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Poincaré and analysis situs

• Poincaré, H. Analysis situs. J. de l’Éc. Pol. (2) I. 1-123 (1895)

• Poincaré, H. Complément à l’analysis situs. Palermo Rend. 13,
285-343 (1899)

• Poincaré, H. Second complément à l’analysis situs Lond. M. S.
Proc. 32, 277-308 (1900).

• Poincaré, H. Sur certaines surfaces algébriques. III ième

complément à l’analysis situs. S. M. F. Bull. 30, 49-70 (1902).

• Poincaré, H. Sur l’analysis situs. C. R. 133, 707-709 (1902).

• Poincaré, H. Cinquième complément à l’analysis situs.
Palermo Rend. 18, 45-110 (1904)
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Poincaré question

In “Cinquième complément à l’Analysis Situs" (1904):

Let M3 be a closed 3-manifold.

Assume that M3 is simply connected (π1(M
3) = 0),

is M3 homeomorphic to S3?

S3 = {(x1, x2, x3, x4) ∈ R4 | x2
1 + x2

2 + x2
3 + x2

4 = 1}
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Poincaré question

In “Cinquième complément à l’Analysis Situs" (1904):

Let M3 be a closed 3-manifold.

Assume that M3 is simply connected (π1(M
3) = 0),

is M3 homeomorphic to S3?

S3 = {(x1, x2, x3, x4) ∈ R4 | x2
1 + x2

2 + x2
3 + x2

4 = 1}

In dim 2, π1(F
2) = 0 characterizes the sphere among all surfaces.
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Poincaré question

In “Cinquième complément à l’Analysis Situs" (1904):

Let M3 be a closed 3-manifold.

Assume that M3 is simply connected (π1(M
3) = 0),

is M3 homeomorphic to S3?

S3 = {(x1, x2, x3, x4) ∈ R4 | x2
1 + x2

2 + x2
3 + x2

4 = 1}

π1(M
3) = 0:

...mais cette question nous entrainerait trop loin.
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Kneser and connected sum (1929)

M1 M2 M1#M2

M1#M2 = (M1 − B3) ∪∂ (M2 − B3)
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Kneser and connected sum (1929)

M1 M2 M1#M2

M1#M2 = (M1 − B3) ∪∂ (M2 − B3)

Kneser’s Theorem (1929) M3 closed and orientable

=⇒M3 ∼= M3
1# · · ·#M3

k .

M3
1 , . . . ,M

3
k unique (up to homeomorphism) and prime.
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Kneser and connected sum (1929)

M1 M2 M1#M2

M1#M2 = (M1 − B3) ∪∂ (M2 − B3)

Kneser’s Theorem (1929) M3 closed and orientable

=⇒M3 ∼= M3
1# · · ·#M3

k .

M3
1 , . . . ,M

3
k unique (up to homeomorphism) and prime.

•M3 orientable and closed, then
M3 is prime iff M3 is irreducible or M3 ∼= S2 × S1

irreducible: every embedded 2-sphere in M3 bounds a ball in M3
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H. Seifert: fibered manifolds (1933)

Manifolds with a partition by circles with local models:

glue top and bottom of the cylinder

by a 2π p
q
-rotation, p

q
∈ Q
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H. Seifert: fibered manifolds (1933)

Manifolds with a partition by circles with local models:

glue top and bottom of the cylinder

by a 2π p
q
-rotation, p

q
∈ Q

H. Seifert (1933): Classification of Seifert fibered 3-manifolds.

Examples:
• T 3 = S1 × S1 × S1

• S3 = {z ∈ C2 | |z| = 1} Hopf fibration: S1 → S3 → CP1 ∼= S2

• Lens Spaces: L(p, q) = S3/ ∼, (z1, z2) ∼ (e
2πi
p z1, e

2πi q

p z2)

for p, q coprime

(there are singular fibers when q 6= 1)
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Jaco-Shalen and Johannson (1979)

Characteristic Submanifod Theorem (JSJ 1979).

Let M3 be irreducible, closed and orientable.

There is a canonical and minimal family of tori T 2 ∼= S1 × S1 ⊂M3

that are π1-injective and that cut M3

in pieces that are either Seifert fibered or simple.

M3

T 2

T 2

T 2
T 2

N simple: not Seifert and every Z× Z ⊂ π1(N
3) comes from π1(∂N

3).
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Jaco-Shalen and Johannson (1979)

Characteristic Submanifod Theorem (JSJ 1979).

Let M3 be irreducible, closed and orientable.

There is a canonical and minimal family of tori T 2 ∼= S1 × S1 ⊂M3

that are π1-injective and that cut M3

in pieces that are either Seifert fibered or simple.

M3

T 2

T 2

T 2
T 2

N simple: not Seifert and every Z× Z ⊂ π1(N
3) comes from π1(∂N

3).

Thurston’s conjecture: simple⇒ hyperbolic.

Hyperbolic: int(M3) complete Riemannian metric of curvature ≡ −1
Geometrization of three-manifolds. – p.6/31



Thurston’s geometrization conjecture (1982)

M3 closed admits a canonical decomposition

into geometric pieces

• Canonical decomposition: connected sum and JSJ tori

• Geometric manifold: locally homogeneous metric.
(any two points have isometric neighbourhoods)
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• Canonical decomposition: connected sum and JSJ tori
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• L. Bianchi (1897): local classification of locally homogeneous
metrics in dimension three.
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Thurston’s geometrization conjecture (1982)

M3 closed admits a canonical decomposition

into geometric pieces

• Canonical decomposition: connected sum and JSJ tori

• Geometric manifold: locally homogeneous metric.
(any two points have isometric neighbourhoods)

• L. Bianchi (1897): local classification of locally homogeneous
metrics in dimension three.
• Geometric⇔ Seifert fibered , hyperbolic or T 2 →M3 → S1.

Ex: S3, L(p, q) = S3/ ∼, T 3 = S1 × S1 × S1

are Seifert-fibered and locally homogeneous

• It implies Poincaré.
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Thurston’s geometrization conjecture (1982)

M3 closed admits a canonical decomposition

into geometric pieces

• Canonical decomposition: connected sum and JSJ tori

• Geometric manifold: locally homogeneous metric.
(any two points have isometric neighbourhoods)

• L. Bianchi (1897): local classification of locally homogeneous
metrics in dimension three.
• Geometric⇔ Seifert fibered , hyperbolic or T 2 →M3 → S1.

Ex: S3, L(p, q) = S3/ ∼, T 3 = S1 × S1 × S1

are Seifert-fibered and locally homogeneous

• Proved by Perelman in 2003.
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Example: genus 2 surface F2
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Example: genus 2 surface F2

F2 = H
2/Γ 4(dx2+dy2)

(1−x2−y2)2
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Some consequences of geometrization

•M3 compact, irreducible, or., with ∂M3 = ∅ or ∂M3 = T 2 ⊔ · · · ⊔ T 2.
π = π1(M

3)
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Some consequences of geometrization

•M3 compact, irreducible, or., with ∂M3 = ∅ or ∂M3 = T 2 ⊔ · · · ⊔ T 2.
π = π1(M

3)

• If π is finite⇒ π < SO(4)

• If π is infinite⇒ π determines M3 (π1(M) ∼= π1(M
′)⇔M ∼= M ′)

• In π the word and conjugacy problems can be solved (Sela, Préaux)

• M̃ →M covering of order [M : M̃ ] <∞, b1(M̃) = dimQ H1(M̃ ;Q).

lim
M̃

b1(M̃)

[M : M̃ ]
= 0 (Lück)

• For π infinite and non-solvable,

lim
M̃

sup b1(M̃) =∞ (Agol, Kahn-Markovic, Wise)
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Back to 1981

Status on Thurston’s conjecture in 1981:
Thurston’s conjecture equivalent to Conj 1 + Conj 2:

• Conj 1: If |π1M
3| <∞ then M3 spherical (M ∼= Γ\S3, Γ < SO(4)).

• Conj 2: If |π1M
3| =∞ and M3 simple then M3 hyperbolic.
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Back to 1981

Status on Thurston’s conjecture in 1981:
Thurston’s conjecture equivalent to Conj 1 + Conj 2:

• Conj 1: If |π1M
3| <∞ then M3 spherical (M ∼= Γ\S3, Γ < SO(4)).

• Conj 2: If |π1M
3| =∞ and M3 simple then M3 hyperbolic.

• Thurston knew how to prove it for Haken manifolds

•M3 is Haken if irreducible and ∃F 2 ⊂M3, π1(F
2) →֒ π1(M

3)

• If M3 irreducible and H1(M
3;Q) 6= 0 then M3 Haken

• If M3 irreducible and ∂M3 6= ∅ then M3 Haken

•M3 Haken iff it has a hierarchy (“nice” decomposition into balls).
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Riemannian geometry (Riemann 1854)

At the tangent space at each point, there is a scalar product.

u

v
〈u, v〉
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Riemannian geometry (Riemann 1854)

At the tangent space at each point, there is a scalar product.

u

v
〈u, v〉

In coordinates (x1, . . . , xn), gij(x) = 〈∂i, ∂j〉 ∂i =
∂
∂xi

u = ui∂i

v = vj∂j







〈u, v〉 =
∑

uigij(x)v
j = (u1 · · ·un)











g11(x) · · · g1n(x)

...
...

gn1(x) · · · gnn(x)





















v1

...

vn











This is an example of tensor
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Riemannian geometry (Riemann 1854)

u = ui∂i

v = vj∂j







〈u, v〉 =
∑

uigij(x)v
j = (u1 · · ·un)











g11(x) · · · g1n(x)

...
...

gn1(x) · · · gnn(x)





















v1

...

vn











Length of curves γ(t) = (x1(t), . . . , xn(t)), a ≤ t ≤ b

L =

∫ b

a

|γ′(t)|dt =

∫ b

a

√

∑

ij

x′

i(t)gij(γ(t))x
′

j(t)dt
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Geodesic or normal coordinates

The geodesic exponential map identifies
— radial straight lines starting at 0, in the tangent space
— with minimizing geodesics starting at the point, in the manifold.
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Geodesic or normal coordinates

The geodesic exponential map identifies
— radial straight lines starting at 0, in the tangent space
— with minimizing geodesics starting at the point, in the manifold.

Normal coordinates←→ “squared-gird” coordinates in the tangent
Geometrization of three-manifolds. – p.12/31



Riemann’s curvature

In normal coordinates, Riemann proved in his habilitation (1854):

gij(x) = δij +
1
3

∑

α,β Riαβjx
αxβ +O(|x|3)

• Riαβj = −Riαjβ = −Rαiβj = Rβjiα

• Riαβj +Riβjα + Rijαβ = 0.
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Riemann’s curvature

In normal coordinates, Riemann proved in his habilitation (1854):

gij(x) = δij +
1
3

∑

α,β Riαβjx
αxβ +O(|x|3)

• Riαβj = −Riαjβ = −Rαiβj = Rβjiα

• Riαβj +Riβjα + Rijαβ = 0.

• Riαβj is the Riemannian curvature tensor.
Currently defined with covariant derivatives.
• Riemann finds the Gauss curvature K for surfaces:

K = R1212 = −R1221 = −R2112 = R2121
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Ricci, scalar, and sectional curvatures

In geodesic coordinates

• Ricci curvature Rij =
∑

αRiααj

• Scalar curvature R =
∑

i Rii

• Sectional curvature of the plane x3 = · · · = xn = 0, K = R1212.
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Ricci, scalar, and sectional curvatures

In geodesic coordinates

• Ricci curvature Rij =
∑

αRiααj

• Scalar curvature R =
∑

i Rii

• Sectional curvature of the plane x3 = · · · = xn = 0, K = R1212.

• “Ricci is − 1
3 of Hessian matrix of volume”

d vol =
√

det(gij)dx
1 ∧ · · · ∧ dxn

d vol(x) =



1−
1

6

∑

ij

Rijx
ixj +O(|x|3)



 dx1 ∧ · · · ∧ dxn.
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Ricci, scalar, and sectional curvatures

In geodesic coordinates

• Ricci curvature Rij =
∑

αRiααj

• Scalar curvature R =
∑

i Rii

• Sectional curvature of the plane x3 = · · · = xn = 0, K = R1212.

• “Ricci is − 1
3 of Hessian matrix of volume”

d vol =
√

det(gij)dx
1 ∧ · · · ∧ dxn

d vol(x) =



1−
1

6

∑

ij

Rijx
ixj +O(|x|3)



 dx1 ∧ · · · ∧ dxn.

Einstein’s equation: Rij −
1
2Rgij = Tij
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Ricci curvature

In normal coordinates

• Rij = Rji =
∑

α Riααj
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Ricci curvature

In normal coordinates

• Rij = Rji =
∑

α Riααj

• As quadratic form, it can be positive definite (Rij) > 0.
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Ricci curvature

In normal coordinates

• Rij = Rji =
∑

α Riααj

• As quadratic form, it can be positive definite (Rij) > 0.

d vol(x) =



1−
1

6

∑

ij

Rijx
ixj +O(|x|3)



 dx1 ∧ · · · ∧ dxn.

(Rij) = 0 (Rij) > 0 (Rij) < 0
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Hamilton: Ricci flow (1982)

∂gij
∂t

= −2Rij
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Hamilton: Ricci flow (1982)

∂gij
∂t

= −2Rij

• In harmonic coordinates {xi}, ∆xi = 0.

∂gij
∂t

= ∆(gij) +Qij(g
−1,

∂g

∂x
)

where







∆(gij) = Laplacian of the scalar function gij

Qij = quadratic expression

It is a reaction-diffusion equation
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Hamilton: Ricci flow (1982)

∂gij
∂t

= −2Rij

• In harmonic coordinates {xi}, ∆xi = 0.

∂gij
∂t

= ∆(gij) +Qij(g
−1,

∂g

∂x
)

where







∆(gij) = Laplacian of the scalar function gij

Qij = quadratic expression

It is a reaction-diffusion equation

• Heuristics of Hamilton’s program:
“Either g(t) converges to a locally homogeneous metric,
or singularities appear corresp. to the canonical decomposition".

Geometrization of three-manifolds. – p.16/31



Hamilton: Ricci flow (1982)

∂gij
∂t

= −2Rij

• Heuristics of Hamilton’s program:
“Either g(t) converges to a locally homogeneous metric,
or singularities appear corresp. to the canonical decomposition".

•Hamilton/DeTurck:

Short time existence and uniqueness

When Mn is compact there is a unique solution

defined for t ∈ [0, T ), T > 0.
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Example

• Assume that g(0) has constant sectional curvature K.
⇒ Rij = (n− 1)Kgij(0)

Set gij(t) = f(t)gij(0),
then ∂gij

∂t
= −2Rij is equivalent to the ODE

f ′(t) = −2(n− 1)K
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Example

• Assume that g(0) has constant sectional curvature K.
⇒ Rij = (n− 1)Kgij(0)

Set gij(t) = f(t)gij(0),
then ∂gij

∂t
= −2Rij is equivalent to the ODE

f ′(t) = −2(n− 1)K

g(t) = (1− 2K(n− 1)t)g(0)















if K < 0 it expands forever

if K = 0 it keeps constant

if K > 0 it collapses at time T = 1
2K(n−1)
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Example: Solitons

∂

∂t
gij = −2Rij .

A solution gt is a soliton if gt = λ(t)Φ∗

t g0 .

Shrinking if λ < 1, steady if λ = 1 and expanding if λ > 1.
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Example: Solitons

∂

∂t
gij = −2Rij .

A solution gt is a soliton if gt = λ(t)Φ∗

t g0 .

Shrinking if λ < 1, steady if λ = 1 and expanding if λ > 1.

A gradient soliton if ∂
∂t
Φt = ∇f

Equivalently:

Rij +Hessij(f) + c gij = 0

• Gradient solitons of curvature ≥ 0 appear after blowing up
singularities.
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Example: Cigar soliton

g = dx2+dy2

1+x2+y2 = dr2+r2dθ2

1+r2
= dρ2 + tanh2 ρ dθ2 in R2
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Example: Cigar soliton

g = dx2+dy2

1+x2+y2 = dr2+r2dθ2

1+r2
= dρ2 + tanh2 ρ dθ2 in R2

• Asymptotic to a cylinder (tanh ρ→ 1 when ρ→∞)
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Example: Cigar soliton

g = dx2+dy2

1+x2+y2 = dr2+r2dθ2

1+r2
= dρ2 + tanh2 ρ dθ2 in R2

• Asymptotic to a cylinder (tanh ρ→ 1 when ρ→∞)

• sec = 2
cosh2 ρ

> 0 and sec→ 0 when ρ→∞.
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Example: Cigar soliton

g = dx2+dy2

1+x2+y2 = dr2+r2dθ2

1+r2
= dρ2 + tanh2 ρ dθ2 in R2

• Asymptotic to a cylinder (tanh ρ→ 1 when ρ→∞)

• sec = 2
cosh2 ρ

> 0 and sec→ 0 when ρ→∞.

• It is a steady gradient soliton:

f = −2 log cosh ρ satisfies Hess(f) + 2
cosh2 ρ

g = 0

Geometrization of three-manifolds. – p.19/31



More examples

• Cylinder S2 × R:

The factor S2 collapses at finite time and R is constant.
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More examples

• Cylinder S2 × R:

The factor S2 collapses at finite time and R is constant.

• S3 with a “neck":

S2×I

neck
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More examples

• Cylinder S2 × R:

The factor S2 collapses at finite time and R is constant.

• S3 with a “neck":

S2×I

neck pinch

Geometrization of three-manifolds. – p.20/31



Zoom of singularities in dimension three
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Zoom of singularities in dimension three

When zoom and blow up a singularity
we would like to get a cylinder S2 ×R
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Positive Ricci

Theorem (Hamilton 1982)

If M3 admits a metric with (Rij) > 0

⇒M3 admits a metric with curv ≡ 1

Idea: • (Rij) > 0 is an invariant condition for the flow in dim 3.
• One can control the eigenvalues of Rij .
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Positive Ricci

Theorem (Hamilton 1982)

If M3 admits a metric with (Rij) > 0

⇒M3 admits a metric with curv ≡ 1

Idea: • (Rij) > 0 is an invariant condition for the flow in dim 3.
• One can control the eigenvalues of Rij .
• There is an extinction time of the flow
• The 3 eigenvalues converge to∞ at the same speed.
• the rescaled limit converges to a metric of ctnt curv.
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Positive Ricci

Theorem (Hamilton 1982)

If M3 admits a metric with (Rij) > 0

⇒M3 admits a metric with curv ≡ 1

Idea: • (Rij) > 0 is an invariant condition for the flow in dim 3.
• One can control the eigenvalues of Rij .
• There is an extinction time of the flow
• The 3 eigenvalues converge to∞ at the same speed.
• the rescaled limit converges to a metric of ctnt curv.

Generalization:
• If (Rij) ≥ 0, it admits a loc. homogeneous metric, R3, S2 × R, S3.

(Strong maximum principle for tensors (Hamilton)).
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Scalar curvature R

R =
∑

Rii

• Evolution of R for the Ricci flow:

∂R

∂t
= ∆R + 2|(Rij)|

2
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Scalar curvature R

R =
∑

Rii

• Evolution of R for the Ricci flow:

∂R

∂t
= ∆R + 2|(Rij)|

2

• Maximum principle: minM R is non-decreasing on t.
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Scalar curvature R

R =
∑

Rii

• Evolution of R for the Ricci flow:

∂R

∂t
= ∆R + 2|(Rij)|

2

• Maximum principle: minM R is non-decreasing on t.

• Hamilton-Ivey: R controls singularities in dim 3:

When approaching the limit time, R→∞ at some point.
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Singularities

Singularities appear at limit time T of existence of the flow.

When t→ T , R→∞ at some point.
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Singularities

Singularities appear at limit time T of existence of the flow.

When t→ T , R→∞ at some point.

• Hamilton’s question: How to control the injectivity radius
around singularities?

• Perelman 2002: Solutions to Ricci flow are locally
non-collapsed (after rescaling at R = 1).
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Perelman 2002-03

Theorem: κ-non collapse

∃κ > 0 s.t. ∀r > 0, ∀x ∈M and ∀t ∈ [1, T ),

If ∀y ∈ B(x, t, r), |R(y, t)| ≤ r−2 ⇒ vol(B(x,t,r))
r3

≥ κ

⇒When we rescale to |R(y, t)| = 1,
lower bound of injectivity radius.
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Perelman 2002-03

Theorem: κ-non collapse

∃κ > 0 s.t. ∀r > 0, ∀x ∈M and ∀t ∈ [1, T ),

If ∀y ∈ B(x, t, r), |R(y, t)| ≤ r−2 ⇒ vol(B(x,t,r))
r3

≥ κ

⇒When we rescale to |R(y, t)| = 1,
lower bound of injectivity radius.

• Idea: “L-geodesics” and “reduced volume”.
• This excludes the cigar soliton as local model for singularities.

Seek cylinders S2 × R as local models for singularities
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The cigar soliton is κ-collapsed

gcigar = dx2+dy2

1+x2+y2 = dρ2 + tanh2 ρ dθ2 in R2

Consider gcigar + dz2 in R3 or in R2 × S1.

Since R = 2
cosh2 ρ

→ 0 and inj → 1 when ρ→∞,
it is excluded as local model for singularities

(by the κ-non collapse)

(κ-non collapse: when rescale at |R| = 1, inj > c(κ) > 0)
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Perelman 2002-03

Theorem: κ-non collapse

∃κ > 0 s.t. ∀r > 0, ∀x ∈M and ∀t ∈ [1, T ),

If ∀y ∈ B(x, t, r), |R(y, t)| ≤ r−2 ⇒ vol(B(x,t,r))
r3

≥ κ

⇒ If rescale at |R(y, t)| = 1, lower bound of inj radius.
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Perelman 2002-03

Theorem: κ-non collapse

∃κ > 0 s.t. ∀r > 0, ∀x ∈M and ∀t ∈ [1, T ),

If ∀y ∈ B(x, t, r), |R(y, t)| ≤ r−2 ⇒ vol(B(x,t,r))
r3

≥ κ

⇒ If rescale at |R(y, t)| = 1, lower bound of inj radius.

Theorem: canonical neighbourhoods

∀ε > 0, ∃r > 0, s.t. ∀x ∈M an ∀t ∈ [1, T ),

If R(x, t) ≥ r−2 ⇒ x ∈ (M, g(t)) lies in a ε-canonical neighbourhood.

ε-canonical

neighbourhood:















• ε-close to a cylinder S2 × (0, l)

• ε-close to B3 open with cylindrical end

• manifold with sec > 0.
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Ricci flow with δ-surgery

(M3, g(t)) Ricci flow, t ∈ [0, T ).

Ωρ = {x ∈M | R(x, t) ≤ ρ−2, t→ T} compact.
Ω =

⋃

ρ>0 Ωρ open. g∞ = limit metric on Ω.

��

Ωρ
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Ricci flow with δ-surgery

(M3, g(t)) Ricci flow, t ∈ [0, T ).

Ωρ = {x ∈M | R(x, t) ≤ ρ−2, t→ T} compact.
Ω =

⋃

ρ>0 Ωρ open. g∞ = limit metric on Ω.

��

Ωρ

If t / T ⇒ (M3 − Ωr, g(t)) = union of ε-canonical neighbourhoods.
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Ricci flow with δ-surgery

(M3, g(t)) Ricci flow, t ∈ [0, T ).

Ωρ = {x ∈M | R(x, t) ≤ ρ−2, t→ T} compact.
Ω =

⋃

ρ>0 Ωρ open. g∞ = limit metric on Ω.

��

Ωρ

If t / T ⇒ (M3 − Ωr, g(t)) = union of ε-canonical neighbourhoods.

∃0 < δ < 1 such that if ρ = δr,

M3 − Ωρ = finite union of S2 × [0, 1], B3 or manifold with sec > 0.

Geometrization of three-manifolds. – p.28/31



Ricci flow with δ-surgery

(M3, g(t)) Ricci flow, t ∈ [0, T ).

Ωρ = {x ∈M | R(x, t) ≤ ρ−2, t→ T} compact.
Ω =

⋃

ρ>0 Ωρ open. g∞ = limit metric on Ω.

��

Ωρ

If t / T ⇒ (M3 − Ωr, g(t)) = union of ε-canonical neighbourhoods.

∃0 < δ < 1 such that if ρ = δr,

M3 − Ωρ = finite union of S2 × [0, 1], B3 or manifold with sec > 0.

• δ-surgery: Glue hemispheres to the boundary of (Ωρ, g∞),
smooth them out and continue the flow.
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Ricci flow with δ-surgery

(M3, g(t)) Ricci flow, t ∈ [0, T ).

Ωρ = {x ∈M | R(x, t) ≤ ρ−2, t→ T} compact.
Ω =

⋃

ρ>0 Ωρ open. g∞ = limit metric on Ω.

��

Ωρ

M3 − Ωρ = finite union of S2 × [0, 1], B3 or manifold with sec > 0

�
�
�
�

. . . and apply again the flow.
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Evolution of Ricci flow with δ-surgery

1 There could be infinitely many surgery times.
Surgery times do not accumulate (volume estimates)

d

dt
vol(M, g(t)) = −

∫

M

R ≤ ctnt·vol(M, g(t)) (min
M

R non-decreasing)

and every surgery decreases at least a certain amount of volume

Geometrization of three-manifolds. – p.29/31



Evolution of Ricci flow with δ-surgery

1 There could be infinitely many surgery times.
Surgery times do not accumulate (volume estimates)

2 At every surgery, we have a connected sum, that can be
topologically trivial (M#S3).

S3

S3#S3#S3#S3
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Evolution of Ricci flow with δ-surgery

1 There could be infinitely many surgery times.
Surgery times do not accumulate (volume estimates)

2 At every surgery, we have a connected sum, that can be
topologically trivial (M#S3).

3 δ and other parameters change at every surgery.
The flow depends on the choice of δ: There is no uniqueness!

Geometrization of three-manifolds. – p.29/31



Evolution of Ricci flow with δ-surgery

1 There could be infinitely many surgery times.
Surgery times do not accumulate (volume estimates)

2 At every surgery, we have a connected sum, that can be
topologically trivial (M#S3).

3 δ and other parameters change at every surgery.
The flow depends on the choice of δ: There is no uniqueness!

4 By 1:















• Either ends up with a connected sum of manifolds

of constant curvature ≡ +1 and S2 × S1,

• or continues forever.
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Long time evolution

For sufficiently large time, Mt splits into:

Mt = M thin
t ∪M thick

t

thin/thick according to whether inj-rad is larger/less than c(R, t, δ).
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Long time evolution

For sufficiently large time, Mt splits into:

Mt = M thin
t ∪M thick

t

thin/thick according to whether inj-rad is larger/less than c(R, t, δ).

This corresponds to the JSJ splitting.















M thick
t = hyperbolic (by regularization of flow)

M thin
t = union of Seifert fibrations, called GRAPH manifold

(using techniques of collapsed manifolds)
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...and thank you for your attention!
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