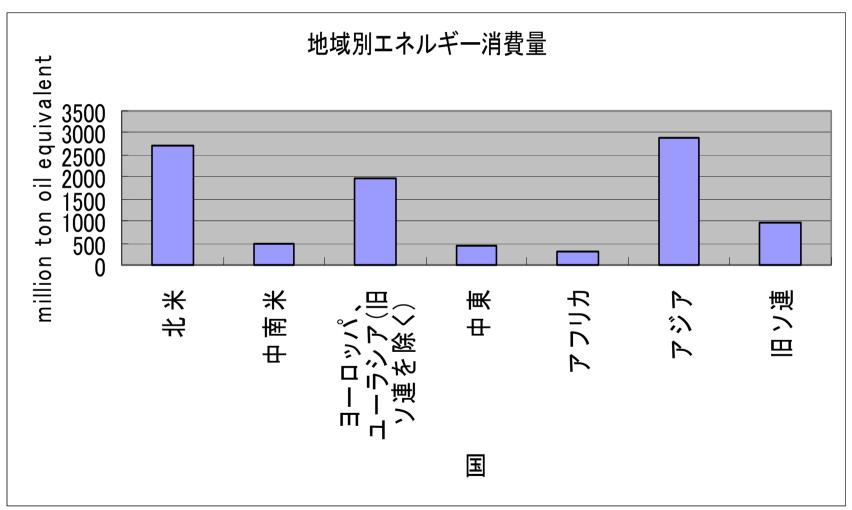


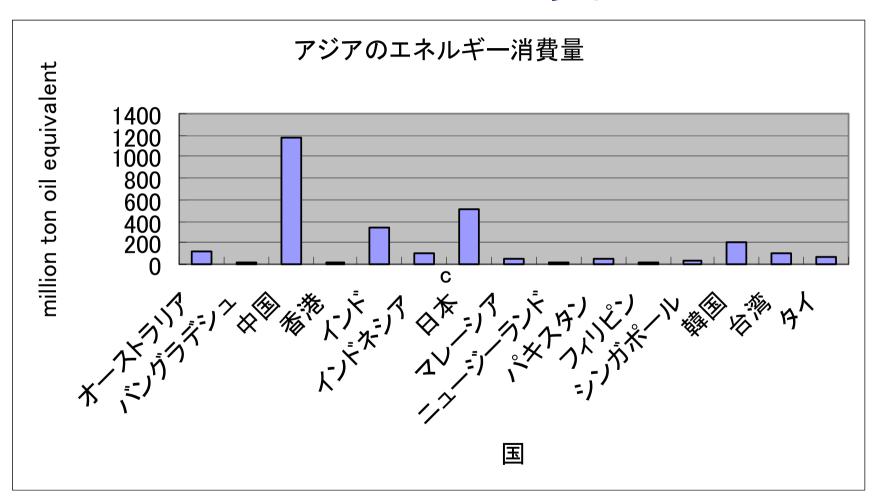
省エネルギー班 ~トップランナー方式の有用性~

穐田 真衣加藤 壮後藤 悠太田中 孝幸


発表の流れ

[1章] 研究背景 ~省エネルギーの必要性~

[2章] 日本の省エネルギー分析 ~自動車の省エネを例に~


[3章] 中国の省エネルギー分析と提言

エネルギー消費量

BP statistics

エネルギー消費量

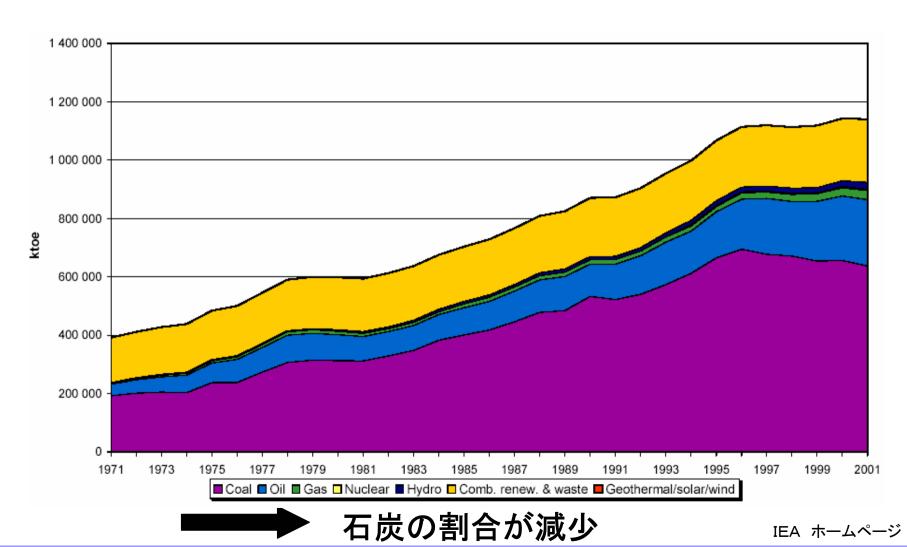
BP statistics

中国のエネルギー政策を検討!

エネルギーとは?

一次エネルギー

自然から直接得られるエネルギー


Ex)石油、石炭、天然ガス・・・etc

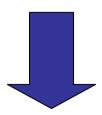
二次エネルギー

電気・ガソリンなど、一次エネルギーを変換や加工して得られる エネルギー

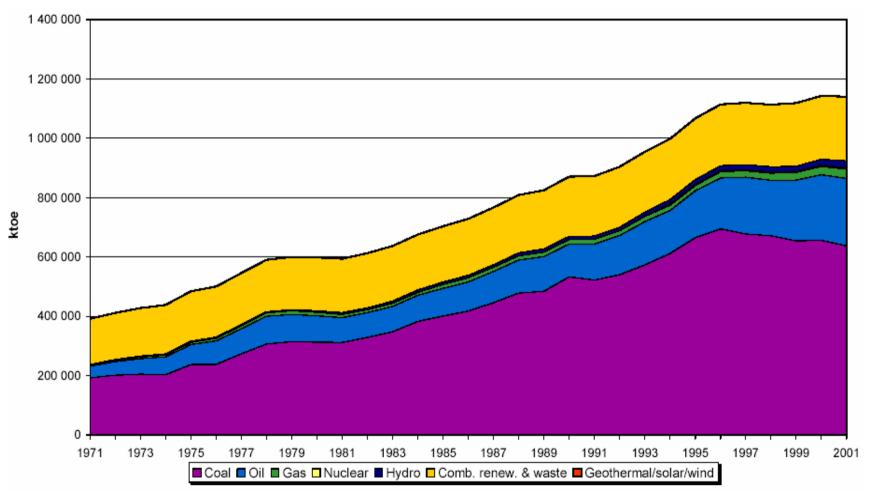
最終エネルギー

最終消費者に利用されるエネルギー 二次エネルギーから利用される場合と一次エネルギーが そのまま最終消費者に利用される場合がある

2004 10 30 省エネルギー班

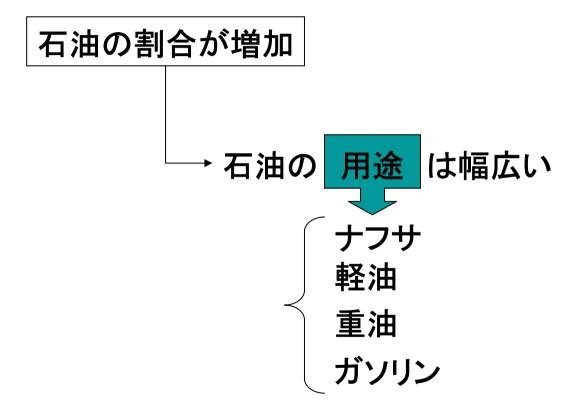

→ 非効率な炭田の閉鎖

→ 質の悪い石炭の排除

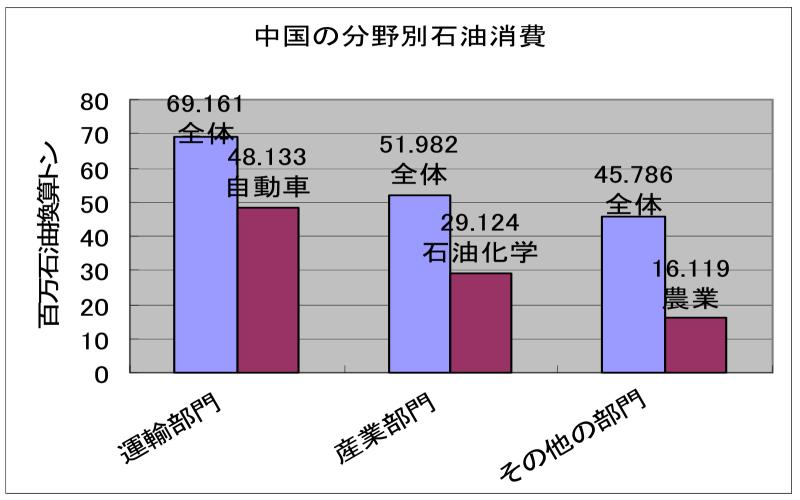

→ 大気汚染など環境への影響

効率改善

→ 環境改善



何らかの対策が採られている



石油の割合が増加

IEAホームページ

中国の分野別石油消費

IEA Energy Balances Non-OECD Countries

分析の対象

自動車部門におけるベストなエネルギー政策を検討

i)燃料転換

ガソリン自動車 --- 天然ガス自動車 燃料電池自動車

しかし・・・

先進国の技術をもってしても普及しない状況・・・

ii)省エネ

燃費改善

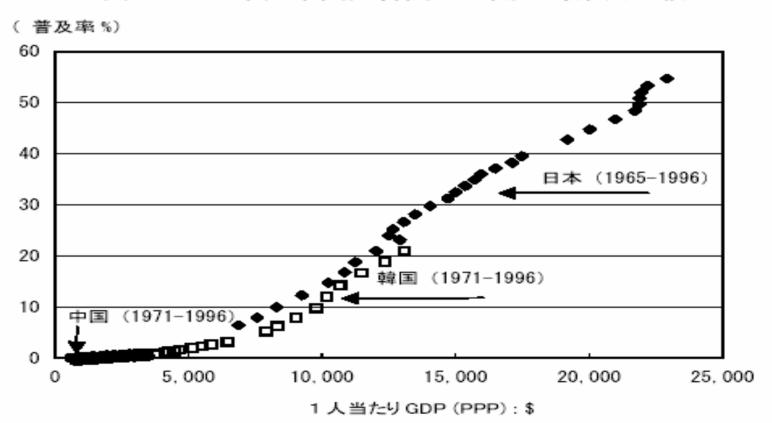
省エネの推進を!!!

中国の自動車部門におけるエネルギー消費量の増大

個人の所得の 増大

> 自動車保有 台数の増加

道路拡張計画


ガソリン消費の増大・

の逼迫

石油需給

中国の今後の自動車の増加

図3-1 日本、中国、韓国3か国の時系列比較

中国のモータリゼーションとエネルギー消費の展望(2002)

中国における自動車保有量の予測

	1990年 (万台)	2000年 (万台)	2020年 (万台)	2000~2020年 平均伸び
	(73 日 /	(73 日 /	(73 日 /	(%)
自動車計	551	1609	5607	6.4
業務用自動車	470	984	2243	4.2
自家用車	82	625	3364	8.8

中国のモータリゼーションとエネルギー消費の展望(2002)

中国の自動車部門での省エネを促進すべき!

ではどこの国の政策を参考にしたらいい?

Kelo Univ. Yamaguchi Seminar — Doshisha Univ. Gunjima Seminar

世界の乗用車重量別燃費ベスト3

重量 区分 [kg]	順位	メーカー名等	通称名	燃費 [km/l]	型式	変速 機形 式	総排気量 [l]
703 ~ 827	1	本田技研工業(株)	インサイト(ハイブリッド)	35. 0	YA-ZE1	5M T	0.995
627	2	トヨタ自動車(株)	ヴィッツ	24. 0	TA-SCP10	5M T	0.997
	З	スマート	スマートカブリオ	19. 8	GH- MC01C	6AT	0.598
	"	スマート	スマートクーペ	19. 8	GH- MC01M	6AT	0.598
828 ~ 1015	1	本田技研工業(株)	インサイト(ハイブリッド)	33. 0	YA-ZE1	5M T	0.995
	2	トヨタ自動車(株)	ヴィッツ	25. 5	UA- SCP13	CVT	1.296
	3	本田技研工業(株)	フィット	23. 0	LA-GD1	CVT	1.339

出所:国土交通省自動車交通局技術安全部環境課調べ

世界の車両重量別燃費ベスト3

重量区分 [kg]	値	メーカー名等	通称名	燃費 [km/l]	型式	変速機形式	総 排 気 量[l]
1016 ~ 1265	1	トヨタ自動車(株)	プリウス(ハイブリッド)	31. 0	ZA- NHW11	CV T	1.49 6
	2	本田技研工業(株)	シビックハイブリッド(ハイブリッド)	29. 5	ZA-ES9	CV T	1.33 9
	3	本田技研工業(株)	フィット	21. 0	LA-GD1	CV T	1.33 9

モビリオ

モビリオスパイク

ビスタ

本田技研工業(株)

本田技研工業(株)

トヨタ自動車(株)

1266~

1515

1

2

3

_____ 出所:国土交通省自動車交通局技術安全部環境課調べ

17.0

16.0

15.4

2004 10 30 省エネルギー班

LA-GB1

LA-GK1

TA-AZV50

CV

T

CV

4A T 1.49

6

1.49

6

1.99

8

世界の乗用車重量別燃費ベスト3

重量区分 [kg]	順位	メーカー名等	通称名	燃費 [km/l]	型式	変速機形式	総排 気量 [l]
1516~ 1765	1	トヨタ自動車(株)	ノア、ヴォクシー	13. 2	TA- AZR60G	4A T	1.99 8
	2	トヨタ自動車(株)	クラウン(ハイブリッド)	13. 0	YA- JKS175	5A T	2.99
	3	本田技研工業(株)	アコードワゴン	12. 4	UA-CM2	5A T	2.35
	"	トヨタ自動車(株)	ガイア	12. 4	TA- ACM15G	4A T	1.99 8
1766~ 2015	1	トヨタ自動車(株)	エスティマハイブリッド (ハイブリッド)	18. 0	ZA- AHR10W	CV T	2.36
	2	トヨタ自動車(株)	エスティマT、エスティマ L	9. 8	TA- ACR40W	4A T	2.36
	3	トヨタ自動車(株)	アルファードG、アル ファードV	9. 7	UA- ANH10W	4A T	2.36

出所:国土交通省自動車交通局技術安全部環境課調べ

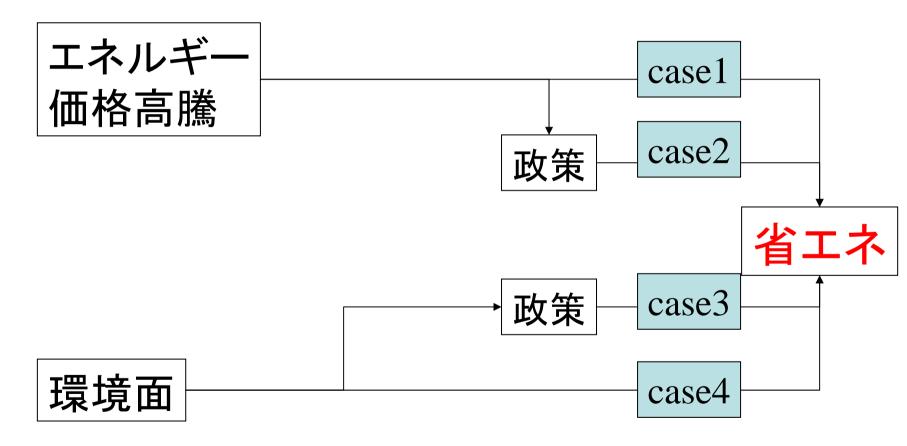
世界の乗用車重量別燃費ベスト3

重量区分 [kg]	位	メーカー名等	通称名	燃費 [km/l]	型式	変速機形式	総排 気量 [l]
2016 ~ 2265	1	三菱自動車工業 (株)	パジェロ	8. 5	LA-V73W	5M T	2.97
	2	トヨタ自動車(株)	アルファードG、アルファードV	8. 3	TA- MNH15W	4A T	2.99
	3	日産自動車(株)	エルグランド	8. 0	UA-E51	5A T	3.49
2266~	1	トヨタ自動車(株)	ランドクルーザーワゴン	6. 3	GH- UZJ100W	5A T	4.66
	2	シボレー	トレイルブレイザー	6. 2	GH-T370L	4A T	4.15
	3	ランドローバー	レンジローバー	5. 7	GH-LM44	5A T	4.39

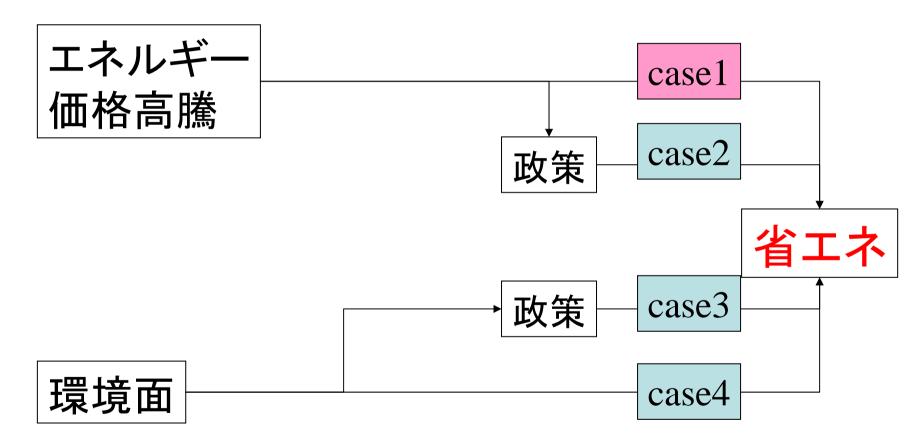
出所:国土交通省自動車交通局技術安全部環境課調べ

日本の自動車の燃費は世界トップ!

日本の省エネの歴史から学ぶことは多いはず!!

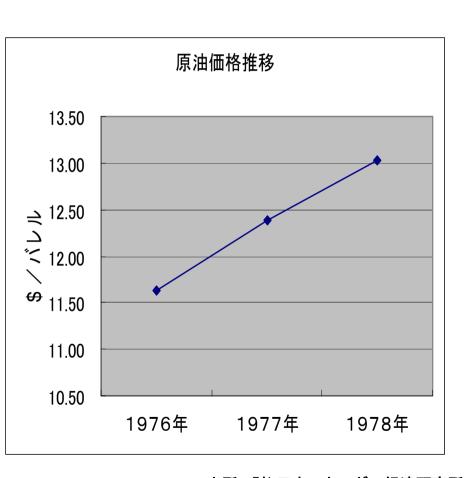

発表の流れ

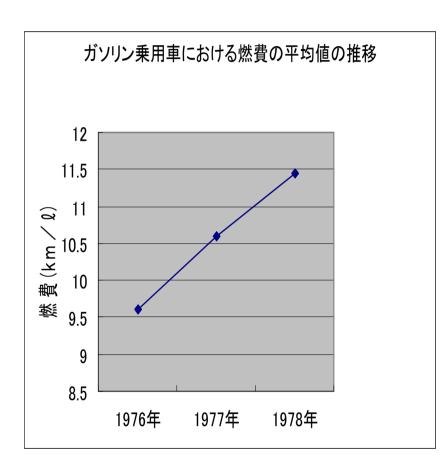
[1章] 研究背景~省エネルギーの必要性~


[2章] 日本の省エネルギー分析 ~自動車の省エネを例に~

[3章] 中国の省エネルギー分析と提言

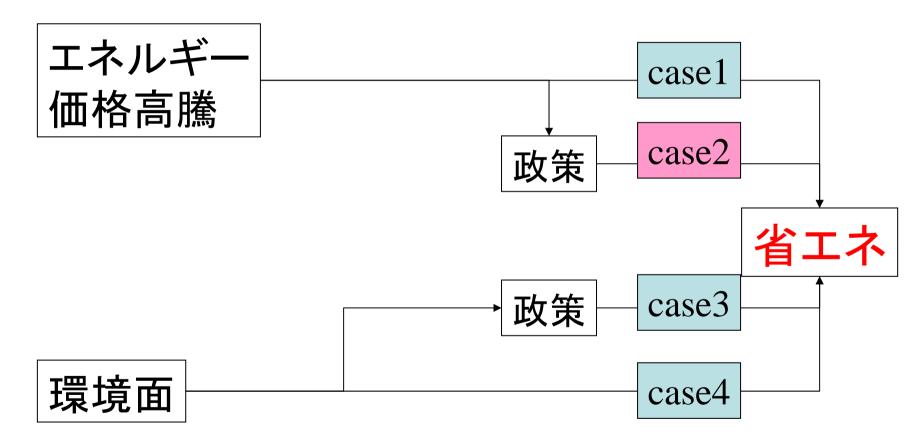
省エネへの要因

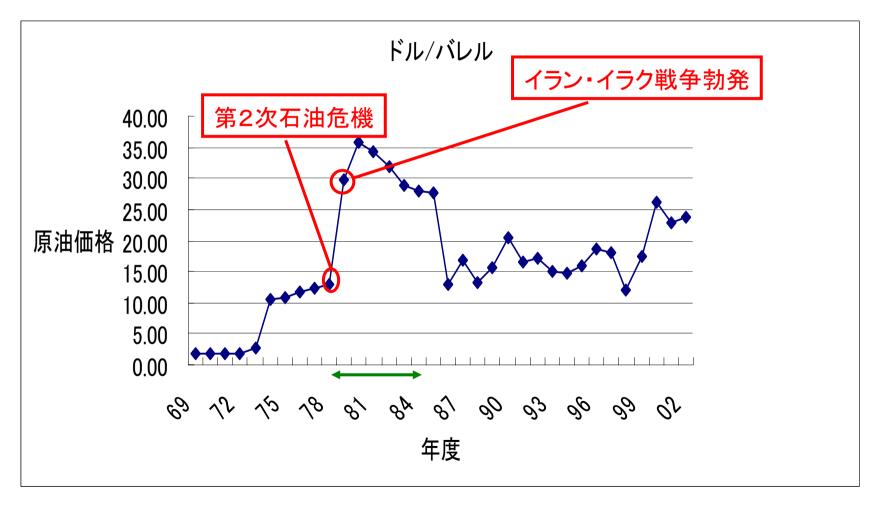



省エネへの要因

Case 1

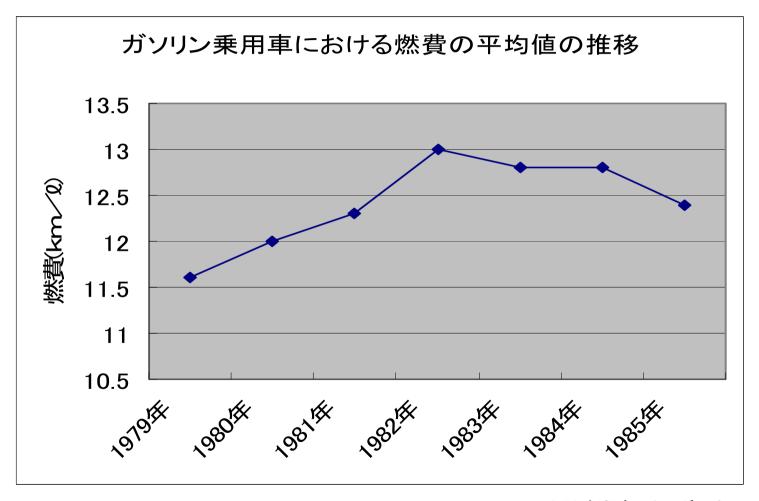
(エネルギー価格高騰→省エネ)




出所:(財)日本エネルギー経済研究所

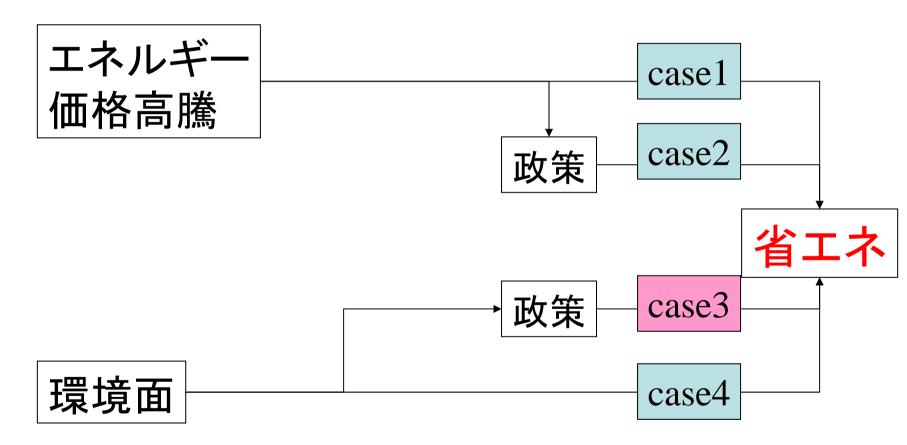
出所:新版省エネルギー法の逐条解説

省エネへの要因


石油価格の変動

出典: BP Statistical Review of World Energy 2003 より(財) 日本エネルギー経済研究所作成

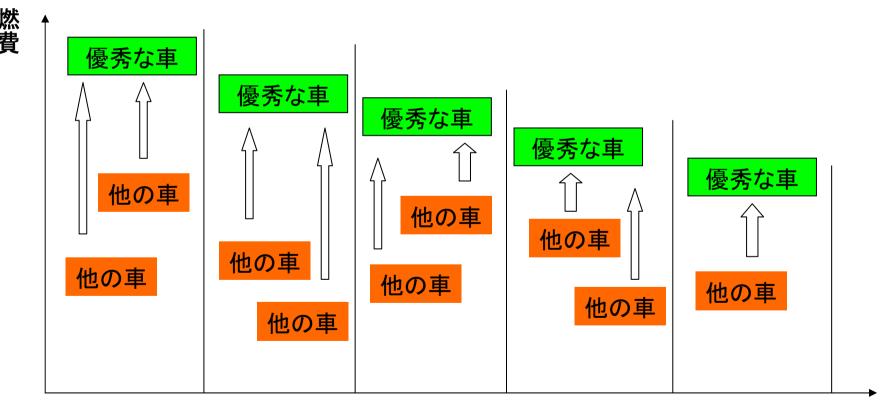
Case 2


(エネルギー価格高騰→政策→省エネ)

出所:新版省エネルギー法の逐条解説

2004 10 30 省エネルギー班

省エネへの要因

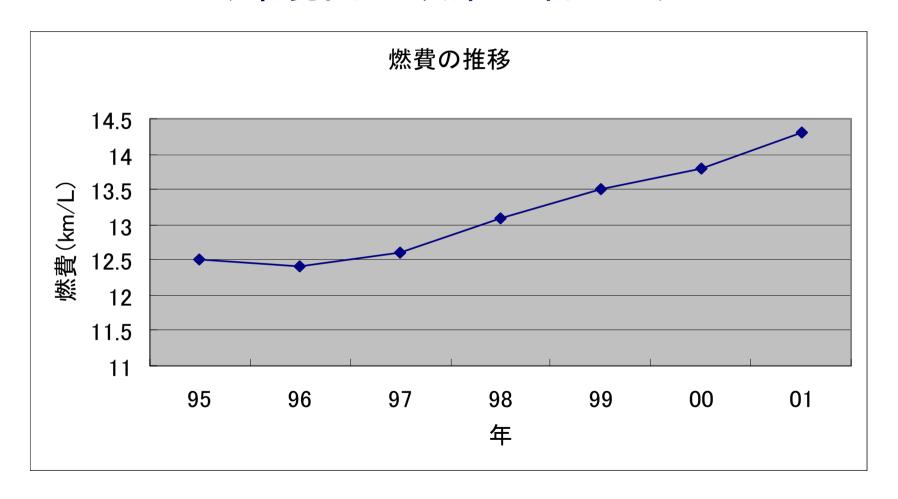

Case 3

(環境面→政策→省エネ)

• トップランナー方式

• 自動車税のグリーン化

トップランナー方式とは



重量

Kelo Univ. Yamaguchi Seminar — Doshisha Univ. Gunjima Seminar

Case 3

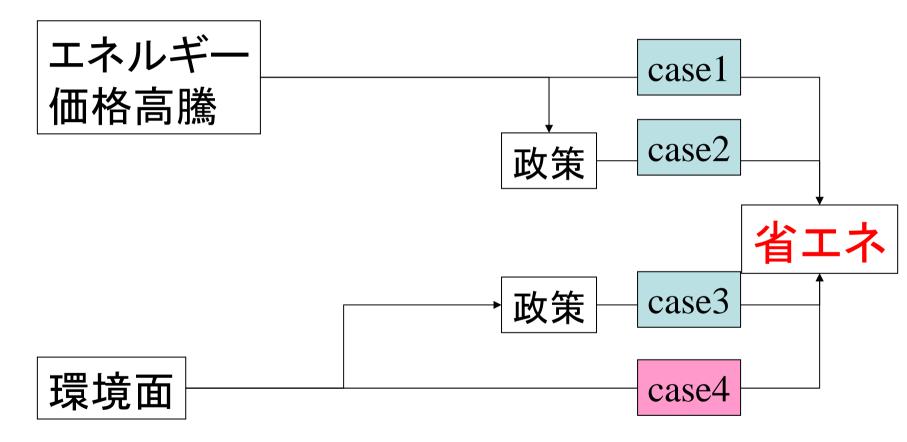
(環境面→政策→省エネ)

出所:国土交通省ホームページ

Case 3 補足

(自動車税のグリーン化)

自動車税のグリーン化 (2001年度新規導入)


•自動車税について税収中立を前提に・・・

低公害車は税率が軽減 車齢の高い自動車は重課

•自動車取得税について

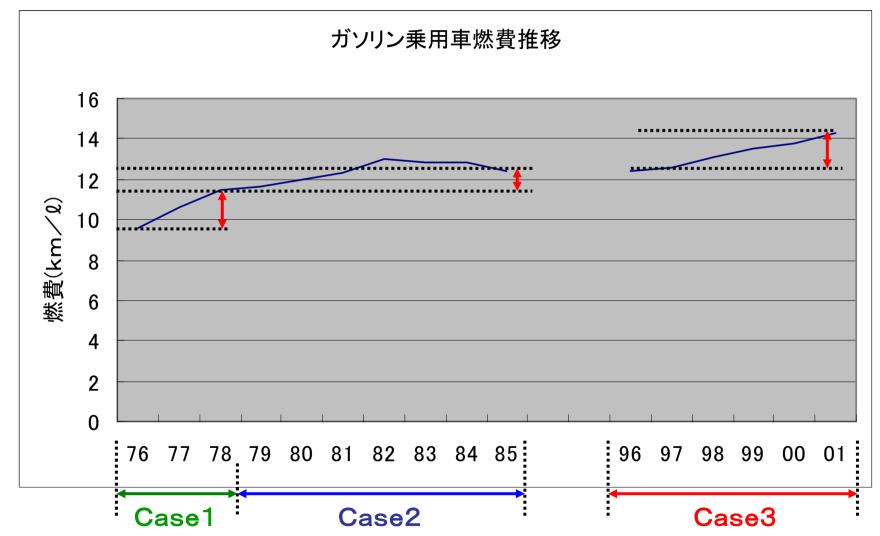
低燃費かつ低排出ガス認定者に対し取得価格から30万円 控除するなどの特例を設けている

省エネへの要因

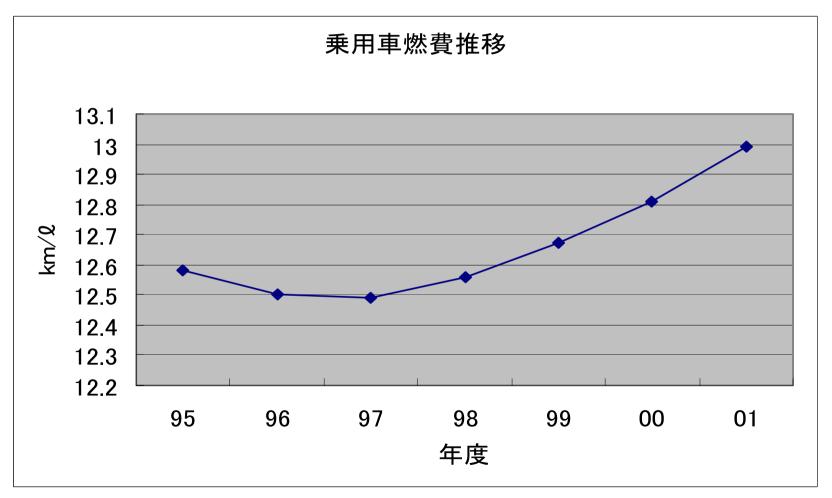
Case 4

(環境面→省エネ)

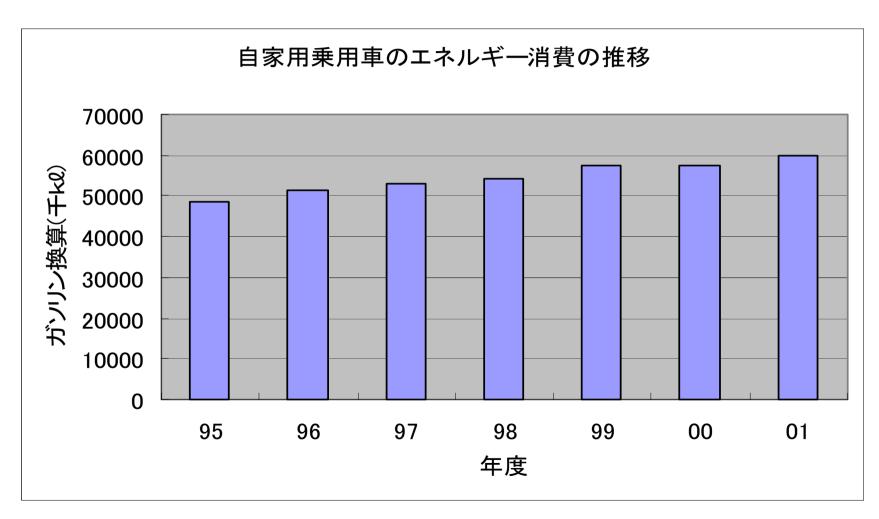
国民の環境に対する意識の高まり



企業の環境への配慮の姿勢を示す事による 企業のブランドカのup EX:トヨタ自動車のプリウス


企業ブランドupの戦略としての省エネ

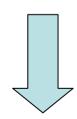
Case 3の分析の必要性


出所:新版省エネルギー法の逐条解説、国土交通

燃費の推移

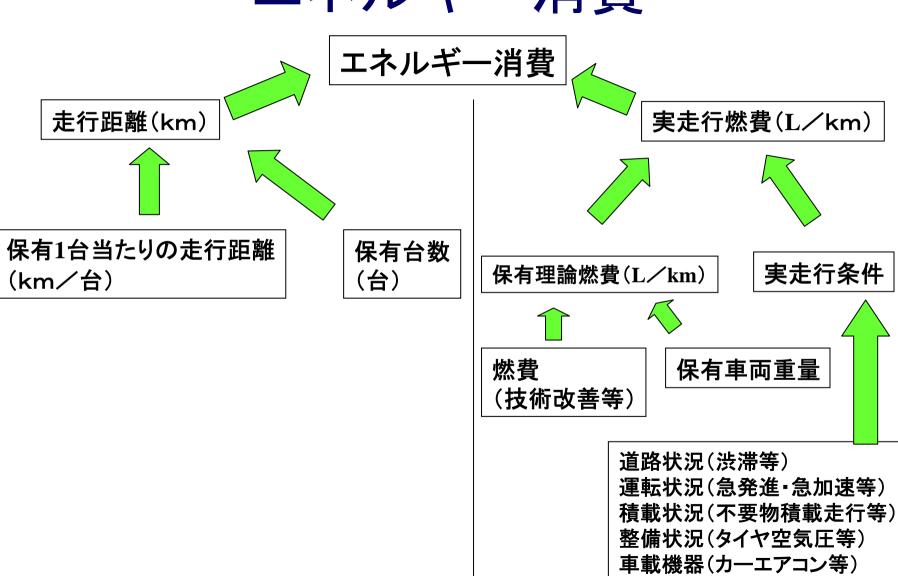
出所:交通関係エネルギー要覧

エネルギー消費の推移

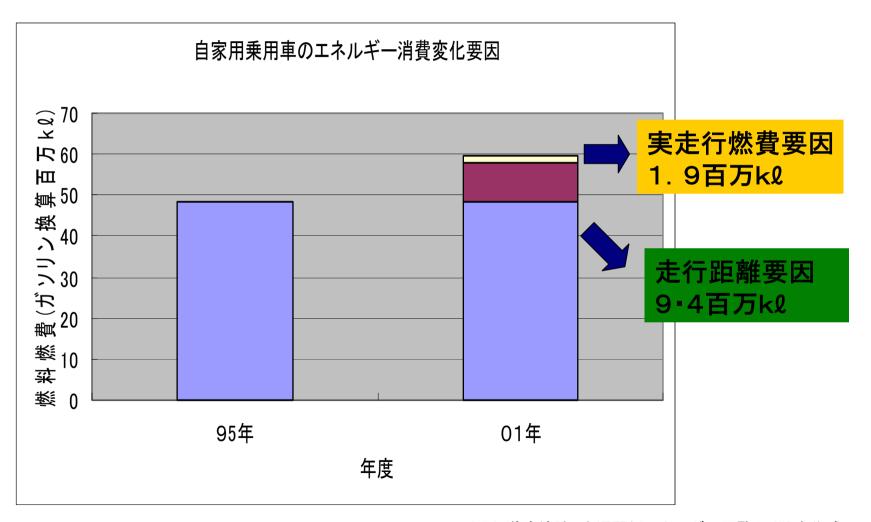

出所:交通関係エネルギー要覧

つまり・・・

燃費効率がよくなっている

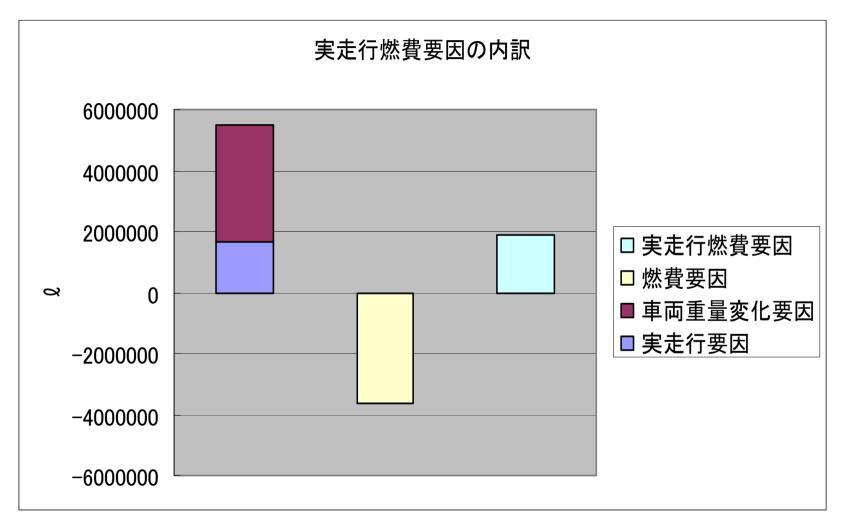


乗用車のエネルギー消費量が上がっている



燃費効率はどれぐらい寄与しているのだろうか?

エネルギー消費



自家用乗車のエネルギー消費変化要因

出所:道路統計、交通関係エネルギー要覧より独自作成

実燃費要因の内訳

出所:道路統計、交通関係エネルギー要覧より独自作成

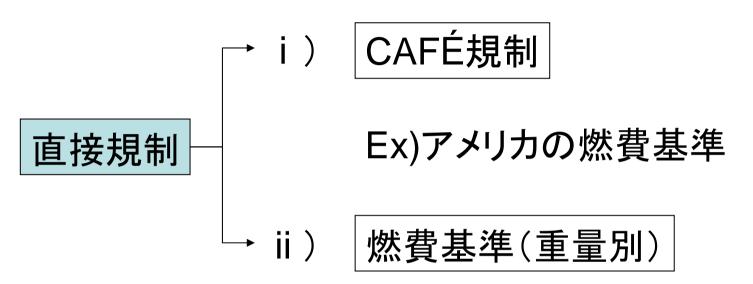
エネルギー消費フローチャート

発表の流れ

[1章] 研究背景 ~省エネルギーの必要性~

[2章] 日本の省エネルギー分析 ~自動車の省エネを例に~

[3章] 中国の省エネルギー分析と提言


燃費効率改善手法

- i)補助金 (財源の問題)
- ii)稅
 - (日本のグリーン税 ポテンシャルはある)
- iii)直接規制

OECDで提唱

直接規制

普通の燃費基準

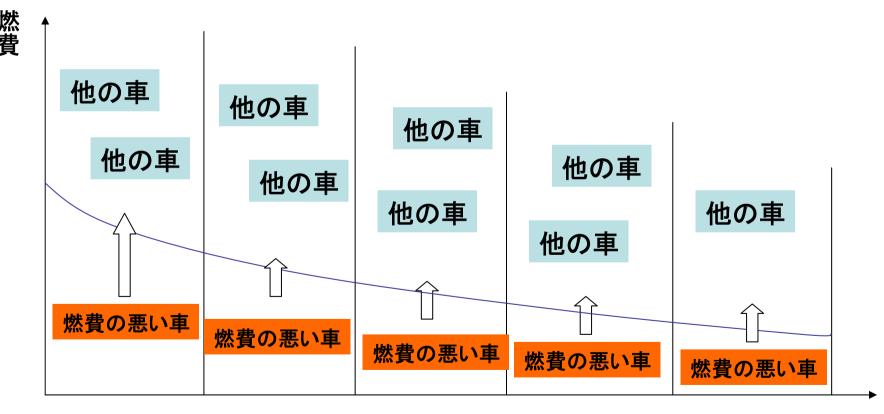
トップランナー方式

現状の中国の燃費基準

新自動車産業発展政策を導入 (2004年6月1日)

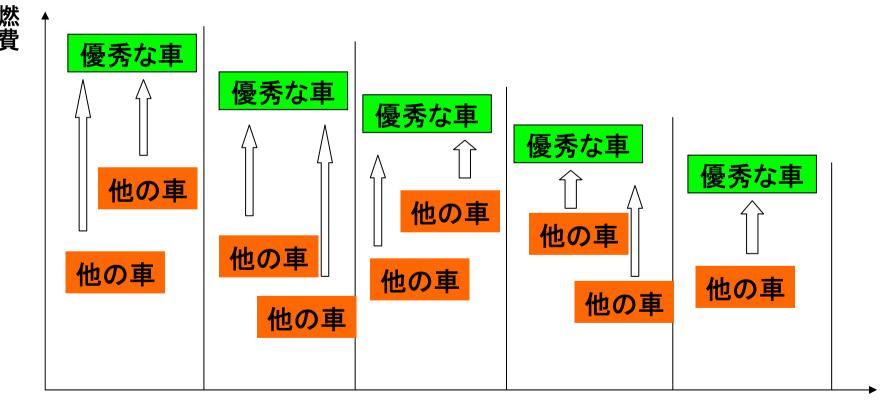
中国の自動車産業を国の基幹産業として位置付ける

中国の自動車企業を世界的に通用するものにする

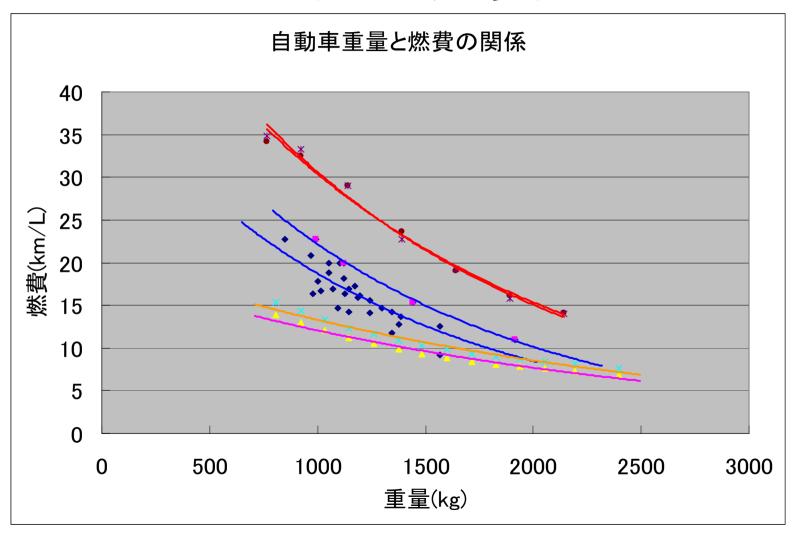

自動車産業の効率化

中国ブランドの確立

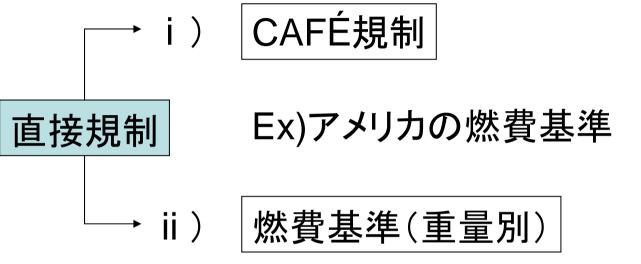
燃費基準の制定


etc...

新自動車産業発展政策


重量

トップランナー方式


重量

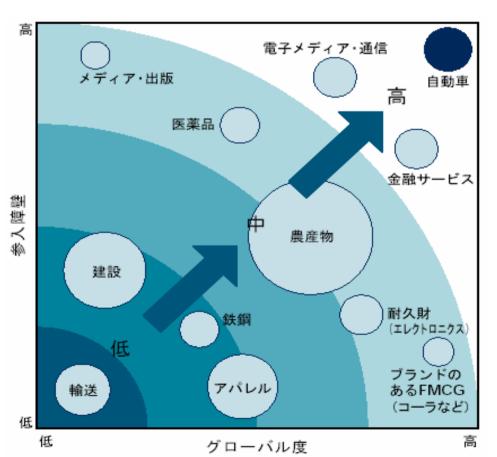
中国の燃費

出所:中国自動車年鑑、各メーカパンフレットより独自作

直接規制

普通の燃費基準

トップランナー方式


現状の政策とトップランナー

	トップランナー方式	新自動車産業発展政策
省石油	0	× (Δ)
環境	0	× (Δ)
技術	技術的には可能	容易
国際競争力	0	Δ
企業受容性	Δ	0

国際競争と自動車産業

2002年 中国WTO加盟 **国際競争にさらされる**

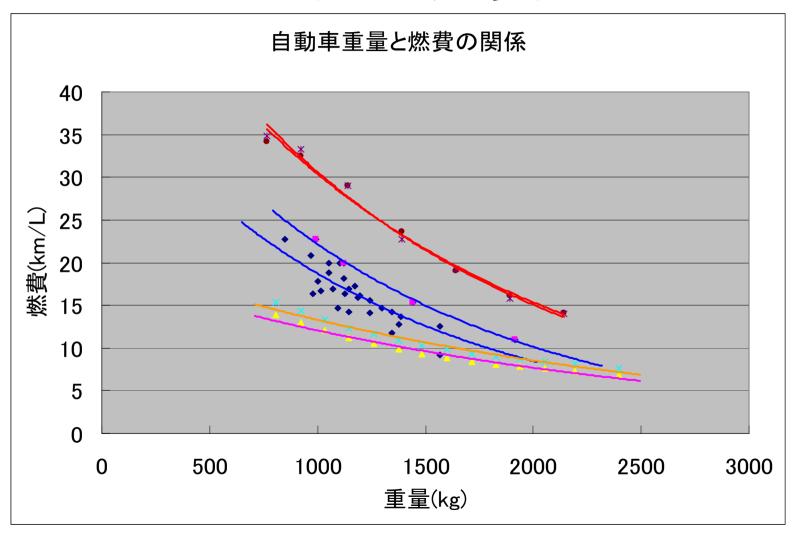
世界に通用する商品開発 の必要性

燃費効率改善の必要性

コスト・技術力の問題

出所:ローランド・ベルガー・アンド・パートナー(2002)

現状の政策とトップランナー


	トップランナー方式	新自動車産業発展政策
省石油	0	× (△)
環境	0	× (Δ)
技術	技術的には可能	容易
国際競争力	0	Δ
企業受容性	Δ	0

トップランナー方式の有用性

省石油がどれくらいできるのか?

• 独自モデルで省石油試算

中国の燃費

出所:中国自動車年鑑、各メーカパンフレットより独自作

計算の仮定

- 2003年にトップランナー方式導入 (2015年に達成)
- 走行距離、実走行条件は分析対象外

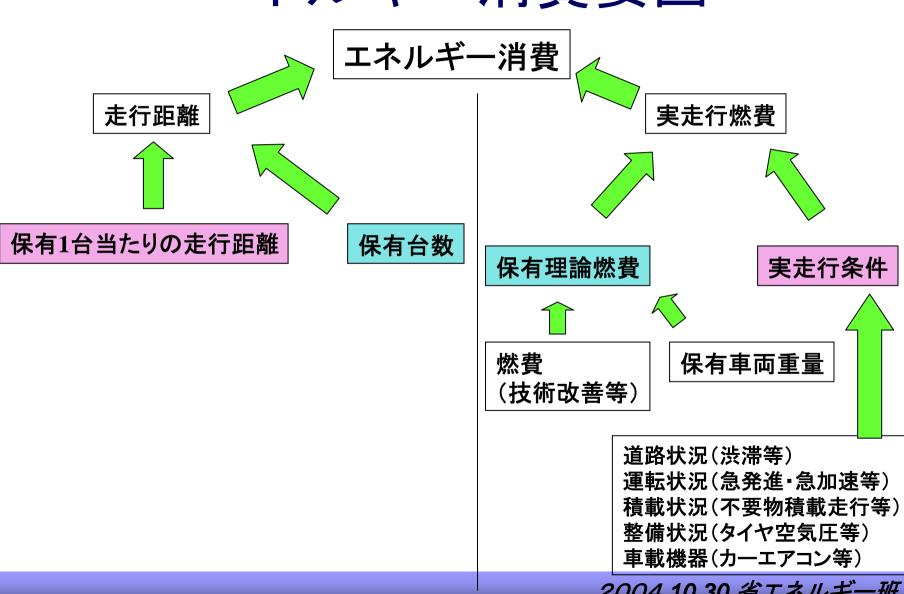
• 台数、燃費(出荷ベース)を予想分析

• 今後出荷される車を対象とする

エネルギー消費

燃費の仮定

新自動車産業発展政策の燃費基準を平均燃費と仮定


2015年には新車すべての燃費が基準達成と 仮定

2003年から2015年まで均一に改善されると 仮定

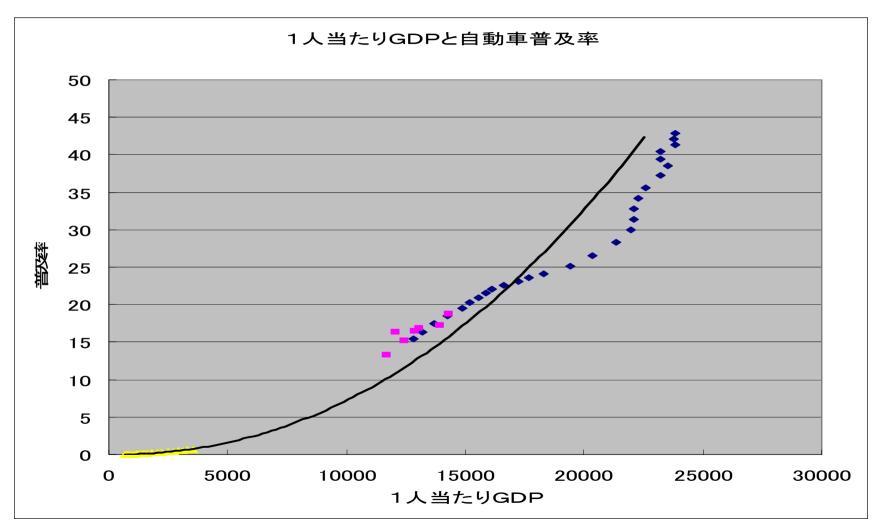
燃費の計算結果

年度	燃費の 推移(km/L)	燃費の推移(L/km)
2003	10.8567	0.09210902
2004	11.3168	0.088364202
2005	11.776	0.084918478
2006	12.2352	0.081731398
2007	12.6944	0.078774893
2008	13.1536	0.076024814
2009	13.6128	0.073460273
2010	14.072	0.071063104
2011	14.5312	0.068817441
2012	14.9904	0.066709361
2013	15.4496	0.064726595
2014	15.9088	0.062858292
2015	16.368	0.061094819

エネルギー消費要因

台数の仮定

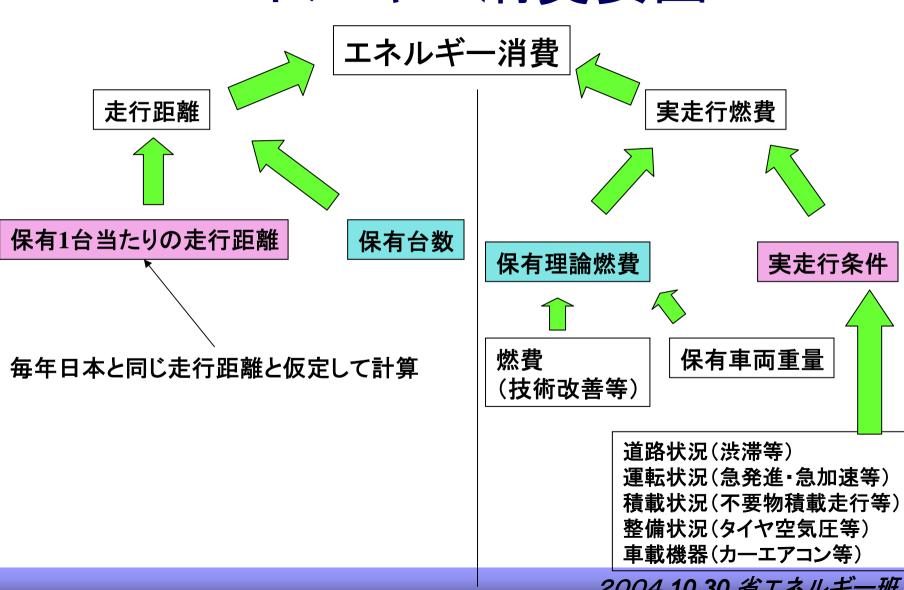
日本、韓国、中国の一人当たりGDPと自動車の普及率の関係を導く



2003年から2015年における中国の自動車保有台数を予測

自動車の出荷台数を予測 (x+1年度における保有台数-X年度における保有台数)

台数の仮定

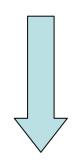


出所:world bank,世界自動車統計年報より独自作成

台数の予測結果

年度	保有予想 台数(台)	出荷予想 台数(台)
2003	10,910,475	
2004	12,725,203	1,814,729
2005	14,841,152	2,115,949
2006	17,308,225	2,467,073
2007	20,184,581	2,876,355
2008	23,537,993	3,353,412
2009	27,447,438	3,909,446
2010	32,004,949	4,557,511
2011	37,317,763	5,312,814
2012	43,510,833	6,193,071
2013	50,729,754	7,218,921
2014	59,144,160	8,414,405
2015	68,951,691	9,807,531

エネルギー消費要因

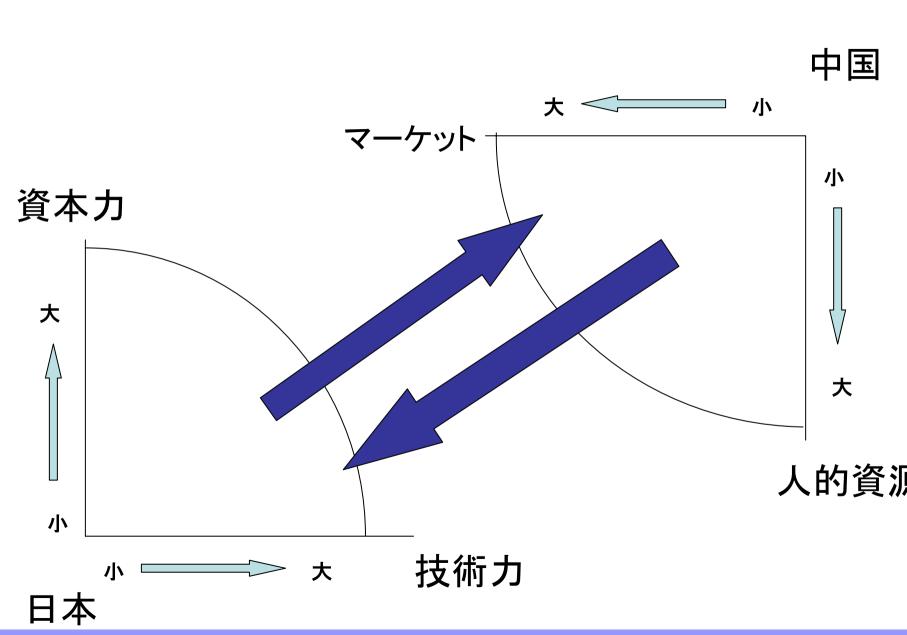

省石油の試算

省石油 = 出荷台数(台)×燃費改善値(L/km)×保有一台あたり走行距離(km/台

年度	燃費の 推移(km/L)	燃費の推移 (L/km)	燃費効率 改善(実質値)	単年度省石油	仮定走行距離 (9590) 日本の場合
2003	10.8567	0.09210902			
2004	11.3168	0.0883642	-0.00374	-6,796	-81,550
2005	11.776	0.08491848	-0.00719	-15,215	-167,363
2006	12.2352	0.0817314	-0.01038	-25,602	-256,024
2007	12.6944	0.07877489	-0.01333	-38,354	-345,183
2008	13.1536	0.07602481	-0.01608	-53,937	-431,496
2009	13.6128	0.07346027	-0.01865	-72,906	-510,344
2010	14.072	0.0710631	-0.02105	-95,917	-575,502
2011	14.5312	0.06881744	-0.02329	-123,744	-618,719
2012	14.9904	0.06670936	-0.0254	-157,302	-629,208
2013	15.4496	0.06472659	-0.02738	-197,672	-593,015
2014	15.9088	0.06285829	-0.02925	-246,127	-492,255
2015	16.368	0.06109482	-0.03101	-304,173	-304,173

省石油試算

省石油(L)	省石油(kg)	省石油(t)
-47,996,322,057	-43,148,693,529	-43,148,694



現在の中国の運輸部門の石油消費量を考えると大きな値

現状の政策とトップランナー

	トップランナー方式	新自動車産業発展政策
省石油	0	× (△)
環境	0	× (△)
技術	技術的には可能	容易
国際競争力	0	Δ
企業受容性	Δ	0

懸念材料

トップランナー方式導入を

参考文献

お世話になった方 エネルギー経済研究所 十市 勉様 エネルギー経済研究所 沈 中元様 省エネルギーセンター 佐藤 文廣様 トヨタ自動車 笹之内 雅幸様 日本総研 王 女亭様 みずほリサーチ 内堀 敬則様 東京大学大学院 久保田 雅則様

お世話になった団体 国土交通省 経済産業省 日本政策投資銀行 三菱自動車工業 本田技研工業株式会社 Audi日本法人 日産自動車 リクルート

Internet リソース 財団法人エネルギー経済研究所 <u>http://eneken.ieej.or.jp/index.html</u> NEDO <u>http://www.nedo.go.jp/</u> 経済産業省 http://www.meti.go.jp/

参考文献

Internet リソース
財団法人 省エネルキ・ーセンター http://www.eccj.or.jp/
国土交通省 http://www.mlit.go.jp/
アジア経済研究所 http://www.ide.go.jp/Japanese/index4.html
社団法人 自動車工業会 http://www.jama.or.jp/
トヨタ自動車 http://www.toyota.co.jp/index.html
三菱自動車工業 http://www.mitsubishi-motors.co.jp/japan/
本田技研工業株式会社 http://www.honda.co.jp/
日産自動車 http://www.nissan.co.jp/
World Bank http://www.worldbank.org/
UNEP http://www.unep.org/
BP Statistics http://www.bp.com/home.do
IEA http://www.iea.org/

参考資料 陸運統計要覧 道路統計 交通関係エネルギー要覧 エネルギー基本計画 経済産業省総合資源エネルギー調査会省エネルギー部会 配布資料 日本のエネルギー2003 中国の石油会社の経営・生産動向と投資戦略・計画 郭 四志

参考文献

参考文献 IEA energy balances IEA energy statistics IEA energy outlook 中国のモータリゼーションとエネルギー消費の展望 沈中元 中国のエネルギー需給と環境問題の現状 沈 中元 中国のエネルギー環境戦略 NIRA みずほアジアンサイト みずほ総研 Mizuho Industry Focus みずほ総研 環境対応を巡る自動車産業の動向 みずほ総研 中国の自動車市場 UFJ総研 中国の自動車産業政策 王 健 中国の自動車産業と市場 日本自動車工業会 中国自動車市場の発展と日本の自動車産業 木幡 伸二 高成長期入りの中国乗用車市場 三菱信託銀行 中国・自動車企業集団における経営戦略の展望 村瀬 伸二 中国汽車工業年鑑 中国自動車工業協会 中国自動車年鑑 中国自動車工業協会 世界自動車統計 社団法人 自動車工業会 中国自動車産業2004-2005 FOURIN 2002アジア自動車産業 FOURIN 中国経済の軟着陸と石油需要の行方 郭 四志 中国の石油需給動向について 郭 四志 崩れる中国のエネルギー需給逼迫シナリオ 金 堅敏

ローランド・ベルガー・アンド・パートナー(2002)

参考文献

参考文献 自動車燃費一覧 国土交通省 エネルギーリスク時代の中国 中井 毅 JETRO 主要国におけるエネルギー消費機器の法的規制による効率基準に関する調査報告書 省エネルキ・ーセンター Debelopment of China's Light-Duty passenger Vehicle Fuel Consumption Standards and Their Implications to Energy Savings WU Wei and JIN Yuefu