Luisa Paoluzzi
 (LATP Marseilles - France)

Camp-style seminar - Hakone

May 31 ${ }^{\text {st }}, 2012$

Definition:

Let H_{1} and H_{2} be subgroups of a group G. We say that H_{1} and H_{2} are commensurable if $\left[\mathrm{H}_{1}: \mathrm{K}\right],\left[\mathrm{H}_{2}: \mathrm{K}\right]<\infty$, where $\mathrm{K}=\mathrm{H}_{1} \cap \mathrm{H}_{2}$.

Definition:

Let H_{1} and H_{2} be subgroups of a group G. We say that H_{1} and H_{2} are commensurable if $\left[\mathrm{H}_{1}: \mathrm{K}\right],\left[\mathrm{H}_{2}: \mathrm{K}\right]<\infty$, where $\mathrm{K}=\mathrm{H}_{1} \cap \mathrm{H}_{2}$.

Remark:
"Being commensurable" is an equivalence relation.

Definition:

Let H_{1} and H_{2} be subgroups of a group G. We say that H_{1} and H_{2} are commensurable if $\left[\mathrm{H}_{1}: \mathrm{K}\right],\left[\mathrm{H}_{2}: \mathrm{K}\right]<\infty$, where $\mathrm{K}=\mathrm{H}_{1} \cap \mathrm{H}_{2}$.

Remark:
"Being commensurable" is an equivalence relation.
Examples:
G finite: any two H_{1} and H_{2} are commensurable. $\mathrm{G}=\mathrm{Z}: \mathrm{H}_{1}$ and H_{2} are commensurable iff they are isomorphic.

1. More general definitions

1. More general definitions

2. Some properties of commensurators
3. More general definitions
4. Some properties of commensurators
5. Commensurability and (hyperbolic) 3-manifolds
6. More general definitions
7. Some properties of commensurators
8. Commensurability and (hyperbolic) 3-manifolds
9. Commensurability and knots
10. More general definitions
11. Some properties of commensurators
12. Commensurability and (hyperbolic) 3-manifolds
13. Commensurability and knots
14. Commensurability and quasi-isometry
15. More general definitions
16. Some properties of commensurators
17. Commensurability and (hyperbolic) 3-manifolds
18. Commensurability and knots
19. Commensurability and quasi-isometry
20. Commensurability and geometric group theory

Where's the geometry/topology in this?

Look at H_{1} and H_{2} as fundamental groups.
For instance, let $\mathbf{G}=\mathrm{PSL}(2, \mathbf{C})$ acting on \mathbf{H}^{3} and let H_{1} and H_{2} be lattices which are fundamental groups of hyperbolic manifolds (or, more generally, orbifolds). Obviously, if H_{1} and H_{2} are commensurable $\mathrm{X} / \mathrm{H}_{1}$ and $\mathrm{X} / \mathrm{H}_{2}$ have a common finite cover.

Since (orbifold) fundamental groups are defined as subgroups of G only up to conjugacy, it is natural to allow subgroups to have a finite index intersection only up to conjugacy.

Definition:
Let H_{1} and H_{2} be subgroups of a group G. We say that H_{1} and H_{2} are weakly commensurable if there is a g in G such that $\left[\mathrm{H}_{1}: \mathrm{K}\right],\left[\mathrm{H}_{2}: \mathrm{K}\right]<\infty$, where $\mathrm{K}=\mathrm{H}_{1} \cap \mathrm{gH}_{2} \mathrm{~g}^{-1}$.

Remark:
"Weak commensurability" is also an equivalence relation.

Definition:

Let H be a subgroup of a group G . The commensurator of H in G is defined as
$\operatorname{Comm}_{G}(\mathrm{H})=\left\{\mathrm{g} \in \mathrm{G} \mid[\mathrm{H}: \mathrm{K}],\left[\mathrm{gHg}^{-1}: \mathrm{K}\right]<\infty\right.$ where $\left.\mathrm{K}=\mathrm{H} \cap \mathrm{gHg}^{-1}\right\}$.

Definition:

Let H be a subgroup of a group G . The commensurator of H in G is defined as
Comm $_{G}(H)=\left\{g \in G \mid[H: K],\left[g \mathrm{gg}^{-1}: \mathrm{K}\right]<\infty\right.$ where $\left.\mathrm{K}=\mathrm{H} \cap \mathrm{gHg}^{-1}\right\}$.
Remark:
Comm $_{G}(H)$ is a subgroup of G satisfying:

$$
Z(G) \subset C_{G}(H) \subset N_{G}(H) \subset \operatorname{Comm}_{G}(H)
$$

and, of course,

$$
H \subset N_{G}(H) \subset \operatorname{Comm}_{G}(H)
$$

Definition:

Let H be a subgroup of a group G . The commensurator of H in G is defined as
$\operatorname{Comm}_{G}(H)=\left\{g \in G \mid[H: K],\left[\mathrm{gHg}^{-1}: \mathrm{K}\right]<\infty\right.$ where $\left.\mathrm{K}=\mathrm{H} \cap \mathrm{gHg}^{-1}\right\}$.
Remark:
Note that commensurable subgroups have the same commensurator, while weakly commensurable subgroups have conjugate commensurators.

Geometry $=$ Topology in dimension 3

Let us consider two 3-dimensional hyperbolic manifolds (closed or finite volume). Assume they have a common finite cover.

Let H_{1} and H_{2} images of faithful irreducible discrete representations of their fundamental groups inside $\mathrm{G}=\mathrm{PSL}(2, \mathrm{C})$. By Mostow's rigidity, H_{1} and H_{2} are (weakly) commensurable.

The algebraic and "geometric" notion of commensurability coincide in this setting.

Geometry vs Topology in dimension 2

Let S_{g} denote the fundamental group of the genus g close orientable surface.

Of course $\mathrm{S}_{\mathrm{g}} \subset \mathrm{S}_{2}$ for all $\mathrm{g} \geq 2$.
On the other hand one can find discrete surface groups H_{1} and H_{2} inside $\mathrm{G}=\mathrm{PSL}(2, \mathbf{R})$ which are not (weakly) commensurable.

Definition:

Let H_{1} and H_{2} be groups. We say that H_{1} and H_{2} are abstractly commensurable if there are subgroups K_{i} of H_{i},
$\mathrm{i}=1,2$, such that $\left[\mathrm{H}_{1}: \mathrm{K}_{1}\right],\left[\mathrm{H}_{2}: \mathrm{K}_{2}\right]<\infty$ and $\mathrm{K}_{1} \cong \mathrm{~K}_{2}$.
Examples:
All finite groups are abstractly commensurable.
All finite rank ≥ 2 free groups are abstractly commensurable. All hyperbolic surface groups are abstractly commensurable. Two free abelian groups are commensurable iff they are isomorphic.

Remark:

The observations made about surfaces show that abstract commensurability is a concept better adapted to topology or geometry in a coarse sense, while weak commensurability can capture finer geometric aspects.

Definition:

Let H be a group. The abstract commensurator of H is
$\operatorname{Comm}(\mathrm{H})=\left\{\mathrm{f}: \mathrm{K}_{1} \rightarrow \mathrm{~K}_{2}\right.$ isomorphism | $\left.\left[\mathrm{H}: \mathrm{K}_{1}\right],\left[\mathrm{H}: \mathrm{K}_{2}\right]<\infty\right\} / \sim$ where \sim is the equivalence relation defined by $f \sim f$ ' whenever there is a $K \subset H,[H: K]<\infty$, such that $\left.f\right|_{K}=\left.f\right|_{K}$.

Remarks:
"Partial composition" gives Comm(H) a group structure. There is a natural morphism $\operatorname{Aut}(\mathrm{H}) \rightarrow \operatorname{Comm}(\mathrm{H})$.

Proposition:

Let H be a group with the unique root property. Then $\operatorname{Aut}(\mathrm{H})$ injects into Comm(H).

Proposition:

Let H be a group with the unique root property. Then $\operatorname{Aut}(\mathrm{H})$ injects into Comm(H).

Proof:

Assume $g \in \operatorname{Aut}(\mathrm{H})$ induces a trivial commensurator, i.e. there is $\mathrm{K} \triangleleft \mathrm{H},[\mathrm{H}: \mathrm{K}]<\infty$, such that $\left.\mathrm{g}\right|_{\mathrm{K}}=\mid \mathrm{d}_{\mathrm{K}}$.
There is an integer n such that, for all $h \in H, h^{n} \in K$ and so $h^{n}=g\left(h^{n}\right)=g(h)^{n}$. It follows $h=g(h)$ for all $h \in H$.

Proposition:

Let H be a group with the unique root property. Then $\operatorname{Aut}(\mathrm{H})$ injects into Comm (H).

Proof:
Assume $g \in \operatorname{Aut}(H)$ induces a trivial commensurator, i.e. there is $\mathrm{K} \triangleleft \mathrm{H},[\mathrm{H}: \mathrm{K}]<\infty$, such that $\left.\mathrm{g}\right|_{\mathrm{K}}=\mid \mathrm{d}_{\mathrm{K}}$.
There is an integer n such that, for all $h \in H, h^{n} \in K$ and so $h^{n}=g\left(h^{n}\right)=g(h)^{n}$. It follows $h=g(h)$ for all $h \in H$.

Example:
$G L(n, \mathbf{Z}) \cong \operatorname{Aut}\left(\mathbf{Z}^{n}\right) \subset \operatorname{Comm}\left(\mathbf{Z}^{n}\right) \cong G L(n, \mathbf{Q})$.

Theorem (Bartholdi-Bogopolski):

Let H be a group with the unique root property. Assume that for infinitely many primes p there are $\mathrm{K} \triangleleft \mathrm{H}$ and $\mathrm{f}_{\mathrm{K}} \in \operatorname{Aut}(\mathrm{K})$ such that

$$
1 \rightarrow \mathrm{~K} \rightarrow \mathrm{H} \rightarrow \mathrm{Z} / \mathrm{pZ} \rightarrow 1
$$

and
for all $g \in \operatorname{Aut}(H) f_{k}$ is not the restriction of g to K. Under these hypothesis Comm(H) is not finitely generated.

Theorem (Bartholdi-Bogopolski):

Let H be a group with the unique root property. Assume that for infinitely many primes p there are $\mathrm{K} \triangleleft \mathrm{H}$ and $\mathrm{f}_{\mathrm{K}} \in \operatorname{Aut}(\mathrm{K})$ such that

$$
1 \rightarrow \mathrm{~K} \rightarrow \mathrm{H} \rightarrow \mathrm{Z} / \mathrm{pZ} \rightarrow 1
$$

and
for all $g \in \operatorname{Aut}(H) f_{k}$ is not the restriction of g to K.
Under these hypothesis Comm(H) is not finitely generated.

Corollary:

The commensurator of the free group F_{n} is not finitely generated.

Remarks:
Obviously commensurators and abstract commensurators don't have much in common:

Theorem (Rolfsen)
$\operatorname{Comm}_{B m}\left(B_{n}\right)=N_{B m}\left(B_{n}\right)=\left\langle B_{n}, C_{B m}\left(B_{n}\right)\right\rangle \cong B_{n} x\left(B_{m-n+1}\right)_{1}$ where $\left(B_{m-n+1}\right)_{1}$ denotes the stabiliser of the "first" strand.

Theorem (Leininger-Margalit)
For $n \geq 4$, $\operatorname{Comm}\left(B_{n}\right) \cong \operatorname{Mod}\left(S^{2}, n+1\right)\left(\mathbf{Q}^{\star}\left(\mathbf{Q}^{\infty}\right)\right)$.

Remarks:
Abstract commensurators are not necessary "complicated"
Theorem (Farb-Handel)
$\operatorname{Comm}\left(\operatorname{Out}\left(F_{n}\right)\right) \cong \operatorname{Out}\left(F_{n}\right)$ if $n>3$.
NB
$B_{n} \hookrightarrow \operatorname{Aut}\left(F_{n}\right)$ and $B_{n} / Z\left(B_{n}\right) \hookrightarrow \operatorname{Out}\left(F_{n}\right)$

Remarks:

Theorem (Arzhanteva-Lafont-Minasyan)
There are
(i) a class of finite presentations of groups in which the isomorphism problem is solvable but the abstract commensurability problem is not
and, conversely,
(ii) a class of finite presentation of groups in which the abstract commensurability problem is solvable but the isomorphism problem is not.

Theorem (Margulis):

Let $\mathrm{G}=\mathrm{PSL}(2, \mathrm{C})$ and H be a discrete subgroup of G of finite covolume. Then either H is of finite index in $\mathrm{Comm}_{G}(\mathrm{H})$ or Comm $_{G}(H)$ is dense in G. This second situation happens iff H is arithmetic.

NB
Here G can be any connected semi-simple Lie group with trivial centre and H an irreducible lattice.

Definition:

A lattice H of $\operatorname{PSL}(2, \mathrm{C})$ is arithmetic if the trace field of H is a number field with exactly one complex place.

Example:
Bianchi groups PSL(2,O(d)) are arithmetic. Here $O(d)$ is the ring of integers of the number field $\mathbf{Q}(\sqrt{ }-\mathrm{d})$.

Remark (geometric consequence of Margulis' result):
Consider a commensurability class of hyperbolic 3-orbifolds. If the orbifolds are not arithmetic, the class contains a unique minimal element, i.e. a common quotient of all elements of the class. Its orbifold fundamental group is the commensurator of the groups of the class.

Theorem (Borel):

The commensurability class of an arithmetic 3-orbifold contains infinitely many minimal elements.

Remarks (commensurability invariants):
Commensurable orbifolds have commensurable volumes although the converse is not true in general.
(Reid) The invariant trace field, i.e. the smallest field containing the squares of the traces of the elements of the group.
(For cusped orbifolds) The cusp field, generated by the cusp parameter or cusp shape.

What about the other 3D geometries?

Proposition:
All compact orientable manifolds admitting a geometry which is neither hyperbolic nor Sol, belong to one (or two) commensurability classes.

The commensurability classes of compact Sol manifolds are in one-to-one correspondence with real quadratic number fields (related to the eigenvalues of the monodromy of the bundle).

Theorem (Reid):

There is a unique arithmetic knot, i.e. the figure-eight.
It follows that the figure-eight is the only knot in its commensurability class.

Remark:

On the other hand there are infinitely many 2-component arithmetic links.

Definition:
By an abuse of language, two knots are commensurable if their complements are.

Examples:

Other knots are known to be the alone in their commensurability classes:

All 2-bridge knots (Reid-Walsh);
Pretzel knots of type (-2,3,n) for $n \neq 7$ (Macasieb-Mattman).

Conjecture (Reid-Walsh):

A commensurability class contains at most three knot complements.

Remarks:
The commensurability class of the pretzel knot (-2,3,7) contains three knot complements (Reid-Walsh);

Conjecture (Reid-Walsh):

A commensurability class contains at most three knot complements.

Remarks:
The commensurability class of the pretzel knot (-2,3,7) contains three knot complements (Reid-Walsh);

There are infinitely many commensurability classes containing three knot complements (Hoffman).

Theorem (Boileau-Boyer-Cebanu-Walsh):
If a knot has no hidden symmetries then its commensurability class contains at most two other knots.

Theorem (Boileau-Boyer-Cebanu-Walsh):
If a knot has no hidden symmetries then its commensurability class contains at most two other knots.

Definition:

A knot has hidden symmetries if its fundamental group is not normal in its commensurator.

Remarks:

Only three knots with hidden symmetries are known: the figure-eight knot and the two dodecahedral knots described by Aitchison and Rubinstein:

Remarks:

The cusp shape of a knot with hidden symmetries must belong either to $\mathbf{Q}[\sqrt{ }-3]$ or $\mathbf{Q}[i]$; moreover if the knot is not arithmetic the cusp is rigid. (Neumann-Reid)

Also just one knot with cusp field $\mathbf{Q}[i]$ is known and it has no hidden symmetries.

Conjecture (Neumann-Reid):
The only non arithmetic knots with hidden symmetries are the two dodecahedral knots (which belong to the same commensurability class).

Theorem (Boileau-Boyer-Cebanu-Walsh):
Let K be a hyperbolic knot whose cyclic commensurability class contains another knot K'. Then
(i) K and K^{\prime} are fibred (follows from work of Ni);
(ii) K and K^{\prime} have the same genus;
(iii) K and K^{\prime} have different volume; in particular K and K^{\prime} are not mutants;
(iv) K and K^{\prime} are chiral and not commensurable with their mirror images.

Theorem (Boileau-Boyer-Cebanu-Walsh):
(i) K and K^{\prime} are fibred (follows from work of Ni);
(ii) K and K^{\prime} have the same genus;
(iii) K and K^{\prime} have different volume; in particular K and K^{\prime} are not mutants;
(iv) K and K^{\prime} are chiral and not commensurable with their mirror images.

Note that the two dodecahedral knots (i) are one fibred and the other not; (ii) have different genera; (iii) have the same volume; (iv) are both amphicheiral.

The case of links

Recall that mutation preserves volume (trace field and Bloch invariant) but can give rise to non isometric hyperbolic links.

Theorem (Chesebro-Deblois):
Non isometric mutant links may be commensurable but this is not necessarily the case.

Theorem (Boileau-Boyer-Cebanu-Walsh):
If a knot has no hidden symmetries then there are at most two other knots in its commensurability class.

Idea of proof

Theorem (Boileau-Boyer-Cebanu-Walsh):

If a knot has no hidden symmetries then there are at most two other knots in its commensurability class.

Idea of proof
Assume: K has no symmetries and all K^{\prime} in its commensurability class have no hidden symmetries):

Theorem (Boileau-Boyer-Cebanu-Walsh):
If a knot has no hidden symmetries then there are at most two other knots in its commensurability class.

Idea of proof
Assume: K has no symmetries and all K^{\prime} in its commensurability class have no hidden symmetries):
K^{\prime} covers K , which is the unique minimal element of the class.

Theorem (Boileau-Boyer-Cebanu-Walsh):
If a knot has no hidden symmetries then there are at most two other knots in its commensurability class.

Idea of proof
Assume: K has no symmetries and all K^{\prime} in its commensurability class have no hidden symmetries):
K^{\prime} covers K , which is the unique minimal element of the class.
The covering extends to the 3-sphere, inducing a lens space surgery of K.

Theorem (Boileau-Boyer-Cebanu-Walsh):
If a knot has no hidden symmetries then there are at most two other knots in its commensurability class.

Idea of proof
Assume: K has no symmetries and all K^{\prime} in its commensurability class have no hidden symmetries):
K^{\prime} covers K , which is the unique minimal element of the class.
The covering extends to the 3-sphere, inducing a lens space surgery of K.
The conclusion follows from the cyclic surgery theorem: at most three slopes give lens spaces.

Abstractly commensurable (finitely presented) groups are easily seen to be quasi-isometric, however abstract commensurability is in general a stronger notion.

Example:
All hyperbolic 3-orbifold groups are quasi-isometric, for they are quasi-isometric to \mathbf{H}^{3}, but they are not all commensurable.

Sometimes the two notions coincide, though.
Theorem (Schwartz):
Non uniform lattices of PSL(2,C) are commensurable iff they are quasi isometric.

Theorem (Behrstock-Januszkiewicz-Neumann + PapasogluWhyte):

Let $\mathrm{H}=\mathrm{H}_{1}{ }^{*} \ldots{ }^{*} \mathrm{H}_{\mathrm{n}}$ and $\mathrm{H}^{\prime}=\mathrm{H}_{1}^{\prime}{ }^{*} \ldots{ }^{*} \mathrm{H}_{\mathrm{m}}$ two non trivial free products of finitely generated non trivial abelian groups. Assume $\mathrm{H}, \mathrm{H}^{\prime} \neq \mathbf{Z} / 2 \mathrm{Z} * \mathbf{Z} / 2 \mathbf{Z}$. The following are equivalent:
(i) H and H^{\prime} are commensurable; (ii) H and H^{\prime} are quasi-isometric; (iii) $\{\mathrm{rk}(\mathrm{H} 1), \ldots, \mathrm{rk}(\mathrm{Hn})\}=\left\{\mathrm{rk}\left(\mathrm{H}^{\prime} 1\right), \ldots, \mathrm{rk}\left(\mathrm{H}^{\prime} \mathrm{m}\right)\right\}$.

Remarks:

The groups in the previous theorem are (virtually) rightangled Artin groups of a special type (with associated graph a disjoint union of complete graphs).

For right-angled Artin groups with associated graph a tree see Behrstock-Januszkiewicz-Neumann. For a classifification up to quasi-isometry of higher dimensional rightangled Artin groups see Behrstock-Neumann. For commensurators of "generic" Artin groups see Crisp. For commensurability between right-angled Artin and right-angled Coxeter groups see Davis-Januszkiewicz (this implies that right-angled Artin groups are linear).

Remark:

The classification of virtual surface groups up to abstract commensurability coincides with their classification up to quasi-isometry.

Remark:

The classification of virtual surface groups up to abstract commensurability coincides with their classification up to quasi isometry.

Moreover, a group which is quasi-isometric to a hyperbolic surface group is virtually a cocompact Fuchsian group (Casson-Jungreis, Gabai).

Remark:

The classification of virtual surface groups up to abstract commensurability coincides with their classification up to quasi-isometry.

Moreover, a group which is quasi-isometric to a hyperbolic surface group is virtually a cocompact Fuchsian group (Casson-Jungreis, Gabai).

The classification up to abstract commensurability or quasiisometry of right-angled polygon Coxeter groups follows.

Consider the 2-complex obtained by gluing together two right-angled hyperbolic polygons along an edge (the polygons do not lie in the same plane):

Note that a right-angled hyperbolic n-gon, $n>4$, can be obtained by gluing together $n-4$ copies of a right-angled regular hyperbolic pentagon.

Let $n \geq m \geq 1$. Consider $W_{m, n}$ the Coxeter group of reflections in the edges of the 2-complex defined before by identifying along an edge a hyperbolic right-angled ($n+4$)-gon and a hyperblic right-angled $(m+4)$-gon.

$$
W_{m, n}=C_{m+4}{ }^{*}{ }_{D \times x Z / 2 Z} C_{n+4}
$$

Let $n \geq m \geq 1$. Consider $W_{m, n}$ the Coxeter group of reflections in the edges of the 2-complex defined before by identifying along an edge a hyperbolic right-angled ($n+4$)-gon and a hyperblic right-angled $(m+4)$-gon.

$$
W_{m, n}=C_{m+4}{ }^{*}{ }_{D o x z / 2 z Z} C_{n+4}
$$

Theorem (Crisp-P.):
$\mathrm{W}_{\mathrm{m}, \mathrm{n}}$ and $\mathrm{W}_{\mathrm{k}, \mathrm{l}}$ are abstractly commensurable iff $\mathrm{m} / \mathrm{n}=\mathrm{k} / \mathrm{l}$.

Idea of proof (sufficiency):

Idea of proof (necessity):

Lemma (Lafont):
Any isomorphism between finite index subgroups of $W_{m, n}$ and $\mathrm{W}_{\mathrm{k}, 1}$ is induced by a homeomorphism of the corresponding covering spaces.

One can assume that the corresponding covering spaces are obtained by gluing together "tiled surfaces" along simple closed "singular" geodesics.

Idea of proof (necessity):

The lemma implies that we have a homeomorphism

$$
\mathrm{h}: \mathrm{S}_{1} \mathrm{US}_{2} \rightarrow \mathrm{~S}_{1}^{\prime} \mathrm{US}_{2}^{\prime}
$$

where S_{1} is an $(m+4)$-tiled surface, S_{2} an $(n+4)$-tiled surface, S_{1}^{\prime} a $(\mathrm{k}+4)$-tiled surface, and S_{2}^{\prime} an ($1+4$)-tiled surface.

Idea of proof (necessity):
The lemma implies that we have a homeomorphism

$$
\mathrm{h}: \mathrm{S}_{1} \cup \mathrm{~S}_{2} \rightarrow \mathrm{~S}_{1}^{\prime} \mathrm{uS}_{2}^{\prime}
$$

where S_{1} is an $(m+4)$-tiled surface, S_{2} an $(n+4)$-tiled surface, S_{1}^{\prime} a $(k+4)$-tiled surface, and S_{2}^{\prime} an ($1+4$)-tiled surface.

We can assume that $h^{-1}\left(\mathrm{~S}_{1}^{\prime}\right) \cap S_{1}$ is not empty. It is easy to see that the number τ of tiles in $U=h^{-1}\left(S_{1}^{\prime}\right) \cap S_{1}$ equals the number of tiles in $V=h^{-1}\left(S_{2}^{\prime}\right) \cap S_{2}$.

Idea of proof (necessity):

The lemma implies that we have a homeomorphism

$$
\mathrm{h}: \mathrm{S}_{1} \cup \mathrm{~S}_{2} \rightarrow \mathrm{~S}_{1}^{\prime} \mathrm{uS}_{2}^{\prime}
$$

where S_{1} is an $(m+4)$-tiled surface, S_{2} an ($n+4$)-tiled surface, S_{1}^{\prime} a $(\mathrm{k}+4)$-tiled surface, and S_{2}^{\prime} an ($1+4$)-tiled surface.

We can assume that $h^{-1}\left(S_{1}^{\prime}\right) \cap S_{1}$ is not empty. It is easy to see that the number τ of tiles in $U=h^{-1}\left(S_{1}^{\prime}\right) \cap S_{1}$ equals the number of tiles in $\mathrm{V}=\mathrm{h}^{-1}\left(\mathrm{~S}_{2}^{\prime}\right) \cap \mathrm{S}_{2}$.

An Euler characteristic computation gives:

$$
\mathrm{m} / \mathrm{n}=\mathrm{m} \tau / \mathrm{n} \tau=\chi(\mathrm{U}) / \chi(\mathrm{V})=\chi(\mathrm{h}(\mathrm{U})) / \chi(\mathrm{h}(\mathrm{~V}))=\mathrm{k} / \mathrm{l}
$$

Thank you for your attention!

Pssst, it's over now...

