Geometrization of three-manifolds.

Joan Porti (UAB)

RIMS Seminar
Representation spaces, twisted topological invariants and geometric structures of 3-manifolds.

May 28, 2012

Poincaré and analysis situs

- Poincaré, H. Analysis situs. J. de l'Éc. Pol. (2) I. 1-123 (1895)
- Poincaré, H. Complément à l'analysis situs. Palermo Rend. 13, 285-343 (1899)
- Poincaré, H. Second complément à l'analysis situs Lond. M. S. Proc. 32, 277-308 (1900).
- Poincaré, H. Sur certaines surfaces algébriques. IIIème complément à l'analysis situs. S. M. F. Bull. 30, 49-70 (1902).
- Poincaré, H. Sur l'analysis situs. C. R. 133, 707-709 (1902).
- Poincaré, H. Cinquième complément à l'analysis situs. Palermo Rend. 18, 45-110 (1904)

Poincaré question

In "Cinquième complément à l'Analysis Situs" (1904):

$$
\begin{aligned}
& \text { Let } M^{3} \text { be a closed 3-manifold. } \\
& \text { Assume that } M^{3} \text { is simply connected }\left(\pi_{1}\left(M^{3}\right)=0\right), \\
& \text { is } M^{3} \text { homeomorphic to } S^{3} ? \\
& S^{3}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbf{R}^{4} \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=1\right\}
\end{aligned}
$$

Poincaré question

In "Cinquième complément à l'Analysis Situs" (1904):

> Let M^{3} be a closed 3-manifold.
> Assume that M^{3} is simply connected $\left(\pi_{1}\left(M^{3}\right)=0\right.$), is M^{3} homeomorphic to $S^{3} ?$

$$
S^{3}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbf{R}^{4} \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=1\right\}
$$

$$
\pi_{1}\left(M^{3}\right)=0
$$

Poincaré question

In "Cinquième complément à l'Analysis Situs" (1904):

> Let M^{3} be a closed 3-manifold.
> Assume that M^{3} is simply connected $\left(\pi_{1}\left(M^{3}\right)=0\right.$), is M^{3} homeomorphic to $S^{3} ?$

$$
S^{3}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbf{R}^{4} \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=1\right\}
$$

$$
\pi_{1}\left(M^{3}\right)=0
$$

Poincaré question

In "Cinquième complément à l'Analysis Situs" (1904):

> Let M^{3} be a closed 3-manifold.
> Assume that M^{3} is simply connected $\left(\pi_{1}\left(M^{3}\right)=0\right.$), is M^{3} homeomorphic to $S^{3} ?$

$$
S^{3}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbf{R}^{4} \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=1\right\}
$$

$$
\pi_{1}\left(M^{3}\right)=0
$$

Poincaré question

In "Cinquième complément à l'Analysis Situs" (1904):

> Let M^{3} be a closed 3-manifold.
> Assume that M^{3} is simply connected $\left(\pi_{1}\left(M^{3}\right)=0\right.$), is M^{3} homeomorphic to $S^{3} ?$

$$
S^{3}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbf{R}^{4} \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=1\right\}
$$

$$
\pi_{1}\left(M^{3}\right)=0
$$

Poincaré question

In "Cinquième complément à l'Analysis Situs" (1904):

> Let M^{3} be a closed 3-manifold.
> Assume that M^{3} is simply connected $\left(\pi_{1}\left(M^{3}\right)=0\right.$), is M^{3} homeomorphic to $S^{3} ?$

$$
S^{3}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbf{R}^{4} \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=1\right\}
$$

$$
\pi_{1}\left(M^{3}\right)=0
$$

Poincaré question

In "Cinquième complément à l'Analysis Situs" (1904):

$$
\begin{aligned}
& \text { Let } M^{3} \text { be a closed 3-manifold. } \\
& \text { Assume that } M^{3} \text { is simply connected }\left(\pi_{1}\left(M^{3}\right)=0\right), \\
& \text { is } M^{3} \text { homeomorphic to } S^{3} ? \\
& S^{3}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbf{R}^{4} \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=1\right\}
\end{aligned}
$$

In $\operatorname{dim} 2, \pi_{1}\left(F^{2}\right)=0$ characterizes the sphere among all surfaces.

Poincaré question

In "Cinquième complément à l'Analysis Situs" (1904):

> Let M^{3} be a closed 3-manifold.
> Assume that M^{3} is simply connected $\left(\pi_{1}\left(M^{3}\right)=0\right.$), is M^{3} homeomorphic to $S^{3} ?$
$S^{3}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbf{R}^{4} \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=1\right\}$

$$
\pi_{1}\left(M^{3}\right)=0
$$

...mais cette question nous entrainerait trop loin.

Kneser and connected sum (1929)

$$
M_{1} \# M_{2}=\left(M_{1}-B^{3}\right) \cup_{\partial}\left(M_{2}-B^{3}\right)
$$

Kneser and connected sum (1929)

$$
M_{1} \# M_{2}=\left(M_{1}-B^{3}\right) \cup_{\partial}\left(M_{2}-B^{3}\right)
$$

Kneser's Theorem (1929) M^{3} closed and orientable

$$
\Longrightarrow M^{3} \cong M_{1}^{3} \# \cdots \# M_{k}^{3} .
$$

$M_{1}^{3}, \ldots, M_{k}^{3}$ unique (up to homeomorphism) and prime.

Kneser and connected sum (1929)

$$
M_{1} \# M_{2}=\left(M_{1}-B^{3}\right) \cup_{\partial}\left(M_{2}-B^{3}\right)
$$

Kneser's Theorem (1929) M^{3} closed and orientable

$$
\Longrightarrow M^{3} \cong M_{1}^{3} \# \cdots \# M_{k}^{3} .
$$

$M_{1}^{3}, \ldots, M_{k}^{3}$ unique (up to homeomorphism) and prime.

- M^{3} orientable and closed, then
M^{3} is prime iff M^{3} is irreducible or $M^{3} \cong S^{2} \times S^{1}$
irreducible: every embedded 2-sphere in M^{3} bounds a ball in M^{3}

H. Seifert: fibered manifolds (1933)

Manifolds with a partition by circles with local models:

glue top and bottom of the cylinder
by a $2 \pi \frac{p}{q}$-rotation, $\frac{p}{q} \in \mathbb{Q}$

H. Seifert: fibered manifolds (1933)

Manifolds with a partition by circles with local models:

glue top and bottom of the cylinder
by a $2 \pi \frac{p}{q}$-rotation, $\frac{p}{q} \in \mathbb{Q}$
H. Seifert (1933): Classification of Seifert fibered 3-manifolds.

H. Seifert: fibered manifolds (1933)

Manifolds with a partition by circles with local models:

glue top and bottom of the cylinder
by a $2 \pi \frac{p}{q}$-rotation, $\frac{p}{q} \in \mathbb{Q}$
H. Seifert (1933): Classification of Seifert fibered 3-manifolds.

Examples:

- $T^{3}=S^{1} \times S^{1} \times S^{1}$
- $S^{3}=\left\{z \in \mathbb{C}^{2}| | z \mid=1\right\}$ Hopf fibration: $S^{1} \rightarrow S^{3} \rightarrow \mathbb{C P}^{1} \cong S^{2}$
- Lens Spaces: $L(p, q)=S^{3} / \sim, \quad\left(z_{1}, z_{2}\right) \sim\left(e^{\frac{2 \pi i}{p}} z_{1}, e^{\frac{2 \pi i q}{p}} z_{2}\right)$ for p, q coprime (there are singular fibers when $q \neq 1$)

Jaco-Shalen and Johannson (1979)

Characteristic Submanifod Theorem (JSJ 1979).
Let M^{3} be irreducible, closed and orientable.
There is a canonical and minimal family of tori $T^{2} \cong S^{1} \times S^{1} \subset M^{3}$ that are π_{1}-injective and that cut M^{3} in pieces that are either Seifert fibered or simple.

N simple: not Seifert and every $\mathbb{Z} \times \mathbb{Z} \subset \pi_{1}\left(N^{3}\right)$ comes from $\pi_{1}\left(\partial N^{3}\right)$.

Characteristic Submanifod Theorem (JSJ 1979).
Let M^{3} be irreducible, closed and orientable.
There is a canonical and minimal family of tori $T^{2} \cong S^{1} \times S^{1} \subset M^{3}$ that are π_{1}-injective and that cut M^{3} in pieces that are either Seifert fibered or simple.

N simple: not Seifert and every $\mathbb{Z} \times \mathbb{Z} \subset \pi_{1}\left(N^{3}\right)$ comes from $\pi_{1}\left(\partial N^{3}\right)$.
Thurston's conjecture: simple \Rightarrow hyperbolic.
Hyperbolic: $\operatorname{int}\left(M^{3}\right)$ complete Riemannian metric of curvature $\equiv-1$

Thurston's geometrization conjecture (1982)

> | M^{3} closed admits a canonical decomposition |
| :--- |
| into geometric pieces |

- Canonical decomposition: connected sum and JSJ tori
- Geometric manifold: locally homogeneous metric. (any two points have isometric neighbourhoods)

Thurston's geometrization conjecture (1982)

$$
\begin{aligned}
& M^{3} \text { closed admits a canonical decomposition } \\
& \text { into geometric pieces }
\end{aligned}
$$

- Canonical decomposition: connected sum and JSJ tori
- Geometric manifold: locally homogeneous metric. (any two points have isometric neighbourhoods)
- L. Bianchi (1897): local classification of locally homogeneous metrics in dimension three.
- Geometric \Leftrightarrow Seifert fibered, hyperbolic or $T^{2} \rightarrow M^{3} \rightarrow S^{1}$.

$$
\text { Ex: } S^{3}, L(p, q)=S^{3} / \sim, T^{3}=S^{1} \times S^{1} \times S^{1}
$$

are Seifert-fibered and locally homogeneous

Thurston's geometrization conjecture (1982)

$$
\begin{aligned}
& M^{3} \text { closed admits a canonical decomposition } \\
& \text { into geometric pieces }
\end{aligned}
$$

- Canonical decomposition: connected sum and JSJ tori
- Geometric manifold: locally homogeneous metric. (any two points have isometric neighbourhoods)
- L. Bianchi (1897): local classification of locally homogeneous metrics in dimension three.
- Geometric \Leftrightarrow Seifert fibered, hyperbolic or $T^{2} \rightarrow M^{3} \rightarrow S^{1}$.

$$
\text { Ex: } S^{3}, L(p, q)=S^{3} / \sim, T^{3}=S^{1} \times S^{1} \times S^{1}
$$

are Seifert-fibered and locally homogeneous

- It implies Poincaré.

Thurston's geometrization conjecture (1982)

$$
\begin{aligned}
& M^{3} \text { closed admits a canonical decomposition } \\
& \text { into geometric pieces }
\end{aligned}
$$

- Canonical decomposition: connected sum and JSJ tori
- Geometric manifold: locally homogeneous metric. (any two points have isometric neighbourhoods)
- L. Bianchi (1897): local classification of locally homogeneous metrics in dimension three.
- Geometric \Leftrightarrow Seifert fibered, hyperbolic or $T^{2} \rightarrow M^{3} \rightarrow S^{1}$.

$$
\text { Ex: } S^{3}, L(p, q)=S^{3} / \sim, T^{3}=S^{1} \times S^{1} \times S^{1}
$$

are Seifert-fibered and locally homogeneous

- Proved by Perelman in 2003.

Example: genus 2 surface F_{2}

Example: genus 2 surface F_{2}

Example: genus 2 surface F_{2}

Example: genus 2 surface F_{2}

Example: genus 2 surface F_{2}

Example: genus 2 surface F_{2}

Example: genus 2 surface F_{2}

$$
F_{2}=\mathbf{H}^{2} / \Gamma
$$

$$
\frac{4\left(d x^{2}+d y^{2}\right)}{\left(1-x^{2}-y^{2}\right)^{2}}
$$

Some consequences of geometrization

- M^{3} compact, irreducible, or., with $\partial M^{3}=\emptyset$ or $\partial M^{3}=T^{2} \sqcup \cdots \sqcup T^{2}$. $\pi=\pi_{1}\left(M^{3}\right)$

Some consequences of geometrization

- M^{3} compact, irreducible, or., with $\partial M^{3}=\emptyset$ or $\partial M^{3}=T^{2} \sqcup \cdots \sqcup T^{2}$. $\pi=\pi_{1}\left(M^{3}\right)$
- If π is finite $\Rightarrow \pi<S O$ (4)
- If π is infinite $\Rightarrow \pi$ determines $M^{3}\left(\pi_{1}(M) \cong \pi_{1}\left(M^{\prime}\right) \Leftrightarrow M \cong M^{\prime}\right)$
- In π the word and conjugacy problems can be solved (Sela, Préaux)

Some consequences of geometrization

- M^{3} compact, irreducible, or., with $\partial M^{3}=\emptyset$ or $\partial M^{3}=T^{2} \sqcup \cdots \sqcup T^{2}$. $\pi=\pi_{1}\left(M^{3}\right)$
- If π is finite $\Rightarrow \pi<S O(4)$
- If π is infinite $\Rightarrow \pi$ determines $M^{3}\left(\pi_{1}(M) \cong \pi_{1}\left(M^{\prime}\right) \Leftrightarrow M \cong M^{\prime}\right)$
- In π the word and conjugacy problems can be solved (Sela, Préaux)
- $\tilde{M} \rightarrow M$ covering of order $[M: \tilde{M}]<\infty, b_{1}(\tilde{M})=\operatorname{dim}_{\mathbb{Q}} H_{1}(\tilde{M} ; \mathbb{Q})$.

$$
\lim _{\tilde{M}} \frac{b_{1}(\tilde{M})}{[M: \tilde{M}]}=0 \text { (Lück) }
$$

- For π infinite and non-solvable,

$$
\lim _{\tilde{M}} \sup b_{1}(\tilde{M})=\infty(\text { Agol, Kahn-Markovic, Wise })
$$

Back to 1981

Status on Thurston's conjecture in 1981:
Thurston's conjecture equivalent to Conj $1+$ Conj 2 :

- Conj 1: If $\left|\pi_{1} M^{3}\right|<\infty$ then M^{3} spherical ($M \cong \Gamma \backslash S^{3}, \Gamma<S O(4)$).
- Conj 2: If $\left|\pi_{1} M^{3}\right|=\infty$ and M^{3} simple then M^{3} hyperbolic.

Status on Thurston's conjecture in 1981:
Thurston's conjecture equivalent to Conj $1+$ Conj 2 :

- Conj 1: If $\left|\pi_{1} M^{3}\right|<\infty$ then M^{3} spherical ($M \cong \Gamma \backslash S^{3}, \Gamma<S O(4)$).
- Conj 2: If $\left|\pi_{1} M^{3}\right|=\infty$ and M^{3} simple then M^{3} hyperbolic.
- Thurston knew how to prove it for Haken manifolds
- M^{3} is Haken if irreducible and $\exists F^{2} \subset M^{3}, \pi_{1}\left(F^{2}\right) \hookrightarrow \pi_{1}\left(M^{3}\right)$
- If M^{3} irreducible and $H_{1}\left(M^{3} ; \mathbf{Q}\right) \neq 0$ then M^{3} Haken
- If M^{3} irreducible and $\partial M^{3} \neq \emptyset$ then M^{3} Haken
- M^{3} Haken iff it has a hierarchy ("nice" decomposition into balls).

Riemannian geometry (Riemann 1854)

At the tangent space at each point, there is a scalar product.

Riemannian geometry (Riemann 1854)

At the tangent space at each point, there is a scalar product.

In coordinates $\left(x^{1}, \ldots, x^{n}\right)$,
$g_{i j}(x)=\left\langle\partial_{i}, \partial_{j}\right\rangle \quad \partial_{i}=\frac{\partial}{\partial x^{i}}$

$$
\left.\begin{array}{l}
u=u^{i} \partial_{i} \\
v=v^{j} \partial_{j}
\end{array}\right\}\langle u, v\rangle=\sum u^{i} g_{i j}(x) v^{j}=\left(u^{1} \cdots u^{n}\right)\left(\begin{array}{ccc}
g_{11}(x) & \cdots & g_{1 n}(x) \\
\vdots & & \vdots \\
g_{n 1}(x) & \cdots & g_{n n}(x)
\end{array}\right)\left(\begin{array}{c}
v^{1} \\
\vdots \\
v^{n}
\end{array}\right)
$$

This is an example of tensor

Riemannian geometry (Riemann 1854)

$$
\left.\begin{array}{l}
u=u^{i} \partial_{i} \\
v=v^{j} \partial_{j}
\end{array}\right\}\langle u, v\rangle=\sum u^{i} g_{i j}(x) v^{j}=\left(u^{1} \cdots u^{n}\right)\left(\begin{array}{ccc}
g_{11}(x) & \cdots & g_{1 n}(x) \\
\vdots & & \vdots \\
g_{n 1}(x) & \cdots & g_{n n}(x)
\end{array}\right)\left(\begin{array}{c}
v^{1} \\
\vdots \\
v^{n}
\end{array}\right)
$$

Length of curves $\gamma(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right), a \leq t \leq b$

$$
L=\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t=\int_{a}^{b} \sqrt{\sum_{i j} x_{i}^{\prime}(t) g_{i j}(\gamma(t)) x_{j}^{\prime}(t)} d t
$$

Geodesic or normal coordinates

The geodesic exponential map identifies

- radial straight lines starting at 0 , in the tangent space
- with minimizing geodesics starting at the point, in the manifold.

Geodesic or normal coordinates

The geodesic exponential map identifies

- radial straight lines starting at 0 , in the tangent space
- with minimizing geodesics starting at the point, in the manifold.

Normal coordinates \qquad "squared-gird" coordinates in the tangent

Riemann's curvature

In normal coordinates, Riemann proved in his habilitation (1854):

$$
\begin{gathered}
g_{i j}(x)=\delta_{i j}+\frac{1}{3} \sum_{\alpha, \beta} R_{i \alpha \beta j} x^{\alpha} x^{\beta}+O\left(|x|^{3}\right) \\
\bullet R_{i \alpha \beta j}=-R_{i \alpha j \beta}=-R_{\alpha i \beta j}=R_{\beta j i \alpha} \\
\bullet R_{i \alpha \beta j}+R_{i \beta j \alpha}+R_{i j \alpha \beta}=0
\end{gathered}
$$

In normal coordinates, Riemann proved in his habilitation (1854):

$$
\begin{aligned}
& g_{i j}(x)=\delta_{i j}+\frac{1}{3} \sum_{\alpha, \beta} R_{i \alpha \beta j} x^{\alpha} x^{\beta}+O\left(|x|^{3}\right) \\
& \bullet \cdot R_{i \alpha \beta j}=-R_{i \alpha j \beta}=-R_{\alpha i \beta j}=R_{\beta j i \alpha} \\
& \bullet R_{i \alpha \beta j}+R_{i \beta j \alpha}+R_{i j \alpha \beta}=0
\end{aligned}
$$

- $R_{i \alpha \beta j}$ is the Riemannian curvature tensor. Currently defined with covariant derivatives.
- Riemann finds the Gauss curvature K for surfaces:

$$
K=R_{1212}=-R_{1221}=-R_{2112}=R_{2121}
$$

Ricci, scalar, and sectional curvatures

In geodesic coordinates

- Ricci curvature $R_{i j}=\sum_{\alpha} R_{i \alpha \alpha j}$
- Scalar curvature $R=\sum_{i} R_{i i}$
- Sectional curvature of the plane $x_{3}=\cdots=x_{n}=0, K=R_{1212}$.

Ricci, scalar, and sectional curvatures

In geodesic coordinates

- Ricci curvature $R_{i j}=\sum_{\alpha} R_{i \alpha \alpha j}$
- Scalar curvature $R=\sum_{i} R_{i i}$
- Sectional curvature of the plane $x_{3}=\cdots=x_{n}=0, K=R_{1212}$.
- "Ricci is $-\frac{1}{3}$ of Hessian matrix of volume"

$$
\begin{gathered}
d \text { vol }=\sqrt{\operatorname{det}\left(g_{i j}\right)} d x^{1} \wedge \cdots \wedge d x^{n} \\
d \operatorname{vol}(x)=\left(1-\frac{1}{6} \sum_{i j} R_{i j} x^{i} x^{j}+O\left(|x|^{3}\right)\right) d x^{1} \wedge \cdots \wedge d x^{n} .
\end{gathered}
$$

Ricci, scalar, and sectional curvatures

In geodesic coordinates

- Ricci curvature $R_{i j}=\sum_{\alpha} R_{i \alpha \alpha j}$
- Scalar curvature $R=\sum_{i} R_{i i}$
- Sectional curvature of the plane $x_{3}=\cdots=x_{n}=0, K=R_{1212}$.
- "Ricci is $-\frac{1}{3}$ of Hessian matrix of volume"

$$
\begin{gathered}
d \text { vol }=\sqrt{\operatorname{det}\left(g_{i j}\right)} d x^{1} \wedge \cdots \wedge d x^{n} \\
d \operatorname{vol}(x)=\left(1-\frac{1}{6} \sum_{i j} R_{i j} x^{i} x^{j}+O\left(|x|^{3}\right)\right) d x^{1} \wedge \cdots \wedge d x^{n} .
\end{gathered}
$$

Einstein's equation: $R_{i j}-\frac{1}{2} R g_{i j}=T_{i j}$

Ricci curvature

In normal coordinates

- $R_{i j}=R_{j i}=\sum_{\alpha} R_{i \alpha \alpha j}$

Ricci curvature

In normal coordinates

- $R_{i j}=R_{j i}=\sum_{\alpha} R_{i \alpha \alpha j}$
- As quadratic form, it can be positive definite $\left(R_{i j}\right)>0$.

Ricci curvature

In normal coordinates

- $R_{i j}=R_{j i}=\sum_{\alpha} R_{i \alpha \alpha j}$
- As quadratic form, it can be positive definite $\left(R_{i j}\right)>0$.

$$
d \operatorname{vol}(x)=\left(1-\frac{1}{6} \sum_{i j} R_{i j} x^{i} x^{j}+O\left(|x|^{3}\right)\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

$$
\left(R_{i j}\right)=0 \quad\left(R_{i j}\right)>0
$$

$$
\left(R_{i j}\right)<0
$$

Hamilton: Ricci flow (1982)

$$
\frac{\partial g_{i j}}{\partial t}=-2 R_{i j}
$$

Hamilton: Ricci flow (1982)

$$
\frac{\partial g_{i j}}{\partial t}=-2 R_{i j}
$$

- In harmonic coordinates $\left\{x^{i}\right\}, \Delta x^{i}=0$.

$$
\frac{\partial g_{i j}}{\partial t}=\Delta\left(g_{i j}\right)+Q_{i j}\left(g^{-1}, \frac{\partial g}{\partial x}\right)
$$

where $\left\{\Delta\left(g_{i j}\right)=\right.$ Laplacian of the scalar function $g_{i j}$
$Q_{i j}=$ quadratic expression
It is a reaction-diffusion equation

$$
\frac{\partial g_{i j}}{\partial t}=-2 R_{i j}
$$

- In harmonic coordinates $\left\{x^{i}\right\}, \Delta x^{i}=0$.

$$
\frac{\partial g_{i j}}{\partial t}=\Delta\left(g_{i j}\right)+Q_{i j}\left(g^{-1}, \frac{\partial g}{\partial x}\right)
$$

where $\left\{\Delta\left(g_{i j}\right)=\right.$ Laplacian of the scalar function $g_{i j}$
$Q_{i j}=$ quadratic expression
It is a reaction-diffusion equation

- Heuristics of Hamilton's program:
"Either $g(t)$ converges to a locally homogeneous metric, or singularities appear corresp. to the canonical decomposition".

Hamilton: Ricci flow (1982)

$$
\frac{\partial g_{i j}}{\partial t}=-2 R_{i j}
$$

- Heuristics of Hamilton's program:
"Either $g(t)$ converges to a locally homogeneous metric, or singularities appear corresp. to the canonical decomposition".
-Hamilton/DeTurck:
Short time existence and uniqueness
When M^{n} is compact there is a unique solution defined for $t \in[0, T), T>0$.

Example

- Assume that $g(0)$ has constant sectional curvature K.

$$
\Rightarrow R_{i j}=(n-1) K g_{i j}(0)
$$

Set $g_{i j}(t)=f(t) g_{i j}(0)$, then $\frac{\partial g_{i j}}{\partial t}=-2 R_{i j}$ is equivalent to the ODE

$$
f^{\prime}(t)=-2(n-1) K
$$

Example

- Assume that $g(0)$ has constant sectional curvature K.

$$
\Rightarrow R_{i j}=(n-1) K g_{i j}(0)
$$

Set $g_{i j}(t)=f(t) g_{i j}(0)$, then $\frac{\partial g_{i j}}{\partial t}=-2 R_{i j}$ is equivalent to the ODE

$$
f^{\prime}(t)=-2(n-1) K
$$

$$
g(t)=(1-2 K(n-1) t) g(0)
$$

\int if $K<0$ it expands forever
if $K=0$ it keeps constant
if $K>0$ it collapses at time $T=\frac{1}{2 K(n-1)}$

Example: Solitons

$$
\frac{\partial}{\partial t} g_{i j}=-2 R_{i j}
$$

> A solution g_{t} is a soliton if $g_{t}=\lambda(t) \Phi_{t}^{*} g_{0}$. Shrinking if $\lambda<1$, steady if $\lambda=1$ and expanding if $\lambda>1$.

Example: Solitons

$$
\frac{\partial}{\partial t} g_{i j}=-2 R_{i j}
$$

> A solution g_{t} is a soliton if $g_{t}=\lambda(t) \Phi_{t}^{*} g_{0}$. Shrinking if $\lambda<1$, steady if $\lambda=1$ and expanding if $\lambda>1$.

$$
\text { A gradient soliton if } \frac{\partial}{\partial t} \Phi_{t}=\nabla f
$$

Equivalently:

$$
R_{i j}+\operatorname{Hess}_{i j}(f)+c g_{i j}=0
$$

- Gradient solitons of curvature ≥ 0 appear after blowing up singularities.

Example: Cigar soliton

$$
g=\frac{d x^{2}+d y^{2}}{1+x^{2}+y^{2}}=\frac{d r^{2}+r^{2} d \theta^{2}}{1+r^{2}}=d \rho^{2}+\tanh ^{2} \rho d \theta^{2} \quad \text { in } \mathbb{R}^{2}
$$

Example: Cigar soliton

$$
g=\frac{d x^{2}+d y^{2}}{1+x^{2}+y^{2}}=\frac{d r^{2}+r^{2} d \theta^{2}}{1+r^{2}}=d \rho^{2}+\tanh ^{2} \rho d \theta^{2} \quad \text { in } \mathbb{R}^{2}
$$

- Asymptotic to a cylinder ($\tanh \rho \rightarrow 1$ when $\rho \rightarrow \infty$)

Example: Cigar soliton

$$
g=\frac{d x^{2}+d y^{2}}{1+x^{2}+y^{2}}=\frac{d r^{2}+r^{2} d \theta^{2}}{1+r^{2}}=d \rho^{2}+\tanh ^{2} \rho d \theta^{2} \quad \text { in } \mathbb{R}^{2}
$$

- Asymptotic to a cylinder ($\tanh \rho \rightarrow 1$ when $\rho \rightarrow \infty$)
- $\sec =\frac{2}{\cosh ^{2} \rho}>0$ and $\sec \rightarrow 0$ when $\rho \rightarrow \infty$.

Example: Cigar soliton

$$
g=\frac{d x^{2}+d y^{2}}{1+x^{2}+y^{2}}=\frac{d r^{2}+r^{2} d \theta^{2}}{1+r^{2}}=d \rho^{2}+\tanh ^{2} \rho d \theta^{2} \quad \text { in } \mathbb{R}^{2}
$$

- Asymptotic to a cylinder ($\tanh \rho \rightarrow 1$ when $\rho \rightarrow \infty$)
- $\sec =\frac{2}{\cosh ^{2} \rho}>0$ and $\sec \rightarrow 0$ when $\rho \rightarrow \infty$.
- It is a steady gradient soliton:
$f=-2 \log \cosh \rho$ satisfies $\operatorname{Hess}(f)+\frac{2}{\cosh ^{2} \rho} g=0$

More examples

- Cylinder $S^{2} \times \mathbb{R}$:

The factor S^{2} collapses at finite time and \mathbb{R} is constant.

More examples

- Cylinder $S^{2} \times \mathbb{R}$:

The factor S^{2} collapses at finite time and \mathbb{R} is constant.

- S^{3} with a "neck":

More examples

- Cylinder $S^{2} \times \mathbb{R}$:

The factor S^{2} collapses at finite time and \mathbb{R} is constant.

- S^{3} with a "neck":

Zoom of singularities in dimension three

Zoom of singularities in dimension three

When zoom and blow up a singularity we would like to get a cylinder $S^{2} \times \mathbf{R}$

Positive Ricci

> Theorem (Hamilton 1982)
> If M^{3} admits a metric with $\left(R_{i j}\right)>0$
> $\Rightarrow M^{3}$ admits a metric with curv $\equiv 1$

Idea: $\bullet\left(R_{i j}\right)>0$ is an invariant condition for the flow in dim 3.

- One can control the eigenvalues of $R_{i j}$.

Positive Ricci

> Theorem (Hamilton 1982)
> If M^{3} admits a metric with $\left(R_{i j}\right)>0$
> $\Rightarrow M^{3}$ admits a metric with curv $\equiv 1$

Idea: $\bullet\left(R_{i j}\right)>0$ is an invariant condition for the flow in dim 3.

- One can control the eigenvalues of $R_{i j}$.
- There is an extinction time of the flow
- The 3 eigenvalues converge to ∞ at the same speed.
- the rescaled limit converges to a metric of ctnt curv.

Positive Ricci

> Theorem (Hamilton 1982)
> If M^{3} admits a metric with $\left(R_{i j}\right)>0$
> $\Rightarrow M^{3}$ admits a metric with curv $\equiv 1$

Idea: $\bullet\left(R_{i j}\right)>0$ is an invariant condition for the flow in dim 3.

- One can control the eigenvalues of $R_{i j}$.
- There is an extinction time of the flow
- The 3 eigenvalues converge to ∞ at the same speed.
- the rescaled limit converges to a metric of ctnt curv.

Generalization:

- If $\left(R_{i j}\right) \geq 0$, it admits a loc. homogeneous metric, $\mathbb{R}^{3}, S^{2} \times \mathbb{R}, S^{3}$.
(Strong maximum principle for tensors (Hamilton)).

$$
R=\sum R_{i i}
$$

- Evolution of R for the Ricci flow:

$$
\frac{\partial R}{\partial t}=\Delta R+2\left|\left(R_{i j}\right)\right|^{2}
$$

$$
R=\sum R_{i i}
$$

- Evolution of R for the Ricci flow:

$$
\frac{\partial R}{\partial t}=\Delta R+2\left|\left(R_{i j}\right)\right|^{2}
$$

- Maximum principle: $\min _{M} R$ is non-decreasing on t.

$$
R=\sum R_{i i}
$$

- Evolution of R for the Ricci flow:

$$
\frac{\partial R}{\partial t}=\Delta R+2\left|\left(R_{i j}\right)\right|^{2}
$$

- Maximum principle: $\min _{M} R$ is non-decreasing on t.
- Hamilton-Ivey: \underline{R} controls singularities in $\operatorname{dim} 3$:

When approaching the limit time, $R \rightarrow \infty$ at some point.

Singularities

Singularities appear at limit time T of existence of the flow. When $t \rightarrow T, R \rightarrow \infty$ at some point.

Singularities

Singularities appear at limit time T of existence of the flow.
When $t \rightarrow T, R \rightarrow \infty$ at some point.

- Hamilton's question: How to control the injectivity radius around singularities?
- Perelman 2002: Solutions to Ricci flow are locally non-collapsed (after rescaling at $R=1$).

Theorem: κ-non collapse

$$
\begin{aligned}
& \exists \kappa>0 \text { s.t. } \forall r>0, \forall x \in M \text { and } \forall t \in[1, T) \text {, } \\
& \text { If } \forall y \in B(x, t, r),|R(y, t)| \leq r^{-2} \Rightarrow \frac{v o l(B(x, t, r))}{r^{3}} \geq \kappa
\end{aligned}
$$

\Rightarrow When we rescale to $|R(y, t)|=1$, lower bound of injectivity radius.

Theorem: κ-non collapse

$$
\begin{aligned}
& \exists \kappa>0 \text { s.t. } \forall r>0, \forall x \in M \text { and } \forall t \in[1, T) \text {, } \\
& \text { If } \forall y \in B(x, t, r),|R(y, t)| \leq r^{-2} \Rightarrow \frac{v o l(B(x, t, r))}{r^{3}} \geq \kappa
\end{aligned}
$$

\Rightarrow When we rescale to $|R(y, t)|=1$, lower bound of injectivity radius.

- Idea: " \mathcal{L}-geodesics" and "reduced volume".
- This excludes the cigar soliton as local model for singularities. Seek cylinders $S^{2} \times \mathbb{R}$ as local models for singularities

The cigar soliton is κ-collapsed

$$
g_{\text {cigar }}=\frac{d x^{2}+d y^{2}}{1+x^{2}+y^{2}}=d \rho^{2}+\tanh ^{2} \rho d \theta^{2} \quad \text { in } \mathbb{R}^{2}
$$

Consider $g_{\text {cigar }}+d z^{2}$ in \mathbb{R}^{3} or in $\mathbb{R}^{2} \times S^{1}$.

Since $R=\frac{2}{\cosh ^{2} \rho} \rightarrow 0$ and $\operatorname{inj} \rightarrow 1$ when $\rho \rightarrow \infty$, it is excluded as local model for singularities
(by the κ-non collapse)
(κ-non collapse: when rescale at $|R|=1, \operatorname{inj}>c(\kappa)>0$)

Theorem: κ-non collapse

$$
\begin{aligned}
& \exists \kappa>0 \text { s.t. } \forall r>0, \forall x \in M \text { and } \forall t \in[1, T) \text {, } \\
& \text { If } \forall y \in B(x, t, r),|R(y, t)| \leq r^{-2} \Rightarrow \frac{v o l(B(x, t, r))}{r^{3}} \geq \kappa
\end{aligned}
$$

\Rightarrow If rescale at $|R(y, t)|=1$, lower bound of inj radius.

Theorem: κ-non collapse

$$
\begin{aligned}
& \exists \kappa>0 \text { s.t. } \forall r>0, \forall x \in M \text { and } \forall t \in[1, T) \text {, } \\
& \text { If } \forall y \in B(x, t, r),|R(y, t)| \leq r^{-2} \Rightarrow \frac{v o l(B(x, t, r))}{r^{3}} \geq \kappa
\end{aligned}
$$

\Rightarrow If rescale at $|R(y, t)|=1$, lower bound of inj radius.
Theorem: canonical neighbourhoods

$$
\forall \varepsilon>0, \exists r>0 \text {, s.t. } \forall x \in M \text { an } \forall t \in[1, T) \text {, }
$$

If $R(x, t) \geq r^{-2} \Rightarrow x \in(M, g(t))$ lies in a ε-canonical neighbourhood.
ε-canonical neighbourhood:

- ε-close to a cylinder $S^{2} \times(0, l)$
- ε-close to B^{3} open with cylindrical end
- manifold with $\sec >0$.

Ricci flow with δ-surgery

$\left(M^{3}, g(t)\right)$ Ricci flow, $t \in[0, T)$.

$$
\begin{aligned}
\Omega_{\rho} & =\left\{x \in M \mid R(x, t) \leq \rho^{-2}, t \rightarrow T\right\} \text { compact. } \\
\Omega & =\bigcup_{\rho>0} \Omega_{\rho} \text { open. } g_{\infty}=\text { limit metric on } \Omega
\end{aligned}
$$

Ricci flow with δ-surgery

($M^{3}, g(t)$) Ricci flow, $t \in[0, T)$.

$$
\begin{gathered}
\Omega_{\rho}=\left\{x \in M \mid R(x, t) \leq \rho^{-2}, t \rightarrow T\right\} \text { compact. } \\
\Omega=\bigcup_{\rho>0} \Omega_{\rho} \text { open. } g_{\infty}=\text { limit metric on } \Omega
\end{gathered}
$$

If $t \lesssim T \Rightarrow\left(M^{3}-\Omega_{r}, g(t)\right)=$ union of ε-canonical neighbourhoods.

Ricci flow with δ-surgery

($M^{3}, g(t)$) Ricci flow, $t \in[0, T)$.

$$
\begin{gathered}
\Omega_{\rho}=\left\{x \in M \mid R(x, t) \leq \rho^{-2}, t \rightarrow T\right\} \text { compact. } \\
\Omega=\bigcup_{\rho>0} \Omega_{\rho} \text { open. } g_{\infty}=\text { limit metric on } \Omega
\end{gathered}
$$

If $t \lesssim T \Rightarrow\left(M^{3}-\Omega_{r}, g(t)\right)=$ union of ε-canonical neighbourhoods.

$$
\exists 0<\delta<1 \text { such that if } \rho=\delta r,
$$

$M^{3}-\Omega_{\rho}=$ finite union of $S^{2} \times[0,1], B^{3}$ or manifold with $\sec >0$.

Ricci flow with δ-surgery

($M^{3}, g(t)$) Ricci flow, $t \in[0, T)$.

$$
\begin{gathered}
\Omega_{\rho}=\left\{x \in M \mid R(x, t) \leq \rho^{-2}, t \rightarrow T\right\} \text { compact. } \\
\Omega=\bigcup_{\rho>0} \Omega_{\rho} \text { open. } g_{\infty}=\text { limit metric on } \Omega
\end{gathered}
$$

If $t \lesssim T \Rightarrow\left(M^{3}-\Omega_{r}, g(t)\right)=$ union of ε-canonical neighbourhoods.

$$
\exists 0<\delta<1 \text { such that if } \rho=\delta r,
$$

$M^{3}-\Omega_{\rho}=$ finite union of $S^{2} \times[0,1], B^{3}$ or manifold with sec >0.

- δ-surgery: Glue hemispheres to the boundary of $\left(\Omega_{\rho}, g_{\infty}\right)$, smooth them out and continue the flow.

Ricci flow with δ-surgery

($M^{3}, g(t)$) Ricci flow, $t \in[0, T)$.

$$
\begin{aligned}
\Omega_{\rho} & =\left\{x \in M \mid R(x, t) \leq \rho^{-2}, t \rightarrow T\right\} \text { compact. } \\
\Omega & =\bigcup_{\rho>0} \Omega_{\rho} \text { open. } g_{\infty}=\text { limit metric on } \Omega
\end{aligned}
$$

$M^{3}-\Omega_{\rho}=$ finite union of $S^{2} \times[0,1], B^{3}$ or manifold with $\sec >0$

... and apply again the flow.

Evolution of Ricci flow with δ-surgery

1 There could be infinitely many surgery times.
Surgery times do not accumulate (volume estimates)
$\frac{d}{d t} \operatorname{vol}(M, g(t))=-\int_{M} R \leq c t n t \cdot \operatorname{vol}(M, g(t)) \quad\left(\min _{M} R\right.$ non-decreasing $)$
and every surgery decreases at least a certain amount of volume

Evolution of Ricci flow with δ-surgery

1 There could be infinitely many surgery times. Surgery times do not accumulate (volume estimates)

2 At every surgery, we have a connected sum, that can be topologically trivial ($M \# S^{3}$).

Evolution of Ricci flow with δ-surgery

1 There could be infinitely many surgery times.
Surgery times do not accumulate (volume estimates)

2 At every surgery, we have a connected sum, that can be topologically trivial ($M \# S^{3}$).
3δ and other parameters change at every surgery. The flow depends on the choice of δ : There is no uniqueness!

Evolution of Ricci flow with δ-surgery

1 There could be infinitely many surgery times.
Surgery times do not accumulate (volume estimates)

2 At every surgery, we have a connected sum, that can be topologically trivial ($M \# S^{3}$).
3δ and other parameters change at every surgery. The flow depends on the choice of δ : There is no uniqueness!

Long time evolution

For sufficiently large time, M_{t} splits into:

$$
M_{t}=M_{t}^{t h i n} \cup M_{t}^{\text {thick }}
$$

thin/thick according to whether inj-rad is larger/less than $c(R, t, \delta)$.

Long time evolution

For sufficiently large time, M_{t} splits into:

$$
M_{t}=M_{t}^{\text {thin }} \cup M_{t}^{\text {thick }}
$$

thin/thick according to whether inj-rad is larger/less than $c(R, t, \delta)$.

This corresponds to the JSJ splitting.

$$
\begin{aligned}
M_{t}^{\text {thick }}= & \text { hyperbolic (by regularization of flow) } \\
M_{t}^{\text {thin }}= & \text { union of Seifert fibrations, called GRAPH manifold } \\
& \text { (using techniques of collapsed manifolds) }
\end{aligned}
$$

...and thank you for your attention!

