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Definition:

Let H
1
 and H

2
 be subgroups of a group G. We say that H

1
 

and H
2
 are commensurable if [H

1
:K], [H

2
:K]<∞, where 

K=H
1
∩ H

2
.
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Remark:

“Being commensurable” is an equivalence relation.



  

Definition:

Let H
1
 and H

2
 be subgroups of a group G. We say that H

1
 

and H
2
 are commensurable if [H

1
:K], [H

2
:K]<∞, where 

K=H
1
∩ H

2
.

Remark:

“Being commensurable” is an equivalence relation.

Examples:

G finite: any two H
1
 and H

2
 are commensurable.

G=Z: H
1
 and H

2
 are commensurable iff they are isomorphic.
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1. Generalised definitions

Where's the geometry/topology in this?

Look at H
1
 and H

2 
as fundamental groups.

For instance, let G = PSL(2,C) acting on H3 and let H
1
 and H

2
 

be lattices which are fundamental groups of hyperbolic 
manifolds (or, more generally, orbifolds). Obviously, if H

1
 and 

H
2 
are commensurable X/H

1
 and X/H

2
 have a common finite 

cover. 

Since (orbifold) fundamental groups are defined as 
subgroups of G only up to conjugacy, it is natural to allow 
subgroups to have a finite index intersection only up to 
conjugacy.



  

1. Generalised definitions

Definition:

Let H
1
 and H

2
 be subgroups of a group G. We say that H

1
 

and H
2
 are weakly commensurable if there is a g in G such 

that [H
1
:K], [H

2
:K]<∞, where K=H

1
∩ gH

2
g-1.

Remark:

“Weak commensurability” is also an equivalence relation.



  

1. Generalised definitions

Definition:

Let H be a subgroup of a group G. The commensurator of H 
in G is defined as 
Comm

G
(H)={g ∊G | [H:K], [gHg-1:K]<∞ where K=H ∩ gHg-1}.



  

1. Generalised definitions

Definition:

Let H be a subgroup of a group G. The commensurator of H 
in G is defined as 
Comm

G
(H)={g ∊G | [H:K], [gHg-1:K]<∞ where K=H ∩ gHg-1}.

Remark:

Comm
G
(H) is a subgroup of G satisfying: 

Z(G) ⊂ C
G
(H) ⊂ N

G
(H) ⊂ Comm

G
(H)

and, of course,
H ⊂ N

G
(H) ⊂ Comm

G
(H)



  

1. Generalised definitions

Definition:

Let H be a subgroup of a group G. The commensurator of H 
in G is defined as 
Comm

G
(H)={g ∊G | [H:K], [gHg-1:K]<∞ where K=H ∩ gHg-1}.

Remark:

Note that commensurable subgroups have the same 
commensurator, while weakly commensurable subgroups 
have conjugate commensurators.



  

1. Generalised definitions

Geometry = Topology in dimension 3

Let us consider two 3-dimensional hyperbolic manifolds 
(closed or finite volume). Assume they have a common finite 
cover. 

Let H
1
 and H

2
 images of faithful irreducible discrete 

representations of their fundamental groups inside 
G=PSL(2,C). By Mostow's rigidity, H

1
 and H

2
 are (weakly) 

commensurable.

The algebraic and “geometric” notion of commensurability 
coincide in this setting.



  

1. Generalised definitions

Geometry vs Topology in dimension 2

Let S
g
 denote the fundamental group of the genus g close 

orientable surface.

Of course S
g
 ⊂ S

2
 for all g≥2.

On the other hand one can find discrete surface groups H
1
 

and H
2
 inside G=PSL(2,R) which are not (weakly) 

commensurable.



  

1. Generalised definitions

Definition:

Let H
1
 and H

2
 be groups. We say that H

1
 and H

2
 are 

abstractly commensurable if there are subgroups K
i
 of H

i
, 

i=1,2, such that [H
1
:K

1
], [H

2
:K

2
]<∞ and K

1
≅K

2
.

Examples:

All finite groups are abstractly commensurable.
All finite rank ≥ 2 free groups are abstractly commensurable.
All hyperbolic surface groups are abstractly commensurable.
Two free abelian groups are commensurable iff they are 
isomorphic. 



  

1. Generalised definitions

Remark:

The observations made about surfaces show that abstract 
commensurability is a concept better adapted to topology or 
geometry in a coarse sense, while weak commensurability 
can capture finer geometric aspects.



  

1. Generalised definitions

Definition:

Let H be a group. The abstract commensurator of H is

Comm(H)={f : K
1
→ K

2
 isomorphism | [H:K

1
], [H:K

2
]<∞}/~

where ~ is the equivalence relation defined by f ~ f '  
whenever there is a K ⊂ H , [H:K]<∞, such that f|

K
=f '|

K
.

Remarks:

“Partial composition” gives Comm(H) a group structure.
There is a natural morphism Aut(H) → Comm(H).



  

2. Some properties of commensurators

Proposition:

Let H be a group with the unique root property. Then Aut(H) 
injects into Comm(H).



  

2. Some properties of commensurators

Proposition:

Let H be a group with the unique root property. Then Aut(H) 
injects into Comm(H).

Proof:
Assume g ∊ Aut(H) induces a trivial commensurator, i.e. 
there is K ◁ H, [H:K]<∞, such that g|

K
=Id

K
. 

There is an integer n such that, for all h∊H,  hn ∊K and so 
hn=g(hn)=g(h)n. It follows h=g(h) for all h∊H.



  

2. Some properties of commensurators

Proposition:

Let H be a group with the unique root property. Then Aut(H) 
injects into Comm(H).

Proof:
Assume g ∊ Aut(H) induces a trivial commensurator, i.e. 
there is K ◁ H, [H:K]<∞, such that g|

K
=Id

K
. 

There is an integer n such that, for all h∊H,  hn ∊K and so 
hn=g(hn)=g(h)n. It follows h=g(h) for all h∊H.

Example:

GL(n,Z) ≅ Aut(Zn) ⊂ Comm(Zn) ≅ GL(n,Q).



  

2. Some properties of commensurators

Theorem (Bartholdi-Bogopolski):

Let H be a group with the unique root property. Assume that
for infinitely many primes p there are K ◁ H and f

K
 ∊ Aut(K) 

such that 
1 → K → H → Z/pZ → 1 

and
for all g ∊ Aut(H) f

K
 is not the restriction of g to K.

Under these hypothesis Comm(H) is not finitely generated.



  

2. Some properties of commensurators

Theorem (Bartholdi-Bogopolski):

Let H be a group with the unique root property. Assume that
for infinitely many primes p there are K ◁ H and f

K
 ∊ Aut(K) 

such that 
1 → K → H → Z/pZ → 1 

and
for all g ∊ Aut(H) f

K
 is not the restriction of g to K.

Under these hypothesis Comm(H) is not finitely generated.

Corollary:

The commensurator of the free group F
n
 is not finitely 

generated.



  

2. Some properties of commensurators

Remarks:

Obviously commensurators and abstract commensurators 
don't have much in common:

Theorem (Rolfsen)

Comm
Bm

(B
n
)=N

Bm
(B

n
)= ❬B

n
, C

Bm
(B

n
)❭≅ B

n
x(B

m-n+1
)

1

where (B
m-n+1

)
1 
denotes the stabiliser of the “first” strand.

Theorem (Leininger-Margalit)

For n≥4, Comm(B
n
)≅Mod(S2,n+1)(Q*(Q∞)).



  

2. Some properties of commensurators

Remarks:

Abstract commensurators are not necessary “complicated”

Theorem (Farb-Handel)

Comm(Out(F
n
)) ≅ Out(F

n
) if n>3.

NB 

B
n
 ↪ Aut(F

n
) and B

n
/Z(B

n
) ↪ Out(F

n
)



  

2. Some properties of commensurators

Remarks:

Theorem (Arzhanteva-Lafont-Minasyan)

There are 

(i) a class of finite presentations of groups in which the 
isomorphism problem is solvable but the abstract 
commensurability problem is not

and, conversely,

(ii) a class of finite presentation of groups in which the 
abstract commensurability problem is solvable but the 
isomorphism problem is not.



  

3. Commensurability and (hyperbolic) 3-manifolds and orbifolds

Theorem (Margulis):

Let G=PSL(2,C) and H be a discrete subgroup of G of finite 
covolume. Then either H is of finite index in Comm

G
(H) or 

Comm
G
(H) is dense in G. This second situation happens iff 

H is arithmetic.

NB

Here G can be any connected semi-simple Lie group with 
trivial centre and H an irreducible lattice.



  

3. Commensurability and (hyperbolic) 3-manifolds and orbifolds

Definition:

A lattice H of PSL(2,C) is arithmetic if the trace field of H is a 
number field with exactly one complex place.

Example:

Bianchi groups PSL(2,O(d)) are arithmetic. Here O(d) is the 
ring of integers of the number field Q(√-d).



  

3. Commensurability and (hyperbolic) 3-manifolds and orbifolds

Remark (geometric consequence of Margulis' result):

Consider a commensurability class of hyperbolic 3-orbifolds. 
If the orbifolds are not arithmetic, the class contains a unique 
minimal element, i.e. a common quotient of all elements of 
the class. 
Its orbifold fundamental group is the commensurator of the 
groups of the class.



  

3. Commensurability and (hyperbolic) 3-manifolds and orbifolds

Theorem (Borel):

The commensurability class of an arithmetic 3-orbifold 
contains infinitely many minimal elements.



  

3. Commensurability and (hyperbolic) 3-manifolds and orbifolds

Remarks (commensurability invariants):

Commensurable orbifolds have commensurable volumes 
although the converse is not true in general.

(Reid) The invariant trace field, i.e. the smallest field 
containing the squares of the traces of the elements of the 
group.

(For cusped orbifolds) The cusp field, generated by the cusp 
parameter or cusp shape.



  

3. Commensurability and (hyperbolic) 3-manifolds and orbifolds

What about the other 3D geometries? 

Proposition:

All compact orientable manifolds admitting a geometry which 
is neither hyperbolic nor Sol, belong to one (or two) 
commensurability classes. 

The commensurability classes of compact Sol manifolds are 
in one-to-one correspondence with real quadratic number 
fields (related to the eigenvalues of the monodromy of the 
bundle).



  

4. Commensurability and hyperbolic knots

Theorem (Reid):

There is a unique arithmetic knot, i.e. the figure-eight.

It follows that the figure-eight is the only knot in its 
commensurability class.

Remark:

On the other hand there are infinitely many 2-component 
arithmetic links.

Definition:

By an abuse of language, two knots are commensurable if their complements are.



  

4. Commensurability and hyperbolic knots

Examples: 

Other knots are known to be the alone in their 
commensurability classes:

All 2-bridge knots (Reid-Walsh);

Pretzel knots of type (-2,3,n) for n ≠ 7 (Macasieb-Mattman).



  

4. Commensurability and hyperbolic knots

Conjecture (Reid-Walsh): 

A commensurability class contains at most three knot 
complements.

Remarks:

The commensurability class of the pretzel knot (-2,3,7) 
contains three knot complements (Reid-Walsh);



  

4. Commensurability and hyperbolic knots

Conjecture (Reid-Walsh): 

A commensurability class contains at most three knot 
complements.

Remarks:

The commensurability class of the pretzel knot (-2,3,7) 
contains three knot complements (Reid-Walsh);

There are infinitely many commensurability classes 
containing three knot complements (Hoffman).



  

4. Commensurability and hyperbolic knots

Theorem (Boileau-Boyer-Cebanu-Walsh): 

If a knot has no hidden symmetries then its 
commensurability class contains at most two other knots.



  

4. Commensurability and hyperbolic knots

Theorem (Boileau-Boyer-Cebanu-Walsh): 

If a knot has no hidden symmetries then its 
commensurability class contains at most two other knots.

Definition:

A knot has hidden symmetries if its fundamental group is not 
normal in its commensurator.



  

4. Commensurability and hyperbolic knots

Remarks:  

Only three knots with hidden symmetries are known:
the figure-eight knot and the two dodecahedral knots 
described by Aitchison and Rubinstein:



  

4. Commensurability and hyperbolic knots

Remarks:  

The cusp shape of a knot with hidden symmetries must 
belong either to Q[√-3] or Q[i]; moreover if the knot is not 
arithmetic the cusp is rigid. (Neumann-Reid)

Also just one knot with cusp field Q[i] is known and it has no 
hidden symmetries.

Conjecture (Neumann-Reid):

The only non arithmetic knots with hidden symmetries are 
the two dodecahedral knots (which belong to the same 
commensurability class).



  

4. Commensurability and hyperbolic knots

Theorem (Boileau-Boyer-Cebanu-Walsh):  

Let K be a hyperbolic knot whose cyclic commensurability 
class contains another knot K'. Then 

(i) K and K' are fibred (follows from work of Ni);
(ii) K and K' have the same genus;
(iii) K and K' have different volume; in particular K and K' are 
not mutants;
(iv) K and K' are chiral and not commensurable with their 
mirror images.



  

4. Commensurability and hyperbolic knots

Theorem (Boileau-Boyer-Cebanu-Walsh):  

(i) K and K' are fibred (follows from work of Ni);
(ii) K and K' have the same genus;
(iii) K and K' have different volume; in particular K and K' are 
not mutants;
(iv) K and K' are chiral and not commensurable with their 
mirror images.

Note that the two dodecahedral knots (i) are one fibred and 
the other not; (ii) have different genera; (iii) have the same 
volume; (iv) are both amphicheiral.



  

4. Commensurability and hyperbolic knots

The case of links

Recall that mutation preserves volume (trace field and Bloch 
invariant) but can give rise to non isometric hyperbolic links.

Theorem (Chesebro-Deblois):  

Non isometric mutant links may be commensurable but this 
is not necessarily the case. 



  

4. Commensurability and hyperbolic knots

Theorem (Boileau-Boyer-Cebanu-Walsh): 

If a knot has no hidden symmetries then there are at most 
two other knots in its commensurability class.

Idea of proof 



  

4. Commensurability and hyperbolic knots

Theorem (Boileau-Boyer-Cebanu-Walsh): 

If a knot has no hidden symmetries then there are at most 
two other knots in its commensurability class.

Idea of proof 
Assume: K has no symmetries and all K' in its 
commensurability class have no hidden symmetries):

 



  

4. Commensurability and hyperbolic knots

Theorem (Boileau-Boyer-Cebanu-Walsh): 

If a knot has no hidden symmetries then there are at most 
two other knots in its commensurability class.

Idea of proof 
Assume: K has no symmetries and all K' in its 
commensurability class have no hidden symmetries):

K' covers K, which is the unique minimal element of the 
class. 



  

4. Commensurability and hyperbolic knots

Theorem (Boileau-Boyer-Cebanu-Walsh): 

If a knot has no hidden symmetries then there are at most 
two other knots in its commensurability class.

Idea of proof 
Assume: K has no symmetries and all K' in its 
commensurability class have no hidden symmetries):

K' covers K, which is the unique minimal element of the 
class. 
The covering extends to the 3-sphere, inducing a lens space 
surgery of K.



  

4. Commensurability and hyperbolic knots

Theorem (Boileau-Boyer-Cebanu-Walsh): 

If a knot has no hidden symmetries then there are at most 
two other knots in its commensurability class.

Idea of proof 
Assume: K has no symmetries and all K' in its 
commensurability class have no hidden symmetries):

K' covers K, which is the unique minimal element of the 
class. 
The covering extends to the 3-sphere, inducing a lens space 
surgery of K.
The conclusion follows from the cyclic surgery theorem: at 
most three slopes give lens spaces.



  

5. Commensurability and quasi-isometry

Abstractly commensurable (finitely presented) groups are 
easily seen to be quasi-isometric, however abstract 
commensurability is in general a stronger notion.

Example:  

All hyperbolic 3-orbifold groups are quasi-isometric, for they 
are quasi-isometric to H3, but they are not all 
commensurable. 



  

5. Commensurability and quasi-isometry

Sometimes the two notions coincide, though.

Theorem (Schwartz):  

Non uniform lattices of PSL(2,C) are commensurable iff they 
are quasi isometric.



  

6. Commensurability, quasi-isometry, and geometric group theory

Theorem (Behrstock-Januszkiewicz-Neumann + Papasoglu-
Whyte):  

Let H=H
1
*...*H

n
 and H'=H'

1
*...*H'

m
 two non trivial free 

products of finitely generated non trivial abelian groups. 
Assume H, H'≠ Z/2Z *Z/2Z. The following are equivalent:

(i) H and H' are commensurable;
(ii) H and H' are quasi-isometric;
(iii) {rk(H1),...,rk(Hn)}={rk(H'1),...,rk(H'm)}.



  

6. Commensurability, quasi-isometry, and geometric group theory

Remarks:

The groups in the previous theorem are (virtually) right-
angled Artin groups of a special type (with associated graph 
a disjoint union of complete graphs).

For right-angled Artin groups with associated graph a tree see 
Behrstock-Januszkiewicz-Neumann.
For a classifification up to quasi-isometry of higher dimensional right-
angled Artin groups see Behrstock-Neumann.
For commensurators of “generic” Artin groups see Crisp.
For commensurability between right-angled Artin and right-angled 
Coxeter groups see Davis-Januszkiewicz (this implies that right-angled 
Artin groups are linear).



  

6. Commensurability and geometric group theory

Remark:

The classification of virtual surface groups up to abstract 
commensurability coincides with their classification up to 
quasi-isometry. 



  

6. Commensurability and geometric group theory

Remark:

The classification of virtual surface groups up to abstract 
commensurability coincides with their classification up to 
quasi isometry. 

Moreover, a group which is quasi-isometric to a hyperbolic 
surface group is virtually a cocompact Fuchsian group 
(Casson-Jungreis, Gabai).



  

6. Commensurability and geometric group theory

Remark:

The classification of virtual surface groups up to abstract 
commensurability coincides with their classification up to 
quasi-isometry. 

Moreover, a group which is quasi-isometric to a hyperbolic 
surface group is virtually a cocompact Fuchsian group 
(Casson-Jungreis, Gabai).

The classification up to abstract commensurability or quasi-
isometry of right-angled polygon Coxeter groups follows.



  

6. Commensurability and geometric group theory

Consider the 2-complex obtained by gluing together two 
right-angled hyperbolic polygons along an edge (the 
polygons do not lie in the same plane):

Note that a right-angled hyperbolic n-gon, n>4, can be 
obtained by gluing together n-4 copies of a right-angled 
regular hyperbolic pentagon.  



  

6. Commensurability and geometric group theory

Let n≥m≥1. Consider W
m,n

 the Coxeter group of reflections in 

the edges of the 2-complex defined before by identifying 
along an edge a hyperbolic right-angled (n+4)-gon and a 
hyperblic right-angled (m+4)-gon. 
   

W
m,n

= C
m+4

*
D∞xZ/2Z

C
n+4



  

6. Commensurability and geometric group theory

Let n≥m≥1. Consider W
m,n

 the Coxeter group of reflections in 

the edges of the 2-complex defined before by identifying 
along an edge a hyperbolic right-angled (n+4)-gon and a 
hyperblic right-angled (m+4)-gon. 
   

W
m,n

= C
m+4

*
D∞xZ/2Z

C
n+4

Theorem (Crisp-P.):

W
m,n 

and W
k,l

 are abstractly commensurable iff m/n=k/l.



  

6. Commensurability and geometric group theory

Idea of proof (sufficiency):



  

6. Commensurability and geometric group theory

Idea of proof (necessity):

Lemma (Lafont):

Any isomorphism between finite index subgroups of W
m,n 

and 

W
k,l

 is induced by a homeomorphism of the corresponding 

covering spaces.

One can assume that the corresponding covering spaces 
are obtained by gluing together “tiled surfaces” along simple 
closed “singular” geodesics. 



  

6. Commensurability and geometric group theory

Idea of proof (necessity):

The lemma implies that we have a homeomorphism 
h: S

1
∪S

2
 → S'

1
∪S'

2

where S
1
 is an (m+4)-tiled surface, S

2
 an (n+4)-tiled surface,  

S'
1
 a (k+4)-tiled surface, and S'

2
 an (l+4)-tiled surface.



  

6. Commensurability and geometric group theory

Idea of proof (necessity):

The lemma implies that we have a homeomorphism 
h: S

1
∪S

2
 → S'

1
∪S'

2

where S
1
 is an (m+4)-tiled surface, S

2
 an (n+4)-tiled surface,  

S'
1
 a (k+4)-tiled surface, and S'

2
 an (l+4)-tiled surface.

We can assume that h-1(S'
1
)∩S

1
 is not empty.

It is easy to see that the number τ of tiles in U=h-1(S'
1
)∩S

1
 

equals the number of tiles in V=h-1(S'
2
)∩S

2
.



  

6. Commensurability and geometric group theory

Idea of proof (necessity):

The lemma implies that we have a homeomorphism 
h: S

1
∪S

2
 → S'

1
∪S'

2

where S
1
 is an (m+4)-tiled surface, S

2
 an (n+4)-tiled surface,  

S'
1
 a (k+4)-tiled surface, and S'

2
 an (l+4)-tiled surface.

We can assume that h-1(S'
1
)∩S

1
 is not empty.

It is easy to see that the number τ of tiles in U=h-1(S'
1
)∩S

1
 

equals the number of tiles in V=h-1(S'
2
)∩S

2
.

An Euler characteristic computation gives:
m/n=mτ/nτ=χ(U)/χ(V) = χ(h(U)) / χ(h(V))=k/l



  

Thank you for your attention!

Pssst, it's over now...
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