Saving energy part

"Top runner approach" must be useful

Mai Akita So Kato Yuta Goto Takayuki Tanaka

Table of Contents

- 1. Importance of saving energy
- 2. Analysis of saving energy in Japan
- 3. Analysis of saving energy in China and our proposal for it
- 4. Analysis of "Top runner" as an energy saving measure in Japan
- 5. Analysis of "Top runner" as an energy saving measure in China

Change of fuel consumption

Source: Relationship between traffic and energy catalogue

Changing of car's energy consumption

Flowchart of energy consumption

energy consumption [1]

= A run [km] × Actual fuel consumption [l/km]

A run per a car [km/car] × Number of owned cars [car]

× Actual run condition
 × fuel consumption
 [l/km]

 \triangle Energy consumption [1]

Change of a run factor

╋

 \triangle Actual fuel consumption × A run +1/2 (\triangle A run × \triangle Actual fuel consumption)

Change of actual fuel consumption factor

$\triangle A$ run

 $= \frac{\Delta A \text{ run per a car} \times \text{Number of owned cars}}{+1/2(\Delta A \text{ run per a car} \times \Delta \text{Number of owned cars})}$

Change of a run per a car factor

╋

 Δ Number of owned cars × A run per a car +1/2 (Δ A run per a car × Δ Number of owned cars)

Change of Number owned cars factor

 \triangle Actual fuel consumption

 Δ Actual run condition × Theoretical fuel consumption +1/2(Δ Actual run condition × Δ Theoretical fuel consumption)

Change of actual run condition factor

 Δ Theoretical fuel consumption × Actual run condition +1/2(Δ Actual run condition × Δ Theoretical fuel consumption)

Change of theoretical fuel cinsumption factor

A run in 2001

Factors of change in energy consumption by private cars

Source: Made by presenter

based on the date of Relationship traffic and energy catalogue and Road statistics

Detail of fuel consumption factors

Source: Made by presenter

based on the date of Relationship traffic and energy catalogue and Road statistics

Flowchart of energy consumption

Table of Contents

- 1. Importance of saving energy
- 2. Analysis of saving energy in Japan
- 3. Analysis of saving energy in China and our proposal for it
- 4. Analysis of "Top runner" as an energy saving measure in Japan
- 5. Analysis of "Top runner" as an energy saving measure in China

Flowchart of energy consumption

Assumption

- Number of owned cars
- Number of owned cars
 Theoretical fuel consumption

Our analysis

- Run per a car must be effected by trend (not our analysis)
- Run condition must be effected by trend (not our analysis)
- 12 years brings cars top runner

Weight and Fuel Consumption

出所:中国自動車年鑑(2004)より独自作

Fuel consumption

Center curve is 14.02(average)

Top curve is 16.42 (average)

Gap of these actual fuel consumption

Actual fuel consumption

Number of cars

 Analyze relationship between GDP and number of cars

• Leading to number of cars in China in the future by this analysis.

GDP and Car

出所:世界自動車統計(2003)より独自作成

How many cars do Chinese have in 2015?

Our misunderstanding

 Slide number 20 cannot be apply for our analysis.

• All cars included (truck, bus ••••etc)