibria and when we show their

conditional Pareto optimality.

Remark 1 The present model is very close to those of Magill and Quinzii (2003) and Labadie

(2004).15 However, the interpretations on the agents’ beliefs in this paper and in previous works

are different. For example, Magill and Quinzii (2003) require that the (unique) subjective prob-

ability measure should coincide with the true probability measure that follows from a Markov

process. On the other hand, in the present model, subjective beliefs does not necessarily coin-

cide with the true or objective probability measures even when such measures exist. In other

words, the formation of the agent’s belief which is represented by a set of priors, whether it is a

singleton or not, is totally subjective and it could be totally irrelevant to the true or objective

probability measures. This interpretation on the agents’ beliefs might be considered as a kind of

bounded rationality and is different from those of Magill and Quinzii (2003) and Labadie (2004).

We sometimes write P = (Ps)s∈S and call it the transition probability correspondence. Here,

we give an example of the transition probability correspondence.

Example 1 Suppose that there exist some π̂ : S → ∆S and ε : S → [0, 1] such that, for each

s ∈ S, Ps = {(1 − εs)π̂s + εsµs : µs ∈ ∆S}, which is often called the ε-contamination of π̂s.
16

Obviously, this is an example of transition probability correspondences. Then, the associated

15Labadie (2004) considered a time-separable utility index function.
16The ε-contamination was first axiomatized by Nishimura and Ozaki (2006).
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lifetime utility function (1) takes the form:

U s(cs) = min
πs∈Ps

∑
s′∈S

u(cys , c
o
ss′)πss′ = (1− εs)

∑
s′∈S

u(cys , c
o
ss′)π̂ss′ + εsmin

s′∈S
u(cys , c

o
ss′).

Note that an increase in εs increases the ambiguity in the sense that Ps dilates. The effect of

this type of increase in ambiguity will be studied in Section 7. �

3.3 Stationary Monetary Equilibrium

We next turn to the definition of a stationary monetary equilibrium, a stationary equilibrium

wherein money circulates. To describe the intergenerational trade via money, we introduce an

infinitely-lived outside asset that yields no dividends and is in constant supply. We denote the

stock of fiat money as M > 0, which is constant over the date-events. We also let ps be the real

price of the money and qs be the real money balance at state s ∈ S. By definition, psM = qs

and therefore ps and qs has a one-to-one correspondence. A stationary monetary equilibrium is

then defined by a pair (q∗, c∗) of a contingent real money balance q∗ ∈ ℜS
++ and a contingent

consumption stream c∗ = (c∗ys , (c∗oss′)s′∈S)s∈S , such that there exists an m∗ ∈ ℜS satisfying that,

for all s ∈ S, (i) (c∗s,m
∗
s) belongs to the set

argmax
(cys ,(c

o
ss′ )s′∈S ,ms)∈ℜ++×ℜS

++×ℜ

{
U s(cs)

∣∣∣∣ cys = ωy
s − p∗sms,

(∀s′ ∈ S) coss′ = ωo
s′ + p∗s′ms

}
given p∗τ := q∗τ/M for each τ ∈ S and (ii) m∗

s = M .

Condition (i) requires that the pair of the consumption stream (c∗ys , (c∗oss′)s′∈S) and money

holding m∗
s must be the solution of the (lifetime) utility-maximizing problem of the agent born

in state s. Condition (ii) is the market-clearing condition of fiat money.17 We can easily verify

that, in any stationary monetary equilibrium, the market-clearing conditions for the contingent

commodities hold (the Walras’ law). That is, for each s, s′ ∈ S, c∗ys + c∗os′s = ωy
s + ωo

s . This

also implies that the second-period consumptions at a stationary monetary equilibrium are

independent of the state realized in the first-period of an agent’s life; i.e., c∗os′s = c∗os′′s for each

s, s′, s′′ ∈ S.

17In (i), we assume that the budget constraints hold with equalities. We can do this for the first budget
constraint without loss of generality by the strict increase of u. For the other budget constraints, we simply
assume it. Also note that we exclude corner solutions by assuming that (cy, (cos′)s′∈S) ∈ ℜ++ ×ℜS

++ and (ii).
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A stationary monetary equilibrium is called fully-insured (with respect to the second-period

consumptions) if, for each s, s′, s′′ ∈ S, c∗oss′ = c∗oss′′ . This type of stationary monetary equilibrium

plays an important role in the following analyses.

Finally, note that, after an equilibrium real money balance q∗ has been chosen (and the

money market has cleared), the equilibrium consumption stream c∗ is automatically and uniquely

determined from the budget constraints. Therefore, we can identify a stationary monetary

equilibrium (q∗, c∗) with an equilibrium positive real money balance q∗. By using this convenient

property, the agents’ optimization problems can be simplified to the ones of choosing an optimal

money holding. For later references, we define the utility function Vs of the money holding ms

for each agent born at state s facing the real money balance q∗ ∈ ℜS
++. Formally, for each s ∈ S,

let

(∀q∗)(∀ms) V q∗
s (ms) := UPs(c

ms
s (q∗)) , (2)

where cms
ss′ (q

∗) := (ωy
s − (q∗s/M)ms, ω

o
s′ + (q∗s′/M)ms) and cms

s (q∗) := (ωy
s − (q∗s/M)ms, (ω

o
s′ +

(q∗s′/M)ms)s′∈S). Note that Vs is concave because of the strict concavity of u. We often suppress

the superscript q∗ when it is obvious from the context.

4 Two-state Illustrative Examples

Before conducting formal analyses, this section offers two examples which provide intuitions

for the mechanism which generates indeterminacy of equilibria.

The next example assumes only two states and constructs economies which exhibit indeter-

minacy of equilibria. In particular, it shows that the indeterminacy is caused by the nondiffer-

entiability of the MEU preferences at consumption streams which are fully-insured with respect

to the second-period consumptions.

Example 2 Suppose that S = {α, β}. Additionally, specify the model by assuming that

(ωy
α, ω

y
β, ω

o
α, ω

o
β) = (6, 3, 1, 2), u(cys , coss′) = ln cys+ln coss′ , and Ps = {(πsα, πsβ) ∈ ∆S | ε ≤ πsα ≤ δ }

for each s ∈ S, where 0 < ε ≤ δ < 1.18 Because we consider a two-state model, the optimization

18The MEU preferences in the Cobb-Douglas form as in this example have recently been axiomatized by Faro
(2013).
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Figure 1: “Edgeworth box”: (a) there is no ambiguity, (b) there is ambiguity.

problem in Condition (i) of the definition of stationary monetary equilibrium can be rewritten

as

argmax
(cs,ms)∈(ℜ+×ℜS

+)×ℜ

U s(cys , c
o
sα, c

o
sβ)

∣∣∣∣∣∣
cys = ω̄s − coss, ms = (coss − ωo

s)M/q∗s

cosβ =
q∗β
q∗α

cosα −
q∗β
q∗α

ωo
α + ωo

β

 ,

where ω̄s := ωy
s + ωo

s . In this condition, cys and ms completely depend on the selection of

(cosα, c
o
sβ), especially coss, for each s ∈ S. Furthermore, the first constraint, cys = ω̄s − coss,

implies that (cosα, c
o
sβ) ∈ Xs := {(xoα, xoβ) ∈ ℜ2

+|xos ≤ ω̄s} because cys , coss ≥ 0. Therefore,

we can consider that each agent born at state s ∈ S chooses (xoα, x
o
β) ∈ Xs so as to maximize

Û s(xoα, x
o
β) := U s(ω̄s−xos, x

o
α, x

o
β) subject to the “budget line”, xoβ = (q∗β/q

∗
α)x

o
α−(q∗β/q

∗
α)ω

o
α+ωo

β,

between two commodities contingent upon state α and β. This means that we can consider

solutions of the MEU-maximizing problem and stationary monetary equilibrium using a “box

diagram” with indifference curves derived from Û s and the budget line. In Figure 1, the boxes

depict the space Xα ∩ Xβ and indifference curves, derived from Û s, through (xα, xβ) = (1, 1)

and (xα, xβ) = (2, 2). The U -shaped and ⊂-shaped curves are related to indifference curves for

agents born at states α and β, respectively. Note that Û s(1, 1) < Û s(2, 2). It is assumed that

ε = δ = 0.5 in Figure 1(a) and (ε, δ) = (0.25, 0.75) in Figure 1(b). Therefore, Figures 1(a)

and 1(b) are related to cases without and with ambiguity, respectively. Notably, the agent’s

indifference curves in Figure 1(b) exhibit kinks at the 45-degree line. This is because the lifetime
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Figure 2: Stationary monetary equilibria: (a) there is no ambiguity; (b) there is ambiguity.

MEU function is not differentiable on this line.19 Figure 2 introduces the budget lines to the box

diagram and depicts the stationary monetary equilibria. In this figure, the point (xoα, x
o
β) = (1, 2)

corresponds to the initial endowment, and straight lines through it represent the “budget lines”.

A second-period consumption (xoα, x
o
β) at a stationary monetary equilibrium then corresponds

to a point on a “budget line” when it is tangential to the indifference curves of both agents (α

and β). When ε = δ (i.e., there exists no ambiguity), we can find a unique stationary monetary

equilibrium, as in Figure 2(a). Here, the dashed line depicts the set of points at which the

indifference curves of agents α and β are tangential to each other.20

When ε < δ (i.e., there exists ambiguity), there exists a continuum of stationary monetary

19To be more precise, the marginal rates of substitution for indifferent curves derived from Ûs, denoted by

M̂RSs(x
o), is calculated using

M̂RSα(x
o) = − Ûα

1 (x
o)

Ûα
2 (x

o)
=


[(1 + ε)xo

α − εω̄α]x
o
β

(1− ε)(ω̄α − xo
α)xo

α

if xo
α > xo

β ,

[(1 + δ)xo
α − δω̄α]x

o
β

(1− δ)(ω̄α − xo
α)xo

α

if xo
α < xo

β ,

and

M̂RSβ(x
o) = − Ûβ

1 (x
o)

Ûβ
2 (x

o)
=


ε(ω̄β − xo

β)x
o
β

[(2− ε)xo
α − (1− ε)ω̄β ]xo

α

if xo
α > xo

β ,

δ(ω̄β − xo
β)x

o
β

[(2− δ)xo
α − (1− δ)ω̄β ]xo

α

if xo
α < xo

β

if xo
α ̸= xo

β . However, it cannot be calculated at xo with xo
α = xo

β , if ε < δ.
20To be more precise, the uniqueness of stationary monetary equilibrium follows from, for example, Proposition

1 of Magill and Quinzii (2003) or Theorem 1 of Ohtaki (2013b).

11



equilibria, as in Figure 2(b). Here, a second-period consumption xo = xoα = xoβ that corresponds

to some stationary monetary equilibrium lies on the open interval of approximately 2.83 −

−3.12.21 �

The previous example suggests that the indeterminacy of equilibria arises because of non-

smoothness of the agents’ MEU preferences and how to characterize such equilibria is not yet

clear. The next example also assumes only two states and gives an intuition for the characteri-

zation of the stationary monetary equilibria under ambiguity.

Example 3 Suppose that S = {α, β} and ωo
α < ωo

β. Because Ps is compact and convex for

each s ∈ S, we can write it as Ps = {πs ∈ ∆S |µsα ≤ πsα ≤ νsα} for some µs, νs ∈ ∆S such that

0 < µsα < νsα < 1. Additionally, suppose that u(cys , coss′) = vy(c
y
s) + vo(c

o
ss′) for some strictly

monotone increasing and strictly concave real-valued functions vy and vo on ℜ+, which are

continuously differentiable on the interior of its domain. Assume that there exists a stationary

monetary equilibrium (q∗, c∗), wherein ωo
α + q∗α = ωo

β + q∗β := c̄ ∗o for each s, s′ ∈ S. We have

observed in Example 2 that there exists at least one economy generating such an equilibrium.

Note that q∗α > q∗β because ωo
α < ωo

β, and
∑

s′∈S q∗s′µss′ <
∑

s′∈S q∗s′νss′ for each s ∈ S. Then, we

can show that Vs is not differentiable at M , which must be chosen at any stationary monetary

equilibrium. This is easy to verify. First, we can obtain

Vs(M) = vy(ω
y
s − q∗s) + vo(c̄

∗o)

and, for any real number h that is sufficiently close to but not equal to 0,

Vs(M + h) = vy(ω
y
s − q∗s − (q∗s/M)h) + min

πs∈Ps

∑
s′∈S

vo(c̄
∗o + (q∗s′/M)h)πss′

= vy(ω
y
s − q∗s − (q∗s/M)h) +


∑
s′∈S

vo(c̄
∗o + (q∗s′/M)h)µss′ if h > 0,∑

s′∈S
vo(c̄

∗o + (q∗s′/M)h)νss′ if h < 0

because q∗α > q∗β. Then, it follows that

Rs := lim
h↓0

Vs(M + h)− Vs(M)

h
= − q∗s

M
v′y(ω

y
s − q∗s) +

1

M
v′o(c̄

∗o)
∑
s′∈S

q∗s′µss′

21The detail of the box diagram presented here was provided in Ohtaki (2014).
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and

Ls := lim
h↑0

Vs(M + h)− Vs(M)

h
= − q∗s

M
v′y(ω

y
s − q∗s) +

1

M
v′o(c̄

∗o)
∑
s′∈S

q∗s′νss′ .

Therefore, Vs is not differentiable at M because Rs < Ls. However, we should remark that M

maximizes Vs if and only if Rs ≤ 0 ≤ Ls; i.e., given s ∈ S∑
s′∈S

q∗s′

q∗s
µss′ ≤

v′y(c
∗y
s )

v′o(c̄
∗o)

≤
∑
s′∈S

q∗s′

q∗s
νss′ , (3)

which gives us a partial characterization of the stationary monetary equilibrium. �

5 Robust Indeterminacy

This section presents the first two out of four achievements we mentioned in the Introduc-

tion and constitutes the main body of this paper. Subsection 5.1 characterizes the stationary

monetary equilibria by the solutions to the system of difference inclusions. Subsection 5.2 shows

that there exists a continuum of equilibria and that it is robust in the sense that there exists an

open set of economies all elements of which generate such indeterminacy of equilibria.

5.1 Characterization of Stationary Monetary Equilibria

The inequalities in (3) in Example 3 can be interpreted as a requirement that, in a stationary

monetary equilibrium, the marginal rate of substitution between the first- and second-period

consumptions lies in the range of expected rates of the return of the money. We may thus

say that (3) represents a trade-off existing between intertemporal consumption smoothing and

aversion to ambiguity and that agents can avoid ambiguity in the second-period consumption

by sacrificing smoothing between the first- and second-period consumptions. Furthermore, the

range of the marginal rates of substitution which are admitted at a solution of the agents’

optimization problems is nondegenerate by the presence of ambiguity. All of these suggest that,

under the MEU preference, a stationary monetary equilibrium may be characterized by the

solution to the system of difference inclusions, not of difference equations.

The conjecture made in the previous paragraph is in fact correct as we show below. It

is well-known that if a stationary monetary equilibrium exists, it can be characterized by the

solution to the system of difference equations that are derived from the first-order conditions of

13



the agents’ optimization problems provided the agents’ preferences are represented by standard

smooth utility functions.22 In contrast, the stationary monetary equilibria in our model with the

MEU preference, if they exist, can be characterized by the solutions to the system of difference

inclusions.

Theorem 1 A positive vector q∗ ∈ ℜS
++ is a stationary monetary equilibrium if and only if

(∀s ∈ S) 0 ∈

{
−
∑
s′∈S

q∗su1(c
M
ss′(q

∗))πs′ +
∑
s′∈S

q∗s′u2(c
M
ss′(q

∗))πs′

∣∣∣∣∣ π ∈ Ms(c
M
s (q∗))

}
, (4)

where ui is the derivative of u with respect to the i-th argument.

This is a natural extension of the characterization of a stationary monetary equilibrium in a

stochastic OLG model with a single prior. In fact, if Ps is a singleton for all s ∈ S, this system

of inclusions degenerates into a system of equations. Then this result turns out to be the same

as the one of a stochastic OLG model with a single prior, as shown in, for example, Definition

2 of Magill and Quinzii (2003).

To close this subsection, we provide the characterization of fully-insured stationary monetary

equilibria, which is an immediate consequence of Theorem 1.

Corollary 1 A positive vector q∗ ∈ ℜS
++ such that ωo

s + q∗s = ωo
s′ + q∗s′ =: c̄∗o for each s, s′ ∈ S,

is a fully-insured stationary monetary equilibrium if and only if

(∀s ∈ S) min
πs∈Ps

∑
s′∈S

q∗s′

q∗s
πss′ ≤

u1(c
∗y
s , c̄ ∗o)

u2(c
∗y
s , c̄ ∗o)

≤ max
πs∈Ps

∑
s′∈S

q∗s′

q∗s
πss′ , (5)

where c∗ys = ωy
s − q∗s .

The inequalities in (5) are obviously natural extensions of the inequalities in (3). Therefore, this

result can also be interpreted as a trade-off between intertemporal consumption smoothing and

aversion to ambiguity. We will exploit this corollary to find economies that certainly generate a

continuum of stationary monetary equilibria.

22See, for example, Magill and Quinzii (2003) and Ohtaki (2011).
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5.2 Existence and Robust Indeterminacy of Equilibria

This subsection shows the robust indeterminacy of stationary monetary equilibria under

the presence of ambiguity. That is, we demonstrate that there exists a nonempty open set of

economies, each element of which generates a continuum of stationary monetary equilibria. To

this end, we need to do two things. First, we need to show the existence of a continuum of

stationary monetary equilibria. However, even when there exists no ambiguity, the stochastic

OLG model with money may generate a continuum of nonstationary monetary equilibria (Magill

and Quinzii, 2003, Proposition 2).23 On the other hand, a stationary monetary equilibrium can

be unique when, for example, the preferences are time-separable and the degree of relative risk

aversion of the second-period utility function is less than or equal to one. (Magill and Quinzii,

2003, Proposition 1).24 More generally, we can deduce from Gottardi (1996, Theorem 1) that the

stationary monetary equilibrium is locally isolated and hence cannot be a continuum when the

preferences are smooth.25 To present a stark contrast between stochastic OLG models with and

without ambiguity, we demonstrate the indeterminacy of the stationary monetary equilibrium.

Second, we need to show that the indeterminacy is robust. We do this by showing the

existence of a nonempty open set of economies in which the indeterminacy arises. This forces us

to show that the indeterminacy may arise even when there exists the aggregate uncertainty. In

fact, each element of the set of economies whose existence is to be proved exhibits the aggregate

uncertainty (see Remark 3 below).

In the previous subsection, we observed that the stationary monetary equilibria can be

characterized by the solutions to the system of difference inclusions. However, we have not yet

shown the existence of such solutions. Consider an equilibrium real money balance q∗ ∈ ℜS
++,

such that for any s′, s′′ ∈ S, ωo
s′ + q∗s′ ̸= ωo

s′′ + q∗s′′ whenever s′ ̸= s′′. In this case, there exists

a neighborhood of q∗ in which Ms(c
M
s (q)) is “constant and a singleton” for each s.26 We refer

23To be more precise, Magill and Quinzii (2003, Proposition 2) show the indeterminacy of the candidates
for “expectation functions,” each of which constructs a nonstationary rational expectations equilibrium with
circulating money.

24See also Theorem of Ohtaki (2013b).
25As shown by Gottardi (1996), a “zero-th order” stationary monetary equilibrium (where money prices only

depend on the current states) is locally isolated. In contrast, Spear, Srivastava, and Woodford (1990) showed
that the “first-” and “second-order” stationary monetary equilibria (where money prices may depend on the past
states) are indeterminate. In our paper, the stationarity always refers to the “zero-th order.”

26The basic idea is as follows. Let s1 := argmins′∈S ωo
s′ + q∗s′ and let M1 be the set of probability measures
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to this unique measure (which depends on s because Ps depends on s) as µs. The system of

inclusions, (4), is then a system of simultaneous equations:

(∀s ∈ S) 0 = −
∑
s′∈S

q∗su1(ω
y
s − q∗s , ω

o
s′ + q∗s′)µss′ +

∑
s′∈S

q∗s′u2(ω
y
s − q∗s , ω

o
s′ + q∗s′)µss′ .

Any solution to this system is an equilibrium of the economy. Its local nature (including the

existence of a continuum of solutions) is the same as the standard stochastic OLG model and is

well-known. There is nothing new here and so we have not pursued this line any further.27

Next, we consider a partially-insured equilibrium in the following sense. Let S′ be a subset

of S with |S′| ≥ 2. Consider an equilibrium real money balance q∗ ∈ ℜS
++ such that, for any

s′, s′′ ∈ S′, ωo
s′ + q∗s′ = ωo

s′′ + q∗s′′ . Then, Ms(c
M
s (q∗)) includes all the probability measures in

Ps that assign the same probability to S′. However, because q∗ need not be constant over S′

(although ωo+q∗ must be), the set in (4) is not necessarily a singleton. Therefore, a continuum of

solutions to the system of inclusions (4) may arise. To spell out the configuration of endowments

that allow such indeterminacy could be very difficult. However, we may choose a continuum of

q∗’s appropriately so as to keep ωo + q∗ constant over some set but to make its (constant) value

vary as q∗ varies. This “endogenized flatness” can be further exploited to show the indeterminacy

of fully-insured equilibria.

Recall that a pair of first- and second-period endowments, (ωy, ωo) ∈ ℜS
++×ℜS

++, is called an

economy . We say that an economy exhibits equilibrium indeterminacy if the stationary monetary

equilibrium for it exists and is indeterminate. Furthermore, define the function f : ℜ2
++ → ℜ++

by

f(cy, co) :=
u1(c

y, co)

u2(cy, co)

for each (cy, co) ∈ ℜ2
++, which is the marginal rate of substitution between the first- and second-

period consumptions. Note that f is continuous because u is continuously differentiable. We

can now demonstrate the robust indeterminacy of stationary monetary equilibria.

in Ps that assign the largest probability to s1. Then, let s2 := argmins′∈S\{s1} ω
o
s′ + q∗s′ and let M2 be the set

of probability measures in M1 that assign the largest probability to s2. Continuing this process can lead to a
single probability measure in Ps that is the unique element of Ms(c

M
s (q)). In general, however, the success of this

procedure hinges upon the nature of Ps. In this sense, the argument of this footnote stands only heuristically.
For example, if Ps is characterized by ε-contamination, the above procedure will determine a single probability
measure. For the ε-contamination, see Nishimura and Ozaki (2006) and references therein.

27As stated in the previous footnote, the system of equations can possibly be a system of inclusions. Because we
are concerned with a sufficient condition for multiple equilibria, we can neglect such a situation for our purpose.
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Theorem 2 There exists a nonempty open set Ω ⊂ ℜS
++ × ℜS

++ of economies that generate a

continuum of fully-insured stationary monetary equilibria, if there are two distinct probability

measures on S that belong to Ps for each s ∈ S, and f( · , co) is surjective for each co > 0.

Therefore, we can find an open set of economies that exhibit equilibrium indeterminacy. More

precisely, in the proof of this theorem (see Section 8), we show that the fully-insured second-

period consumption satisfying Eq.(5) (c̄ ∗o) becomes indeterminate. This implies that the cor-

responding equilibrium real money balance q∗ (calculated using q∗s = c̄ ∗o −ωo
s for each s ∈ S) is

also indeterminate. Hence, we can obtain nominal and real indeterminacy, i.e., indeterminacy

of both the equilibrium nominal commodity prices and the equilibrium allocations.

Remark 2 Gottardi (1996) showed that in a more general stochastic OLG model with many

agents that have convex preferences and with many securities, a stationary monetary equilibrium

generically exists (Theorem 1.i). We can deduce from this result that a stationary monetary

equilibrium generically exists in our model with a convex MEU preference. Additionally, Got-

tardi showed that the equilibrium is locally isolated when the agents’ preferences are smooth

(Theorem 1.ii). To be more precise, he showed that any open set of economies has its open

subset of full Lebesgue measure under convex and smooth preferences and that each element

of that subset generates a locally isolated stationary monetary equilibrium.28 His observations

still hold in our model provided that the agent’s belief about the uncertain situation is summa-

rized by a single probability measure. In contrast with his result, however, Theorem 2 shows

the existence of some open set of economies that exhibit equilibrium indeterminacy under the

MEU preference, which is convex but not smooth. Therefore, Theorem 2 is in stark contrast to

previous results under smooth preferences.

We can provide an important property about economies that generate fully-insured station-

ary monetary equilibria. As argued in the following remark, such economies exhibit aggregate

uncertainty.

Remark 3 Let ω := (ωy, ωo) ∈ ℜS
++ × ℜS

++ be an arbitrary economy generating indetermi-

28Interested readers may refer to Cass, Green and Spear (1992), which also provided the existence and regularity
results for the stationary monetary equilibrium in a more complicated stochastic OLG model.
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nacy of fully-insured stationary monetary equilibria. Let c̄ ∗o be a second-period consumption

corresponding to some fully-insured stationary monetary equilibrium given the economy. We

can observe that this economy exhibits aggregate uncertainty. To be more precise, it holds that

ωy
s + ωo

s ̸= ωy
s′ + ωo

s′ for some s, s′ ∈ S. First, suppose that ωy
s = ωy

s′ =: ω̄y and ωo
s = ωo

s′ =: ω̄o

for each s, s′ ∈ S. Then, q∗s = c̄ ∗o − ω̄o = q∗s′ =: q̄∗ for each s, s′ ∈ S and Eq.(5) degenerates

into u1(ω̄
y − q̄∗, ω̄o + q̄∗)/u2(ω̄

y − q̄∗, ω̄o + q̄∗) = 1. This characterizes a stationary monetary

equilibrium of a deterministic OLG model with the initial endowment (ω̄y, ω̄o). However, we can

deduce from Kehoe and Levine (1984, Proposition 3.5) that solutions of this equation must be lo-

cally isolated, which contradicts the hypothesis that ω exhibits indeterminacy. Therefore, there

exist some τ, κ ∈ S such that ωy
τ ̸= ωy

κ or ωo
τ ̸= ωo

κ. Now, suppose that ωy
s + ωo

s = ωy
s′ + ωo

s′ =: ω̄

for each s, s′ ∈ S. Using the previous argument, it holds that ωo
τ ̸= ωo

κ. Then, Eq.(5) can

be rewritten as minπ∈Ps

∑
s′∈S(c̄

o∗ − ωo
s′)πs′/(c̄

∗o − ωo
s) ≤ u1(ω̄ − c̄ ∗o, c̄ ∗o)/u2(ω̄ − c̄ ∗o, c̄ ∗o) ≤

maxπ∈Ps

∑
s′∈S(c̄

o∗ − ωo
s′)πs′/(c̄

∗o − ωo
s) for each s ∈ S. However, we can find that there is no

constant u1(ω̄−c̄ ∗o, c̄ ∗o)/u2(ω̄−c̄ ∗o, c̄ ∗o) that satisfies the last inequality for each s.29 Therefore,

each economy found in Theorem 2 exhibits the aggregate uncertainty.

The last condition in Theorem 2 can be replaced with a more simple condition when the

utility function u is additively time-separable. In the rest of this section, we concentrate our

attention on the case where u is additively time-separable.

Corollary 2 Suppose that u is time-separable, i.e., there exist some strictly monotone increasing

and strictly concave real-valued functions vy and vo on ℜ+, which are continuously differentiable

on the interior of its domain, such that u(cy, co) = vy(c
y) + vo(c

o) for each (cy, co) ∈ ℜ+ × ℜ+.

Then, there exists a nonempty open set of economies that exhibit equilibrium indeterminacy if

Ps has two distinct probability measures for each s ∈ S and vy satisfies the Inada condition, i.e.,

limcy↓0 v
′
y(c

y) = +∞ and limcy↑+∞ v′y(c
y) = 0.

Remark 4 By restricting the preferences to the ones which are convex and smooth, we can find

economies that generate a unique stationary monetary equilibrium. Under the assumption of

29Consider s and s such that ωs = maxs∈S ωo
s and ωs = mins∈S ωo

s . Because π ≫ 0 for each π ∈ Ps,
c̄ ∗o should satisfy that 1 < minπ∈Ps

∑
s′∈S(c̄

o∗ − ωo
s′)πs′/(c̄

∗o − ωo
s) ≤ u1(ω̄ − c̄ ∗o, c̄ ∗o)/u2(ω̄ − c̄ ∗o, c̄ ∗o) ≤

maxπ∈Ps

∑
s′∈S(c̄

o∗ − ωo
s′)πs′/(c̄

∗o − ωo
s) < 1. However, this is a contradiction.
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additive separability of u, Magill and Quinzii (2003, Proposition 1) provide a sufficient condition

for the uniqueness of stationary monetary equilibrium. Following their result, if there is a

stationary monetary equilibrium under a unique prior, it can be unique when the degree of

relative risk aversion of the utility function for the second-period consumption is less than or

equal to one.30 However, it follows from Corollary 2 that there exists a continuum of stationary

monetary equilibria under the MEU preference even when the degree of relative risk aversion of

the second-period utility function is less than or equal to one. Therefore, Corollary 2 is a stark

contrast to previous results under the smooth and additively time-separable preferences.31

In this subsection, we have found the robust indeterminacy of stationary monetary equilibria.

This indeterminacy is proved via the “endogenized flatness”; i.e., the fact that we can choose

equilibrium real money balances so that the second-period consumptions can be constant over

all states.

In the following two sections, we provide further results on the fully-insured stationary

monetary equilibria.

6 Comparative Statics

This section shows that an increase in ambiguity implies both an increase in the “degree” of

indeterminacy and the dilation of the set of economies that exhibit a continuum of fully-insured

stationary monetary equilibria. Given an economy ω = (ωy, ωo) and a transition probability

correspondence P, we define the set of second-period consumptions at fully-insured stationary

monetary equilibria by Ĉo
P(ω). That is, we let

Ĉo
P(ω) := { c̄o ∈ ℜ++ | c̄o satisfies Eq.(5) under P and ω } .

Note that Ĉo
P(ω) may be empty for some ω. Additionally, define Ω̂P by

Ω̂P :=
{
ω ∈ ℜS

++ ×ℜS
++

∣∣∣ Ĉo
P(ω) ̸= ∅

}
.

30This result can be extended to slightly more general preferences. See Ohtaki (2013b).
31In the framework of additively time-separable preferences, Manuelli (1990) also provides uniqueness results

under an additional assumption that the states’ evolution follows an i.i.d. process. He considers a stochastic OLG
model with a general state space, and hence, it includes a finite state space case as in our model as a special case.
Note that even when the set of priors, Ps, is independent of s, Corollary 2 still demonstrates the existence of a
continuum of stationary monetary equilibria.
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Note that Ω̂P is the set of economies in which a fully-insured stationary monetary equilibrium

exists. Finally, we write P ⊂ Q when Ps ⊂ Qs for each s ∈ S. In accordance with the notion

of Ghirardato and Marinacci (2002), we may say that Q represents more ambiguity (and more

ambiguity aversion given the MEU preference) than P, when P ⊂ Q. We can then prove the

following theorem.

Theorem 3 Let P and Q be two transition probability correspondences such that P ⊂ Q. Also

assume that u and P satisfy all the assumptions of Theorem 2 (and hence, Ω̂P is nonempty by

Theorem 2). Then, (a) Ĉo
P(ω) ⊂ Ĉo

Q(ω) for any ω ∈ Ω̂P; and (b) Ω̂P ⊂ Ω̂Q.

Recall that Ω̂P and Ĉo
P(ω) are the set of economies that exhibit indeterminacy (of the fully-

insured equilibrium) and the set of second-period consumptions for some fully-insured equilib-

rium. As mentioned above, the theorem indicates that an increase in uncertainty increases the

degree of indeterminacy of the fully-insured stationary monetary equilibrium and, at the same

time, expands the set of economies that exhibit a continuum of fully-insured equilibria.

Remark 5 The above observation is made by the comparative statics with respect to ambiguity.

Following Ghirardate and Marinacci (2002), we define “greater ambiguity” as dilation of the set

of priors. As argued in Klibanoff, Marinacci and Mukerji (2005), such a definition of greater

ambiguity cannot disentangle an attitude toward ambiguity from ambiguity itself.32 In other

words, our definition of greater ambiguity involves the effects of both increasing ambiguity and

increasing ambiguity aversion. Theorem 3 then states that such a greater ambiguity increases

the sizes of both the set of stationary monetary equilibria and the set of economies that exhibit

equilibrium indeterminacy. To the best of our knowledge, this paper is the first work that

conducts comparative statics with respect to ambiguity in a stochastic OLG model with money.

7 Optimality

We have shown the existence of a continuum of stationary monetary equilibria. A question

that naturally arises is whether the allocations corresponding to these stationary monetary

32Klibanoff, Marinacci and Mukerji (2005) attempt to separate these two essentially distinct aspects of the
preference. Gajdos, Hayashi, Tallon and Vergnaud (2008) also do so by using “objective” uncertainty.
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equilibria are optimal or not. The answer is that they are, in some sense. We begin with some

definitions.

Let S0 := {s0} ∪ S. A stationary feasible allocation is a pair of cy ∈ ℜS
++ and co ∈ ℜS0×S

++

that satisfy

(∀(s′, s) ∈ S0 × S) cys + cos′s = ωy
s + ωo

s ,

where cos0s is the consumption of the initial old , who lives for one period in period 1 and in state

s. From this equation and the assumption that the endowment depends only on the current state

(see the discussion right after the definition of stationary monetary equilibrium in Subsection

3.3), it follows that cos′s is independent of s′. Thus, we define a stationary feasible allocation as

c = (cys , cos)s∈S . A stationary feasible allocation b = (bys , bos)s∈S is conditionally Pareto superior

to a stationary feasible allocation c = (cys , cos)s∈S if

(∀s ∈ S) Us(b
y
s , (b

o
s′)s′∈S) ≥ Us(c

y
s , (c

o
s′)s′∈S) and bos ≥ cos

with at least one strict inequality. The latter set of inequalities means that the initial old will

not be worse off when moving from c to b, where we implicitly assume that the initial old will

never be satiated. A stationary feasible allocation c is conditionally Pareto optimal if there is

no other stationary feasible allocation that is conditionally Pareto superior to c.

We are now ready to state the main result of this section.

Theorem 4 Every stationary monetary equilibrium achieves conditional Pareto optimality.

Theorem 4 claims that even when there exists a continuum of stationary monetary equilib-

rium allocations because of the MEU preferences, each element of the continuum is conditionally

Pareto optimal.33 In other words, all equilibria found in Theorem 2 are incompatible with each

other in the sense of the Pareto superiority.

Remark 6 When the agents’ preferences are smooth, the conditionally Pareto optimal alloca-

tions are characterized by the dominant root of the matrix of marginal rates of substitution

being less than or equal to one (Aiyagari and Peled, 1991; Chattopadhyay and Gottardi, 1999;

33Note that the proof of Theorem 4 does not require continuous differentiability of u.
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Chattopadhyay, 2001; Ohtaki, 2013a, among others). However, as we have already seen it, the

MEU preferences are nonsmooth. Therefore, we cannot directly apply the characterization re-

sults developed by the studies mentioned above to the current model. Instead of applying the

established characterization results, we can more directly demonstrate the optimality of the

stationary monetary equilibria by tailoring Sakai’s (1988) proof to our model. Sakai demon-

strates the conditional Pareto optimality of the stationary monetary equilibrium allocations in

a stochastic OLG model with the standard expected utility preferences while his proof does not

hinge upon this specific form of preferences.

8 Lemmas and Proofs

We first prove that each stationary monetary equilibrium given an economy is characterized

by a system of inclusions. To handle this case, we apply the following lemma that was directly

adapted from Aubin (1979, p.118, Proposition 6).

Lemma 1 (Aubin, 1979) Let Π be a nonempty subset of a metric space and let {fπ}π∈Π be a

collection of functions from ℜ to ℜ. For each x ∈ ℜ, define

g(x) := inf
π∈Π

fπ(x) and M(x) := {π ∈ Π| g(x) = fπ(x)}.

Let x ∈ ℜ. Suppose that (a) Π is compact; (b) there exists a neighborhood X of x such that

functions π 7→ fπ(y) are continuous (in the metric topology) for all y ∈ X; and (c) for all π ∈ Π,

fπ is concave and differentiable. Then, g is differentiable at x both from the left and the right

and it holds that

D−g(x) = max
π∈M(x)

Dfπ(x) and D+g(x) = min
π∈M(x)

Dfπ(x).

We can apply this lemma to prove Theorem 1.

Proof of Theorem 1. Because UPs(·) is strictly concave, a real number m ∈ ℜ is a solution

of the degenerate optimization problem in (2) if and only if

(∀s ∈ S) D+Vs(m) ≤ 0 ≤ D−Vs(m),
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where D−Vs(m) and D+Vs(m) are the left and right derivatives of Vs(m) taken with respect to

m (the existence of which is given by Lemma 1). Therefore, we can characterize a stationary

equilibrium by a system of inequalities:

(∀s ∈ S) D+Vs(M) ≤ 0 ≤ D−Vs(M).

Because

D+Vs(m) = min
π∈Ms(cms (q∗))

(
−
∑
s′∈S

q∗su1(c
m
ss′(q

∗))πs′ +
∑
s′∈S

q∗s′u2(c
m
ss′(q

∗))πs′

)
,

D−Vs(m) = max
π∈Ms(cms (q∗))

(
−
∑
s′∈S

q∗su1(c
m
ss′(q

∗))πs′ +
∑
s′∈S

q∗s′u2(c
m
ss′(q

∗))πs′

)

for all m ∈ ℜ and Ms(c
M
s (q∗)) is convex for all s ∈ S, we obtain (4). �

We need the following lemma to prove Theorem 2.

Lemma 2 Suppose that there are two distinct probability measures µ, ν ∈ ∆S, such that µ, ν ∈

Ps for each s ∈ S. Then, there exists ω̂o ∈ ℜS
++ such that

min

{∑
s′∈S

ω̂o
s′πs′

∣∣∣∣∣ π ∈ Pŝ

}
< max

{∑
s′∈S

ω̂o
s′πs′

∣∣∣∣∣ π ∈ Ps̃

}
for each ŝ, s̃ ∈ S, or equivalently,

max
s∈S

min
π∈Ps

∑
s′∈S

ω̂o
s′πs′ < min

s∈S
max
π∈Ps

∑
s′∈S

ω̂o
s′πs′ . (6)

Proof of Lemma 4. Because µ and ν are distinct probability measures on S, there exists at

least one t ∈ S such that 0 ≤ νt < µt. Define ᾱ > 0 by

ᾱ :=

∑
s′ ̸=t

(νs′ − µs′)

1− νt
µt

.

Because
∑

s′ ̸=t(νs′ − µs′) > 0 and 1 − νt/µt > 0, it follows that ᾱ > 0. Therefore, we can

arbitrarily choose α ∈ (0, ᾱ). Now, define ω̂2 ∈ ℜS
++ by

(∀s′ ∈ S) ω̂o
s′ :=

{ α

µt
if s′ = t,

1 otherwise.

It follows from α < ᾱ that

α

(
1− νt

µt

)
+
∑
s′ ̸=t

(µs′ − νs′) < 0 ,
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so we can obtain that

∑
s′∈S

ω̂o
s′µs′ −

∑
s′∈S

ω̂o
s′νs′

=

α+
∑
s′ ̸=t

µs′

−

α
νt
µt

+
∑
s′ ̸=t

νs′


= α

(
1− νt

µt

)
+
∑
s′ ̸=t

(µs′ − νs′)

< 0 ,

i.e.,
∑

s′∈S ω̂o
s′µs′ <

∑
s′∈S ω̂o

s′νs′ . Finally, because µ, ν ∈ Ps for each s ∈ S, it holds that

min

{∑
s′∈S

ω̂o
s′πs′

∣∣∣∣∣ π ∈ Pŝ

}
≤
∑
s′∈S

ω̂oµs′ <
∑
s′∈S

ω̂oνs′ ≤ max

{∑
s′∈S

ω̂o
s′πs′

∣∣∣∣∣ π ∈ Ps̃

}
for each ŝ, s̃ ∈ S. This completes the proof. �

Proof of Theorem 2. Let ω̂o be an element of ℜS
++ as described in Lemma 4. That is, ω̂o

satisfies (6). There then exist m,M ∈ ℜ++ such that

(∀s ∈ S) min
π∈Ps

∑
s′∈S

ω̂o
s′πs′ < m < M < max

π∈Ps

∑
s′∈S

ω̂o
s′πs′ .

Because maxπ∈Ps

∑
s′∈S ωo

s′πs′ and minπ∈Ps

∑
s′∈S ωo

s′πs′ are continuous in ωo for each s ∈ S

according to the maximum theorem (Berge, 1963), there exists an open neighborhood, Ωo
s, of

ω̂o for each s ∈ S such that any element of Ωo
s satisfies

min
π∈Ps

∑
s′∈S

ωo
s′πs′ < m < M < max

π∈Ps

∑
s′∈S

ωo
s′πs′ .

Define Ωo by Ωo :=
∩

s∈S ωo
s . Obviously, Ωo is open and nonempty because ω̂o ∈ Ωo. There

then exist ωo
1, ω̄

o
1, . . . , ω

o
|S|, ω̄

o
|S| such that ω̂o ∈ (ωo

1, ω̄
o
1) × · · · (ωo

|S|, ω̄
o
|S|) ⊂ Ωo, where we write

S = {1, 2, . . . , |S|}. Let ĉo be any real number such that ĉo > maxs∈S ω̄o
s . Then, from the above

inequalities, it holds that, for any ωo ∈ (ωo
1, ω̄

o
1)× · · · (ωo

|S|, ω̄
o
|S|) and for any s ∈ S,

ĉo −max
π∈Ps

∑
s′∈S

ωo
s′πs′ < ĉo −M < ĉo −m < ĉo − min

π∈Ps

∑
s′∈S

ωo
s′πs′ .

Let s ∈ S. Define a function g : ℜ2
++ → ℜ by

(∀(ωy
s , ω

o
s)) g(ωy

s , ω
o
s) := (ĉo − ωo

s)
u1(ω

y
s + ωo

s − ĉo, ĉo)

u2(ω
y
s + ωo

s − ĉo, ĉo)
.
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By the assumption that f is surjective with respect to its first argument, there exists ω̂y
s ∈ ℜ++

such that g(ω̂y
s , ω̂o

s) ∈ (ĉo −M, ĉo −m), where ω̂o
s is found in the first paragraph of this proof.

Because g is continuous according to the continuity of f , g−1((ĉo−M, ĉo−m)) is open. Therefore,

there exist open sets Ωy
s and Ω̂o

s such that ω̂y
s ∈ Ωy

s , ω̂o
s ∈ Ω̂o

s and Ωy
s×Ω̂o

s ⊂ g−1((ĉo−M, ĉo−m)).

Let Ω̃o
s := (ωo

s, ω̄
o
s) ∩ Ω̂o

s. Then, Ω̃o
s is open and nonempty because ω̂o

s is included in both sets.

Finally, define Ω by Ω := Ωy
1 × · · · × Ωy

|S| × Ω̃o
1 × · · · × Ω̃o

|S|.

Let (ωy, ωo) ∈ Ω. Then, ĉo (found in the first paragraph of this proof) satisfies Eq.(5) with

strict inequalities for each s ∈ S. Because f is continuous, there exists an open neighborhood,

Ĉo
s , of ĉo such that, for any co ∈ Ĉo

s , co satisfies (5) with strict inequalities. Define Co by

Co :=
∩

s∈S Ĉo
s . This is the desired set and the proof is complete. �

Proof of Corollary 2. Under the stated assumptions, the function f will become f(x, y) =

v′y(x)/v
′
o(y) for each x and y. According to the Inada condition on vy, f(·, y) is clearly surjective

for each y, which completes the proof. �

Proof of Theorem 3. (a) Let ω ∈ Ω̂P and c̄o ∈ Ĉo
P(ω). These definitions are valid because Ω̂P

is nonempty owing to our assumption and Theorem 2, and because Ĉo
P(ω) is nonempty according

to the definition of Ω̂P. Then, for each s ∈ S,

c̄o −max
π∈Qs

∑
s′∈S

ω2
s′πs′ ≤ c̄o −max

π∈Ps

∑
s′∈S

ω2
s′πs′

≤ (c̄o − ωo
s)f(ω

y
s + ωo

s − d, d)

≤ c̄o − min
π∈Ps

∑
s′∈S

ω2
s′πs′

≤ c̄o − min
π∈Qs

∑
s′∈S

ω2
s′πs′ .

Here, the first and the last inequalities hold because Ps ⊂ Qs, and the second and third in-

equalities hold because of the assumption that d ∈ Ĉo
P(ω). Therefore, d ∈ Ĉo

Q(ω), and hence,

Ĉo
P(ω) ⊂ Ĉo

P(ω).

(b) Let ω ∈ Ω̂P. Then, Ĉo
P(ω) is nonempty, and Ĉo

Q(ω) is also nonempty because Ĉo
P(ω) ⊂

Ĉo
Q(ω) according to (a). Therefore, ω ∈ Ω̂Q, which completes the proof. �
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Proof of Theorem 4. Sakai (1988) proved that if U s : ℜ++ × ℜS
++ → ℜ is increasing and

strictly quasi-concave for all s ∈ S, then, for any stationary feasible allocation c corresponding to

a stationary monetary equilibrium, there exists no other stationary feasible allocation b that is

conditionally Pareto superior to c. (Sakai (1988) assumed that U s is represented by an expected

utility function with a utility index that satisfies some regularity conditions. However, his proof

only requires that U s should be increasing and strictly quasi-concave.) Clearly, U s is increasing.

Furthermore, because U s(·) is strictly concave, it is strictly quasi-concave.34 Therefore, the

proof is complete. �
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