Considering the New Energy introduction target

Akio Tominaga Eri Fujii Kentaro Nara Shino Sasagawa Takehiro Hakoda

What we are going to say · · ·

CO₂ reduction by new energy in 2010 (annual) **34million t-CO2**

New energy target

What we are going to say · · ·

Because of · · ·

- excessive CO2 reduction
- not cost effective

Our proposal

lower target than the original consider cost factor

structure

Chapter 1 What new energy is

Chapter 2 Current situation in Japan

Chapter 3 Our trial calculation

Chapter 4 Our proposal

What is new energy ?

Definition

Energy that are...

- technically available
 not marketable
 the alternative energy
- resource to oil

What is new energy ? ~ Kinds of new energy ~

marketable

- •Solar energy
- •Wind-power
- Solar thermal
- •Cryogenic power by snow ice
- •Temperature differences

- •Biomass energy generation thermal fuel
- •Waste combustion generation thermal fuel

not technically available

Classification of new energy

Power generation field solar energy

wind-power waste combustion energy biomass energy

Thermal utilization field solar thermal utilization unutilized energy waste combustion utilization biomass thermal utilization

Merits and Demerits

<u>Merits</u>

domestically produced no exhaustible resource less CO₂ emissions

<u>Demerits</u>

- Unstable electrical output
- energy conversion efficiency is low
- cost is high

The amount of CO₂ emissions of every resource

Merits and Demerits

<u>Merits</u>

domestically produced no exhaustible resource less CO₂ emissions

<u>Demerits</u>

- Unstable electrical output
- energy conversion efficiency is low
- cost is high

cost comparison

JS\$/kWh)

cost of new energy is high!

The necessities of new energy

the image of accomplishing 3 targets of energy policy

Current situation of primary energy in Japan

energy security problem!

The necessities of new energy

the image of accomplishing 3 targets of energy policy

New energy & 3E

3. competitiveness in future

preventing CO2 emission

exceeds about

74 million t-CO2

additional measures

Energy saving 2 2 million t-CO2

New energy

3 4 million t-CO2

Fuel conversion

18 million t-CO2

24%

Energy

Saving

30%

New

Energy

46%

based on the data by Ministry of the Environment (2002

New energy & 3E

structure

Chapter 1 WFinished !! y is

Chapter 2 Current situation in Japan

Chapter 3 Our trial calculation

Chapter 4 Our proposal

Classification of new energy

Power generation field solar energy wind-power waste combustion energy biomass energy

> Thermal utilization field solar thermal utilization unutilized energy waste combustion utilization biomass thermal utilization

Actual figure and Target power generation field

	Actual figure of 1999	target case of 2010 Convert into oil	
	Convert into oil		
	1000kl	1000kl	
Solar energy	53 23 ti	mes 1180	
Wind power	35 38 ti	mes 1340	
Waste combustion energy	1150 5 tir	nes 5520	
Biomass energy	54 6 tir	nes 340	

RPS (Renewables Portfolio Standard) in Japan

What is RPS system ?

The system to introduce new energy certainly and cost-effectively

Issued in June 2002 Put into force in April 2003

Eligible energy sources of RPS

- ·Wind-power generation
- ·Solar energy generation
- ·Geo-thermal generation
- •hydraulic power generation (small and medium)
 - (× hydroelectric dam)
 - hydraulic turbine)

- Biomass
- waste combustion energy generation (only the biomass incineration)

RPS system

RPS is a way to attain the obligation cost-effectively

Image of the account trade

Energy supplier B

Image of the account trade

Classification of new energy

Power generation field solar energy wind-power waste combustion energy biomass energy

> Thermal utilization field solar thermal utilization unutilized energy waste combustion utilization biomass thermal utilization

Actual result and Target Thermal utilization field

Summary of our sit

Is this new energy target appropriate ?

Julization field

the

difficult to attain

structure

Chapter 1 WFinished !! y is

Chapter 2 ClFinished !!!n in Japan

Chapter 3 Our trial calculation

Chapter 4 Our proposal

Point of our trial calculation

1.Consistent?

CO2 reduction...

2.Cost-effective?

the cost...

Reduction target of New energy

Made by presenter,

based on the data by Ministry of the Environment (2002

Alternative of...

* Power generation field...

* Thermal utilization field...

What is new energy ?

Definition

Energy that are...

 technically available
 not marketable
 the alternative energy resource to oil

Alternative of...

* Power generation field...

* Thermal utilization field...

Amount of CO2 reduction

* Power generation field...

23.95 million t-CO2

* Thermal utilization field...

28.07 million t-CO2

Amount of CO2 reduction

Total reduction of New energy...

• Excessive reduction!!

Not consistent!

Point of our trial calculation

1.Consistent?

CO2 reduction... NO!!

2.Cost-effective?

The cost...

Cost of CO2 reduction/t-CO2 power generation field

Unit: yen 1yuan = about 15 ye

The viewpoint of the target

	Actual figure of 1999	Target case of 2010	
	Convert into oil	Convert into oil	
High!	1000kl	1000kl	
Solar energy	53 23 t	imes 1180	
Wind power < L	ow! 35 38 t	imes 1340	
Waste combustion energy	1150 5 ti	mes 5520	
Biomass energy	54 6 ti	mes 340	

Cost of CO2 reduction/t-CO2 thermal utilization field

High cost & difficult target

Point of our trial calculation

1.Consistent?

CO2 reduction...NO

2.Cost-effective? The cost... NO!!

structure

Chapter 1 WFinished !! y is

Chapter 2 ClFinished !!!n in Japan

Chapter 3 OuFinished !! tion

Chapter 4 Our proposal

Considerations

Not appropriate!

Set lower new energy target with taking cost into consideration!!

If considered only about cost

Reduced about 170 billion yuan !!

The factor of cost is very important !

Our proposal

The Japanese government should... set lower target than the original consider cost factor

Special Thanks

- The Institute of Energy Economics, Japan Mr. Tsutomu Toichi
- The Institute of Energy Economics, Japan Mr. Shinichi Nakakuki
- Agency for Natural Resources and Energy, Energy Conservation and Renewable Energy Department Ms. Keiko Ogata
- Agency for Natural Resources and Energy, Energy Conservation and Renewable Energy Department Mr. Yasuhiro Nagami
- Agency for Natural Resources and Energy, Energy Conservation and Renewable Energy Department Ms. Eri Nakajima

Internet Resources

- Ministry of Environment <u>http://www.env.go.jp/index.html</u>
- Ministry of economy, trade and industry <u>http://www.meti.go.jp/</u>
- New Energy Foundation <u>http://www.nef.or.jp/</u>
- Central Research Institute of Electric Power Industry http://criepi.denken.or.jp/jpn/
- The Institute of Energy Economics, Japan http://eneken.ieej.or.jp/
- Agency for Natural Resources and Energy http://www.enecho.meti.go.jp/
- Green Energy "law" Network http://www.jca.apc.org/~gen/
- New Energy and Industrial Technology Development Organization(NEDO) <u>http://www.nedo.go.jp/</u>
- The Federation of Electric Power Companies of Japan http://www.fepc.or.jp/index-f.html
- Japan Natural Energy Company Limited <u>http://www.natural-e.co.jp/</u>
- Hokkaido Electric Power Co., Inc. <u>http://www.hepco.co.jp/</u>
- Tohoku Electric Power Co.,Inc. <u>http://www.tohoku-epco.co.jp/</u>
- Hokuriku Electric Power Co., Inc. <u>http://www.rikuden.co.jp/</u>
- Tokyo Electric Power Co.,Inc. <u>http://www.tepco.co.jp/</u>
- Tyu-bu Electric Power Co.,Inc. <u>http://www.chuden.co.jp/</u>
- Kansai Electric Power Co.,Inc. <u>http://www.kepco.co.jp/</u>
- Shikoku Electric Power Co.,Inc. <u>http://www.yonden.co.jp/</u>
- Kyu-syu Electric Power Co.,Inc. <u>http://www.kyuden.co.jp/</u>
- Okinawa Electric Power Co., Inc. <u>http://www.okiden.co.jp/</u>

- Resource environmental measures(2003)
- The Federation of Electric Companies of Japan(2002), ¹Version in electric business handbook fiscal year 2002
- Tsutomu Toichi(2001), ¹Role of energy and country₁ Corona Bookstore
- Takio Nakai(1996), ¹Basic knowledge of new energy₁ Industrial books
- Japan Machinery Exporters' Association(2002), ¹JMC environment Update
- Yoshihiro Hamakawa(2000), Solar Energy Generation CMC
- Hokkaido natural energy society(2002), ¹Natural energy to defend environment₁ Toyo Bookstore
- Masayuki Yajima(2002), ^rEnergy Security₁ TOYO KEIZAI INC.
- Satoshi Yamada(2001), [†]Financial engineering of electric power liberalization₁ TOYO KEIZAI INC.
- Keiichi Yosida(2003), ¹Point under discussion of renewable energy introduction plan in Japan -Effect, influence, and problem of Japanese version RPS system-1 The Institute of Energy Economics, Japan
- IAEA(2002,1999), 'BEYOND KYOTO, OECD
- IEA(1998), 'RENEWABLES INFORMATION OECD
- IEA (1999), ^IEnergy policies of IEA countries JAPAN 1999 review JOECD
- OECD(1998), IMPROVINIG THE ENVIRONMENT THROUGH REDUCING SUBSIDIES, OECD
- Ministry of Environment(2003), ^rIdea of concrete system of Global warming measures tax system proposal for examination and discussic by the people -」
- Ministry of Environment(2002), ^rCharter of Countermeasures Against Global Warming
- Ministry of Environment(2001), ^rAccomplishment of a goal scenario subcommittee interim report
- Agency for Natural Resources and Energy(2003), The energy policy in the future The report
- Agency for Natural Resources and Energy(2001), New energy departmental meeting report About the ideal way of a new energy
- measures in the future -1
- Agency for Natural Resources and Energy(2000,2001), ^rIntegrated resource energy investigation association new energy departmental meeting proceedings summary and distributed material.
- Agency for Natural Resources and Energy(2001), ^rIntegrated resource energy investigation association new energy departmental meeting Shinichi place expansion measures examination subcommittee proceedings summary and distributed material.
- Agency for Natural Resources and Energy(2001), 'The ideal way is of the new market expansion measures adapted to current circumstances of
- Shinichi place expansion measures examination subcommittee report-our country
- Agency for Natural Resources and Energy(2003), ¹Meaning and match of expansion of new energy introduction
- Agency for Natural Resources and Energy(2003), ¹About the enforcement situation of the RPS method
- The Institute of Energy Economics, Japan(2003), ^IThe 382nd regular society, Point under discussion of renewable energy introduction plar in Japan-Effect, influence, and problem of Japanese version RPS-announced document and report summary」
- GEN(2003), The 2nd special Ohou verification committee material for new Ene profit
- Yamaguchi seminar, new energy part(2002), For workable RPS system
- Central Research Institute of Electric Power Industry(2000), No.338 of the laboratory news in TEL

The image of Japanese RPS system (1)

The cost of each new energy

Solar energy	Residential	average:66 yen/kWh	
generation	Non-residential	average:73 yen/kWh	
Wind power generation	Large scale	10 ~ 14 yen/kWh	
	Smaller scale	18 ~ 24 yen/kWh	
Waste combustion energy generation*	Industry	9 ~ 11 yen/kWh	
	General	11 ~ 12 yen/kWh	
Solar thermal utilization		28 yen/Mcal	
Unutilized energy		10 yen/MJ	

*including biomass energy generation

(source: report of new energy subcommittee

Cost of power generation

Solar energy	Residential	270.6	
generation	Non-residential	73	
Wind power	Large scale	51~71.4	
generation	Smaller scale	12.6 ~ 16.8	
Waste combustion	Industry	108 ~ 132	
energy generation	General	129.8 ~ 141.6	
Biomass energy generation		12.6~16.8	

unit: billion yen 1元 = about 15 yen

Cost of thermal utilization

Solar thermal utilization	1,122.2
Unutilized energy	221.6
Waste combustion utilization	53.5
Biomass thermal utilization	255.9
Black liquor/scrap wood etc.	1,887.1

unit: billion yen 1元 = about 15 yen

generate Account A Account B Account C

Equalize the marginal generation cost

Minimize the social cost

Thermal utilization field

Cost of CO2 reduction per t-CO2 power generation field

	alternative for oil	alternative for average of all		
Solar energy	High!	rign:		
generation	97,614	183,743		
Wind-power	<u>_15,474~21,460</u>	_28,018~38,855		
generation				
Waste combustion	LOW!	LOW!		
energy generation	15,442~17,766	30,724~35,349		
Biomass energy generation	Low!	Low!		
	13,696~18,261	26,250~35,000		
	Low!	Low!		

Cost of CO2 reduction per t-CO2 thermal utilization field

	Actual result of 1999		Prospect /target of 2010			
			Case of keeping the current measure		Target case	
	Convert into oil	Capacity of plant	Convert into oil	Capacity of plant	Convert into oil	Capacity of plant
	10000kl	10000kW	10000kl	10000kW	10000kl	10000kW
Waste combustion	115		About 5 time	es	> 552	417
energy	Lo	N!				
Biomass energy	5.4		About 6 time	es	> 34	33
Solar energy	5.3		About 23 tim	les	118	482
Unutilized energy	4.1		About 14 tim	les	58	-
	High					
Solar thermal	98		About 4 time	es	439	-

new energy renewable energy

- hydraulic power generation
- geo-thermal generation

are renewable energy, but are not new energy. because they are not economically inefficient.

renewable energy

= natural energy + recycled energy

new energy

= renewable energy - hydraulic power generation —geothermal generation

排出原単位の話

図表 電源別発電電力量の実績および見通し(出典:「エネルギー2003」「総合資源エネルギー調査会総合部会/需給部会報告書2001.7」)

"The target should include the maximum amount of new energy available."

source: report of new energy subcommittee

Government doesn't consider COST!