Geometrization of three-manifolds.

Joan Porti (UAB)

RIMS Seminar

Representation spaces, twisted topological invariants and geometric structures of 3-manifolds.

May 28, 2012

Poincaré and analysis situs

- Poincaré, H. **Analysis situs.** J. de l'Éc. Pol. (2) I. 1-123 (1895)
- Poincaré, H. Complément à l'analysis situs. Palermo Rend. 13, 285-343 (1899)
- Poincaré, H. Second complément à l'analysis situs Lond. M. S. Proc. 32, 277-308 (1900).
- Poincaré, H. Sur certaines surfaces algébriques. Illième complément à l'analysis situs. S. M. F. Bull. 30, 49-70 (1902).
- Poincaré, H. Sur l'analysis situs. C. R. 133, 707-709 (1902).
- Poincaré, H. Cinquième complément à l'analysis situs.
 Palermo Rend. 18, 45-110 (1904)

In "Cinquième complément à l'Analysis Situs" (1904):

Let M^3 be a closed 3-manifold.

$$S^3 = \{(x_1, x_2, x_3, x_4) \in \mathbf{R}^4 \mid x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1\}$$

In "Cinquième complément à l'Analysis Situs" (1904):

Let M^3 be a closed 3-manifold.

$$S^{3} = \{(x_{1}, x_{2}, x_{3}, x_{4}) \in \mathbf{R}^{4} \mid x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + x_{4}^{2} = 1\}$$

$$\pi_{1}(M^{3}) = 0:$$

In "Cinquième complément à l'Analysis Situs" (1904):

Let M^3 be a closed 3-manifold.

$$S^3 = \{(x_1, x_2, x_3, x_4) \in \mathbf{R}^4 \mid x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1\}$$

 $\pi_1(M^3) = 0$:

In "Cinquième complément à l'Analysis Situs" (1904):

Let M^3 be a closed 3-manifold.

$$S^3 = \{(x_1, x_2, x_3, x_4) \in \mathbf{R}^4 \mid x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1\}$$

 $\pi_1(M^3) = 0$:

In "Cinquième complément à l'Analysis Situs" (1904):

Let M^3 be a closed 3-manifold.

$$S^3 = \{(x_1, x_2, x_3, x_4) \in \mathbf{R}^4 \mid x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1\}$$

 $\pi_1(M^3) = 0$:

In "Cinquième complément à l'Analysis Situs" (1904):

Let M^3 be a closed 3-manifold.

$$S^{3} = \{(x_{1}, x_{2}, x_{3}, x_{4}) \in \mathbf{R}^{4} \mid x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + x_{4}^{2} = 1\}$$

$$\pi_{1}(M^{3}) = 0:$$

In "Cinquième complément à l'Analysis Situs" (1904):

Let M^3 be a closed 3-manifold.

Assume that M^3 is simply connected ($\pi_1(M^3)=0$), is M^3 homeomorphic to S^3 ?

$$S^{3} = \{(x_{1}, x_{2}, x_{3}, x_{4}) \in \mathbf{R}^{4} \mid x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + x_{4}^{2} = 1\}$$

In dim 2, $\pi_1(F^2) = 0$ characterizes the sphere among all surfaces.

In "Cinquième complément à l'Analysis Situs" (1904):

Let M^3 be a closed 3-manifold.

Assume that M^3 is simply connected ($\pi_1(M^3)=0$), is M^3 homeomorphic to S^3 ?

$$S^3 = \{(x_1, x_2, x_3, x_4) \in \mathbf{R}^4 \mid x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1\}$$

 $\pi_1(M^3) = 0$:

...mais cette question nous entrainerait trop loin.

Kneser and connected sum (1929)

$$M_1 \# M_2 = (M_1 - B^3) \cup_{\partial} (M_2 - B^3)$$

Kneser and connected sum (1929)

$$M_1 \# M_2 = (M_1 - B^3) \cup_{\partial} (M_2 - B^3)$$

Kneser's Theorem (1929) M^3 closed and orientable

$$\Longrightarrow M^3 \cong M_1^3 \# \cdots \# M_k^3$$
 .

 M_1^3, \ldots, M_k^3 unique (up to homeomorphism) and prime.

Kneser and connected sum (1929)

$$M_1 \# M_2 = (M_1 - B^3) \cup_{\partial} (M_2 - B^3)$$

Kneser's Theorem (1929) M^3 closed and orientable

$$\Longrightarrow M^3 \cong M_1^3 \# \cdots \# M_k^3$$
 .

 M_1^3, \ldots, M_k^3 unique (up to homeomorphism) and prime.

ullet M^3 orientable and closed, then

 M^3 is prime iff M^3 is irreducible or $M^3 \cong S^2 \times S^1$

irreducible: every embedded 2-sphere in M^3 bounds a ball in M^3

H. Seifert: fibered manifolds (1933)

Manifolds with a partition by circles with local models:

glue top and bottom of the cylinder

by a
$$2\pi rac{p}{q}$$
-rotation, $rac{p}{q} \in \mathbb{Q}$

H. Seifert: fibered manifolds (1933)

Manifolds with a partition by circles with local models:

glue top and bottom of the cylinder

by a $2\pi \frac{p}{q}$ -rotation, $\frac{p}{q} \in \mathbb{Q}$

H. Seifert (1933): Classification of Seifert fibered 3-manifolds.

H. Seifert: fibered manifolds (1933)

Manifolds with a partition by circles with local models:

glue top and bottom of the cylinder

by a $2\pi \frac{p}{q}$ -rotation, $\frac{p}{q} \in \mathbb{Q}$

H. Seifert (1933): Classification of Seifert fibered 3-manifolds.

Examples:

- $\bullet \ T^3 = S^1 \times S^1 \times S^1$
- $S^3=\{z\in\mathbb{C}^2\mid |z|=1\}$ Hopf fibration: $S^1\to S^3\to\mathbb{CP}^1\cong S^2$
- Lens Spaces: $L(p,q)=S^3/\sim, \qquad (z_1,z_2)\sim (e^{\frac{2\pi i}{p}}z_1,e^{\frac{2\pi i\,q}{p}}z_2)$ for p,q coprime

(there are singular fibers when $q \neq 1$)

Jaco-Shalen and Johannson (1979)

Characteristic Submanifod Theorem (JSJ 1979).

Let M^3 be irreducible, closed and orientable.

There is a canonical and minimal family of tori $T^2\cong S^1\times S^1\subset M^3$ that are π_1 -injective and that cut M^3

in pieces that are either **Seifert fibered** or simple.

N simple: not Seifert and every $\mathbb{Z} \times \mathbb{Z} \subset \pi_1(N^3)$ comes from $\pi_1(\partial N^3)$.

Jaco-Shalen and Johannson (1979)

Characteristic Submanifod Theorem (JSJ 1979).

Let M^3 be irreducible, closed and orientable.

There is a canonical and minimal family of tori $T^2 \cong S^1 \times S^1 \subset M^3$ that are π_1 -injective and that cut M^3

in pieces that are either **Seifert fibered** or simple.

N simple: not Seifert and every $\mathbb{Z} \times \mathbb{Z} \subset \pi_1(N^3)$ comes from $\pi_1(\partial N^3)$.

Thurston's conjecture: simple ⇒ hyperbolic.

Hyperbolic: $int(M^3)$ complete Riemannian metric of curvature $\equiv -1$

 M^3 closed admits a canonical decomposition into geometric pieces

- Canonical decomposition: connected sum and JSJ tori
- Geometric manifold: locally homogeneous metric.
 (any two points have isometric neighbourhoods)

 M^3 closed admits a canonical decomposition into geometric pieces

- Canonical decomposition: connected sum and JSJ tori
- Geometric manifold: locally homogeneous metric.
 (any two points have isometric neighbourhoods)
- L. Bianchi (1897): local classification of locally homogeneous metrics in dimension three.
- Geometric \Leftrightarrow Seifert fibered, hyperbolic or $T^2 \to M^3 \to S^1$.

Ex:
$$S^3$$
, $L(p,q)=S^3/\sim$, $T^3=S^1\times S^1\times S^1$

are Seifert-fibered and locally homogeneous

 M^3 closed admits a canonical decomposition into geometric pieces

- Canonical decomposition: connected sum and JSJ tori
- Geometric manifold: locally homogeneous metric.
 (any two points have isometric neighbourhoods)
- L. Bianchi (1897): local classification of locally homogeneous metrics in dimension three.
- Geometric \Leftrightarrow Seifert fibered, hyperbolic or $T^2 \to M^3 \to S^1$.

Ex:
$$S^3$$
, $L(p,q)=S^3/\sim$, $T^3=S^1\times S^1\times S^1$ are Seifert-fibered and locally homogeneous

It implies Poincaré.

 M^3 closed admits a canonical decomposition into geometric pieces

- Canonical decomposition: connected sum and JSJ tori
- Geometric manifold: locally homogeneous metric.
 (any two points have isometric neighbourhoods)
- L. Bianchi (1897): local classification of locally homogeneous metrics in dimension three.
- Geometric \Leftrightarrow Seifert fibered, hyperbolic or $T^2 \to M^3 \to S^1$.

Ex:
$$S^3$$
, $L(p,q)=S^3/\sim$, $T^3=S^1\times S^1\times S^1$ are Seifert-fibered and locally homogeneous

Proved by Perelman in 2003.

Some consequences of geometrization

• M^3 compact, irreducible, or., with $\partial M^3=\emptyset$ or $\partial M^3=T^2\sqcup\cdots\sqcup T^2$. $\pi=\pi_1(M^3)$

Some consequences of geometrization

- M^3 compact, irreducible, or., with $\partial M^3 = \emptyset$ or $\partial M^3 = T^2 \sqcup \cdots \sqcup T^2$. $\pi = \pi_1(M^3)$
- If π is finite $\Rightarrow \pi < SO(4)$
- If π is infinite $\Rightarrow \pi$ determines M^3 ($\pi_1(M) \cong \pi_1(M') \Leftrightarrow M \cong M'$)
- In π the word and conjugacy problems can be solved (Sela, Préaux)

Some consequences of geometrization

- M^3 compact, irreducible, or., with $\partial M^3 = \emptyset$ or $\partial M^3 = T^2 \sqcup \cdots \sqcup T^2$. $\pi = \pi_1(M^3)$
- If π is finite $\Rightarrow \pi < SO(4)$
- If π is infinite $\Rightarrow \pi$ determines M^3 ($\pi_1(M) \cong \pi_1(M') \Leftrightarrow M \cong M'$)
- In π the word and conjugacy problems can be solved (Sela, Préaux)
- $\tilde{M} \to M$ covering of order $[M:\tilde{M}] < \infty$, $b_1(\tilde{M}) = \dim_{\mathbb{Q}} H_1(\tilde{M};\mathbb{Q})$.

$$\lim_{ ilde{M}} rac{b_1(ilde{M})}{[M: ilde{M}]} = 0$$
 (Lück)

• For π infinite and non-solvable,

$$\limsup_{\tilde{M}} \sup b_1(\tilde{M}) = \infty$$
 (Agol, Kahn-Markovic, Wise)

Back to 1981

Status on Thurston's conjecture in 1981: Thurston's conjecture equivalent to Conj 1 + Conj 2:

- Conj 1: If $|\pi_1 M^3| < \infty$ then M^3 spherical ($M \cong \Gamma \backslash S^3$, $\Gamma < SO(4)$).
- Conj 2: If $|\pi_1 M^3| = \infty$ and M^3 simple then M^3 hyperbolic.

Back to 1981

Status on Thurston's conjecture in 1981: Thurston's conjecture equivalent to Conj 1 + Conj 2:

- Conj 1: If $|\pi_1 M^3| < \infty$ then M^3 spherical ($M \cong \Gamma \backslash S^3$, $\Gamma < SO(4)$).
- Conj 2: If $|\pi_1 M^3| = \infty$ and M^3 simple then M^3 hyperbolic.
- Thurston knew how to prove it for Haken manifolds
 - M^3 is Haken if irreducible and $\exists F^2 \subset M^3$, $\pi_1(F^2) \hookrightarrow \pi_1(M^3)$
 - If M^3 irreducible and $H_1(M^3; \mathbf{Q}) \neq 0$ then M^3 Haken
 - If M^3 irreducible and $\partial M^3 \neq \emptyset$ then M^3 Haken
 - M^3 Haken iff it has a hierarchy ("nice" decomposition into balls).

Riemannian geometry (Riemann 1854)

At the tangent space at each point, there is a scalar product.

Riemannian geometry (Riemann 1854)

At the tangent space at each point, there is a scalar product.

In coordinates (x^1, \ldots, x^n) , $g_{ij}(x) = \langle \partial_i, \partial_j \rangle$ $\partial_i = \frac{\partial}{\partial x^i}$

$$\begin{array}{c} u = u^{i} \partial_{i} \\ v = v^{j} \partial_{j} \end{array} \right\} \langle u, v \rangle = \sum u^{i} g_{ij}(x) v^{j} = (u^{1} \cdots u^{n}) \begin{pmatrix} g_{11}(x) & \cdots & g_{1n}(x) \\ \vdots & & \vdots \\ g_{n1}(x) & \cdots & g_{nn}(x) \end{pmatrix} \begin{pmatrix} v^{1} \\ \vdots \\ v^{n} \end{pmatrix}$$

This is an example of tensor

Riemannian geometry (Riemann 1854)

$$\begin{array}{c} u = u^{i} \partial_{i} \\ v = v^{j} \partial_{j} \end{array} \right\} \langle u, v \rangle = \sum u^{i} g_{ij}(x) v^{j} = (u^{1} \cdots u^{n}) \begin{pmatrix} g_{11}(x) & \cdots & g_{1n}(x) \\ \vdots & & \vdots \\ g_{n1}(x) & \cdots & g_{nn}(x) \end{pmatrix} \begin{pmatrix} v^{1} \\ \vdots \\ v^{n} \end{pmatrix}$$

Length of curves $\gamma(t) = (x_1(t), \dots, x_n(t)), a \leq t \leq b$

$$L = \int_a^b |\gamma'(t)| dt = \int_a^b \sqrt{\sum_{ij} x_i'(t) g_{ij}(\gamma(t)) x_j'(t)} dt$$

Geodesic or normal coordinates

The geodesic exponential map identifies

- radial straight lines starting at 0, in the tangent space
- with minimizing geodesics starting at the point, in the manifold.

Geodesic or normal coordinates

The geodesic exponential map identifies

- radial straight lines starting at 0, in the tangent space
- with minimizing geodesics starting at the point, in the manifold.

Normal coordinates \longleftrightarrow "squared-gird" coordinates in the tangent

Riemann's curvature

In normal coordinates, Riemann proved in his habilitation (1854):

$$g_{ij}(x) = \delta_{ij} + \frac{1}{3} \sum_{\alpha,\beta} R_{i\alpha\beta j} x^{\alpha} x^{\beta} + O(|x|^3)$$

- $R_{i\alpha\beta j} = -R_{i\alpha j\beta} = -R_{\alpha i\beta j} = R_{\beta ji\alpha}$
- $R_{i\alpha\beta j} + R_{i\beta j\alpha} + R_{ij\alpha\beta} = 0$.

Riemann's curvature

In normal coordinates, Riemann proved in his habilitation (1854):

$$g_{ij}(x) = \delta_{ij} + \frac{1}{3} \sum_{\alpha,\beta} R_{i\alpha\beta j} x^{\alpha} x^{\beta} + O(|x|^3)$$

- $R_{i\alpha\beta j} = -R_{i\alpha j\beta} = -R_{\alpha i\beta j} = R_{\beta ji\alpha}$
- $R_{i\alpha\beta j} + R_{i\beta j\alpha} + R_{ij\alpha\beta} = 0.$
- $R_{i\alpha\beta j}$ is the Riemannian curvature tensor. Currently defined with covariant derivatives.
- Riemann finds the Gauss curvature K for surfaces:

$$K = R_{1212} = -R_{1221} = -R_{2112} = R_{2121}$$

Ricci, scalar, and sectional curvatures

In geodesic coordinates

- Ricci curvature $R_{ij} = \sum_{\alpha} R_{i\alpha\alpha j}$
- Scalar curvature $R = \sum_{i} R_{ii}$
- Sectional curvature of the plane $x_3 = \cdots = x_n = 0$, $K = R_{1212}$.

Ricci, scalar, and sectional curvatures

In geodesic coordinates

- Ricci curvature $R_{ij} = \sum_{\alpha} R_{i\alpha\alpha j}$
- Scalar curvature $R = \sum_{i} R_{ii}$
- Sectional curvature of the plane $x_3 = \cdots = x_n = 0$, $K = R_{1212}$.
- "Ricci is $-\frac{1}{3}$ of Hessian matrix of volume"

$$d \, vol = \sqrt{\det(g_{ij})} dx^1 \wedge \dots \wedge dx^n$$

$$d \operatorname{vol}(x) = \left(1 - \frac{1}{6} \sum_{ij} R_{ij} x^i x^j + O(|x|^3)\right) dx^1 \wedge \dots \wedge dx^n.$$

Ricci, scalar, and sectional curvatures

In geodesic coordinates

- Ricci curvature $R_{ij} = \sum_{\alpha} R_{i\alpha\alpha j}$
- Scalar curvature $R = \sum_{i} R_{ii}$
- Sectional curvature of the plane $x_3 = \cdots = x_n = 0$, $K = R_{1212}$.
- "Ricci is $-\frac{1}{3}$ of Hessian matrix of volume"

$$d \, vol = \sqrt{\det(g_{ij})} dx^1 \wedge \dots \wedge dx^n$$

$$d \operatorname{vol}(x) = \left(1 - \frac{1}{6} \sum_{ij} R_{ij} x^i x^j + O(|x|^3)\right) dx^1 \wedge \dots \wedge dx^n.$$

Einstein's equation: $R_{ij} - \frac{1}{2}Rg_{ij} = T_{ij}$

Ricci curvature

In normal coordinates

•
$$R_{ij} = R_{ji} = \sum_{\alpha} R_{i\alpha\alpha j}$$

Ricci curvature

In normal coordinates

- $R_{ij} = R_{ji} = \sum_{\alpha} R_{i\alpha\alpha j}$
- As quadratic form, it can be positive definite $(R_{ij}) > 0$.

Ricci curvature

In normal coordinates

- $R_{ij} = R_{ji} = \sum_{\alpha} R_{i\alpha\alpha j}$
- As quadratic form, it can be positive definite $(R_{ij}) > 0$.

$$d \operatorname{vol}(x) = \left(1 - \frac{1}{6} \sum_{ij} R_{ij} x^i x^j + O(|x|^3)\right) dx^1 \wedge \dots \wedge dx^n.$$

$$(R_{ij}) = 0 \qquad (R_{ij}) > 0 \qquad (R_{ij}) < 0$$

$$\frac{\partial g_{ij}}{\partial t} = -2 R_{ij}$$

$$\frac{\partial g_{ij}}{\partial t} = -2 \, R_{ij}$$

• In harmonic coordinates $\{x^i\}$, $\Delta x^i = 0$.

$$\frac{\partial g_{ij}}{\partial t} = \Delta(g_{ij}) + Q_{ij}(g^{-1}, \frac{\partial g}{\partial x})$$

where $\begin{cases} & \Delta(g_{ij}) = \text{Laplacian of the scalar function } g_{ij} \\ & Q_{ij} = \text{quadratic expression} \end{cases}$

It is a reaction-diffusion equation

$$\frac{\partial g_{ij}}{\partial t} = -2 R_{ij}$$

• In harmonic coordinates $\{x^i\}$, $\Delta x^i = 0$.

$$\frac{\partial g_{ij}}{\partial t} = \Delta(g_{ij}) + Q_{ij}(g^{-1}, \frac{\partial g}{\partial x})$$

where $\begin{cases} & \Delta(g_{ij}) = \text{Laplacian of the scalar function } g_{ij} \\ & Q_{ij} = \text{quadratic expression} \end{cases}$

It is a reaction-diffusion equation

• Heuristics of Hamilton's program: "Either g(t) converges to a locally homogeneous metric, or singularities appear corresp. to the canonical decomposition".

$$\frac{\partial g_{ij}}{\partial t} = -2 R_{ij}$$

Heuristics of Hamilton's program:

"Either g(t) converges to a locally homogeneous metric, or singularities appear corresp. to the canonical decomposition".

•Hamilton/DeTurck:

Short time existence and uniqueness

When M^n is compact there is a unique solution defined for $t \in [0, T), T > 0$.

Example

• Assume that g(0) has constant sectional curvature K.

$$\Rightarrow R_{ij}=(n-1)Kg_{ij}(0)$$

Set $g_{ij}(t)=f(t)g_{ij}(0)$,
then $\frac{\partial g_{ij}}{\partial t}=-2R_{ij}$ is equivalent to the ODE

$$f'(t) = -2(n-1)K$$

Example

• Assume that g(0) has constant sectional curvature K.

$$\Rightarrow R_{ij}=(n-1)Kg_{ij}(0)$$
 Set $g_{ij}(t)=f(t)g_{ij}(0)$, then $rac{\partial g_{ij}}{\partial t}=-2R_{ij}$ is equivalent to the ODE
$$f'(t)=-2(n-1)K$$

$$g(t) = (1 - 2K(n-1)t)g(0)$$

```
if K<0 it expands forever  \text{if } K=0 \text{ it keeps constant}  if K>0 it collapses at time T=\frac{1}{2K(n-1)}
```

Example: Solitons

$$\frac{\partial}{\partial t}g_{ij} = -2R_{ij}.$$

A solution g_t is a soliton if $g_t = \lambda(t)\Phi_t^*g_0$. Shrinking if $\lambda < 1$, steady if $\lambda = 1$ and expanding if $\lambda > 1$.

Example: Solitons

$$\frac{\partial}{\partial t}g_{ij} = -2R_{ij}.$$

A solution g_t is a soliton if $g_t = \lambda(t)\Phi_t^*g_0$. Shrinking if $\lambda < 1$, steady if $\lambda = 1$ and expanding if $\lambda > 1$.

A gradient soliton if
$$\frac{\partial}{\partial t}\Phi_t = \nabla f$$

Equivalently:

$$R_{ij} + Hess_{ij}(f) + c g_{ij} = 0$$

$$g = \frac{dx^2 + dy^2}{1 + x^2 + y^2} = \frac{dr^2 + r^2 d\theta^2}{1 + r^2} = d\rho^2 + \tanh^2 \rho \, d\theta^2 \qquad \qquad \text{in } \mathbb{R}^2$$

$$g = \frac{dx^2 + dy^2}{1 + x^2 + y^2} = \frac{dr^2 + r^2 d\theta^2}{1 + r^2} = d\rho^2 + \tanh^2 \rho \, d\theta^2 \qquad \qquad \text{in } \mathbb{R}^2$$

• Asymptotic to a cylinder $(\tanh \rho \to 1 \text{ when } \rho \to \infty)$

$$g = \frac{dx^2 + dy^2}{1 + x^2 + y^2} = \frac{dr^2 + r^2 d\theta^2}{1 + r^2} = d\rho^2 + \tanh^2 \rho \, d\theta^2$$
 in \mathbb{R}^2

- Asymptotic to a cylinder $(\tanh \rho \to 1 \text{ when } \rho \to \infty)$
- $sec = \frac{2}{\cosh^2 \rho} > 0$ and $sec \to 0$ when $\rho \to \infty$.

$$g = \frac{dx^2 + dy^2}{1 + x^2 + y^2} = \frac{dr^2 + r^2 d\theta^2}{1 + r^2} = d\rho^2 + \tanh^2 \rho \, d\theta^2$$
 in \mathbb{R}^2

- Asymptotic to a cylinder $(\tanh \rho \to 1 \text{ when } \rho \to \infty)$
- $sec = \frac{2}{\cosh^2 \rho} > 0$ and $sec \to 0$ when $\rho \to \infty$.
- It is a steady gradient soliton:

$$f = -2 \log \cosh \rho$$
 satisfies $Hess(f) + \frac{2}{\cosh^2 \rho} g = 0$

More examples

• Cylinder $S^2 \times \mathbb{R}$:

The factor S^2 collapses at finite time and $\mathbb R$ is constant.

More examples

ullet Cylinder $S^2 imes \mathbb{R}$:

The factor S^2 collapses at finite time and $\mathbb R$ is constant.

• S^3 with a "neck":

More examples

• Cylinder $S^2 \times \mathbb{R}$:

The factor S^2 collapses at finite time and $\mathbb R$ is constant.

• S^3 with a "neck":

Zoom of singularities in dimension three

Zoom of singularities in dimension three

When zoom and blow up a singularity we would like to get a cylinder $S^2 \times \mathbf{R}$

Positive Ricci

Theorem (Hamilton 1982)

If M^3 admits a metric with $(R_{ij}) > 0$

 $\Rightarrow M^3$ admits a metric with curv $\equiv 1$

Idea: • $(R_{ij}) > 0$ is an invariant condition for the flow in dim 3.

• One can control the eigenvalues of R_{ij} .

Positive Ricci

Theorem (Hamilton 1982)

If M^3 admits a metric with $(R_{ij}) > 0$

 $\Rightarrow M^3$ admits a metric with curv $\equiv 1$

- Idea: $(R_{ij}) > 0$ is an invariant condition for the flow in dim 3.
 - One can control the eigenvalues of R_{ij} .
 - There is an extinction time of the flow
 - The 3 eigenvalues converge to ∞ at the same speed.
 - the rescaled limit converges to a metric of ctnt curv.

Positive Ricci

Theorem (Hamilton 1982)

If M^3 admits a metric with $(R_{ij}) > 0$ $\Rightarrow M^3$ admits a metric with curv $\equiv 1$

- Idea: $(R_{ij}) > 0$ is an invariant condition for the flow in dim 3.
 - One can control the eigenvalues of R_{ij} .
 - There is an extinction time of the flow
 - The 3 eigenvalues converge to ∞ at the same speed.
 - the rescaled limit converges to a metric of ctnt curv.

Generalization:

• If $(R_{ij}) \ge 0$, it admits a loc. homogeneous metric, \mathbb{R}^3 , $S^2 \times \mathbb{R}$, S^3 . (Strong maximum principle for tensors (Hamilton)).

Scalar curvature R

$$R = \sum R_{ii}$$

• Evolution of *R* for the Ricci flow:

$$\frac{\partial R}{\partial t} = \Delta R + 2|(R_{ij})|^2$$

Scalar curvature R

$$R = \sum R_{ii}$$

• Evolution of *R* for the Ricci flow:

$$\frac{\partial R}{\partial t} = \Delta R + 2|(R_{ij})|^2$$

• Maximum principle: $\min_M R$ is non-decreasing on t.

Scalar curvature R

$$R = \sum R_{ii}$$

• Evolution of *R* for the Ricci flow:

$$\frac{\partial R}{\partial t} = \Delta R + 2|(R_{ij})|^2$$

- Maximum principle: $\min_M R$ is non-decreasing on t.
- Hamilton-Ivey: R controls singularities in dim 3:

When approaching the limit time, $R \to \infty$ at some point.

Singularities

Singularities appear at limit time T of existence of the flow.

When $t \to T$, $R \to \infty$ at some point.

Singularities

Singularities appear at limit time T of existence of the flow.

When $t \to T$, $R \to \infty$ at some point.

- Hamilton's question: How to control the injectivity radius around singularities?
- Perelman 2002: Solutions to Ricci flow are locally non-collapsed (after rescaling at R=1).

Theorem: κ -non collapse

$$\exists \kappa > 0 \text{ s.t. } \forall r > 0, \forall x \in M \text{ and } \forall t \in [1, T),$$
 If $\forall y \in B(x, t, r), |R(y, t)| \leq r^{-2} \Rightarrow \frac{vol(B(x, t, r))}{r^3} \geq \kappa$

 \Rightarrow When we rescale to |R(y,t)|=1, lower bound of injectivity radius.

Theorem: κ -non collapse

$$\exists \kappa > 0 \text{ s.t. } \forall r > 0, \, \forall x \in M \text{ and } \forall t \in [1,T),$$
 If $\forall y \in B(x,t,r), \, |R(y,t)| \leq r^{-2} \Rightarrow \frac{vol(B(x,t,r))}{r^3} \geq \kappa$

- \Rightarrow When we rescale to |R(y,t)|=1, lower bound of injectivity radius.
- Idea: "L-geodesics" and "reduced volume".
- This excludes the cigar soliton as local model for singularities. Seek cylinders $S^2 \times \mathbb{R}$ as local models for singularities

The cigar soliton is κ -collapsed

$$g_{cigar} = \frac{dx^2 + dy^2}{1 + x^2 + y^2} = d\rho^2 + anh^2 \rho d\theta^2$$
 in \mathbb{R}^2

Consider $g_{cigar} + dz^2$ in \mathbb{R}^3 or in $\mathbb{R}^2 \times S^1$.

Since $R=\frac{2}{\cosh^2\rho}\to 0$ and $inj\to 1$ when $\rho\to\infty$, it is excluded as local model for singularities (by the κ -non collapse)

(κ -non collapse: when rescale at |R|=1, $inj>c(\kappa)>0$)

Theorem: κ -non collapse

$$\exists \kappa > 0 \text{ s.t. } \forall r > 0 \text{, } \forall x \in M \text{ and } \forall t \in [1,T)\text{,}$$
 If $\forall y \in B(x,t,r)$, $|R(y,t)| \leq r^{-2} \Rightarrow \frac{vol(B(x,t,r))}{r^3} \geq \kappa$

 \Rightarrow If rescale at |R(y,t)|=1, lower bound of inj radius.

Theorem: κ -non collapse

$$\exists \kappa > 0 \text{ s.t. } \forall r > 0, \, \forall x \in M \text{ and } \forall t \in [1,T),$$
 If $\forall y \in B(x,t,r), \, |R(y,t)| \leq r^{-2} \Rightarrow \frac{vol(B(x,t,r))}{r^3} \geq \kappa$

 \Rightarrow If rescale at |R(y,t)|=1, lower bound of inj radius.

Theorem: canonical neighbourhoods

$$\forall \varepsilon > 0, \exists r > 0, \text{ s.t. } \forall x \in M \text{ an } \forall t \in [1, T),$$

If $R(x,t) \ge r^{-2} \Rightarrow x \in (M,g(t))$ lies in a ε -canonical neighbourhood.

 ε -canonical neighbourhood:

- ε -close to a cylinder $S^2 imes (0,l)$
- ε -close to B^3 open with cylindrical end
- manifold with sec > 0.

 $(M^3, g(t))$ Ricci flow, $t \in [0, T)$.

$$\Omega_{\rho} = \{x \in M \mid R(x,t) \leq \rho^{-2}, t \to T\}$$
 compact. $\Omega = \bigcup_{\rho>0} \Omega_{\rho}$ open. $g_{\infty} = \text{limit metric on } \Omega$.

 $(M^3, g(t))$ Ricci flow, $t \in [0, T)$.

$$\Omega_{\rho} = \{x \in M \mid R(x,t) \leq \rho^{-2}, t \to T\}$$
 compact. $\Omega = \bigcup_{\rho>0} \Omega_{\rho}$ open. $g_{\infty} = \text{limit metric on } \Omega$.

If $t \lesssim T \Rightarrow (M^3 - \Omega_r, g(t)) = \text{union of } \varepsilon\text{-canonical neighbourhoods.}$

 $(M^3, g(t))$ Ricci flow, $t \in [0, T)$.

$$\Omega_{\rho} = \{x \in M \mid R(x,t) \leq \rho^{-2}, t \to T\}$$
 compact. $\Omega = \bigcup_{\rho>0} \Omega_{\rho}$ open. $g_{\infty} = \text{limit metric on } \Omega$.

If $t \lesssim T \Rightarrow (M^3 - \Omega_r, g(t)) = \text{union of } \varepsilon\text{-canonical neighbourhoods.}$

$$\exists 0 < \delta < 1 \text{ such that if } \rho = \delta r$$
,

 $M^3-\Omega_{
ho}=$ finite union of $S^2 imes [0,1]$, B^3 or manifold with sec>0.

 $(M^3, g(t))$ Ricci flow, $t \in [0, T)$.

$$\Omega_{\rho} = \{x \in M \mid R(x,t) \leq \rho^{-2}, t \to T\}$$
 compact. $\Omega = \bigcup_{\rho>0} \Omega_{\rho}$ open. $g_{\infty} = \text{limit metric on } \Omega$.

If $t \lesssim T \Rightarrow (M^3 - \Omega_r, g(t)) = \text{union of } \varepsilon\text{-canonical neighbourhoods.}$

$$\exists 0 < \delta < 1$$
 such that if $\rho = \delta r$,

 $M^3 - \Omega_{\rho} =$ finite union of $S^2 \times [0,1]$, B^3 or manifold with sec > 0.

• δ -surgery: Glue hemispheres to the boundary of $(\Omega_{\rho}, g_{\infty})$, smooth them out and continue the flow.

 $(M^3, g(t))$ Ricci flow, $t \in [0, T)$.

$$\Omega_{\rho} = \{x \in M \mid R(x,t) \leq \rho^{-2}, t \to T\}$$
 compact. $\Omega = \bigcup_{\rho>0} \Omega_{\rho}$ open. $g_{\infty} = \text{limit metric on } \Omega$.

 $M^3-\Omega_{
ho}=$ finite union of $S^2 imes [0,1]$, B^3 or manifold with sec>0

... and apply again the flow.

1 There could be infinitely many surgery times.

Surgery times do not accumulate (volume estimates)

$$\frac{d}{dt}\operatorname{vol}(M,g(t)) = -\int_M R \leq ctnt \cdot \operatorname{vol}(M,g(t)) \qquad \quad (\min_M R \text{ non-decreasing})$$

and every surgery decreases at least a certain amount of volume

- 1 There could be infinitely many surgery times.

 Surgery times do not accumulate (volume estimates)
- 2 At every surgery, we have a connected sum, that can be topologically trivial $(M#S^3)$.

- 1 There could be infinitely many surgery times.

 Surgery times do not accumulate (volume estimates)
- 2 At every surgery, we have a connected sum, that can be topologically trivial $(M\#S^3)$.
- 3 δ and other parameters change at every surgery. The flow depends on the choice of δ : There is no uniqueness!

- 1 There could be infinitely many surgery times. Surgery times do not accumulate (volume estimates)
- 2 At every surgery, we have a connected sum, that can be topologically trivial $(M \# S^3)$.
- 3δ and other parameters change at every surgery. The flow depends on the choice of δ : There is no uniqueness!

- $\begin{tabular}{ll} \bf 4 \ By \ 1: \\ \begin{tabular}{ll} \bullet \ Either \ ends \ up \ with \ a \ connected \ sum \ of \ manifolds \\ \ of \ constant \ curvature \equiv +1 \ and \ S^2 \times S^1, \\ \ \bullet \ or \ continues \ for ever. \\ \end{tabular}$

Long time evolution

For sufficiently large time, M_t splits into:

$$M_t = M_t^{thin} \cup M_t^{thick}$$

thin/thick according to whether inj-rad is larger/less than $c(R, t, \delta)$.

Long time evolution

For sufficiently large time, M_t splits into:

$$M_t = M_t^{thin} \cup M_t^{thick}$$

thin/thick according to whether inj-rad is larger/less than $c(R, t, \delta)$.

This corresponds to the JSJ splitting.

```
\left\{ egin{array}{ll} M_t^{thick} &=& \mbox{hyperbolic (by regularization of flow)} \ M_t^{thin} &=& \mbox{union of Seifert fibrations, called GRAPH manifold} \ &=& \mbox{(using techniques of collapsed manifolds)} \end{array} 
ight.
```

...and thank you for your attention!