Luisa Paoluzzi
 (LATP Marseilles - France)

Joint with: Joan Porti
(UAB Barcelona - Spain)

Camp-style seminar - Hakone

$$
\text { May } 29^{\text {th }}, 2012
$$

1. Motivations

1. Motivations

2. Montesinos knots of Kinoshita-Terasaka type
3. Motivations
4. Montesinos knots of Kinoshita-Terasaka type
5. Main result and a sketch of its proof
6. Motivations
7. Montesinos knots of Kinoshita-Terasaka type
8. Main result and a sketch of its proof
9. Some considerations in characteristic $p>2$

Character varieties are a powerful tool for understanding manifolds and knots (invariants, essential surfaces,...)

Character varieties are a powerful tool for understanding manifolds and knots (invariants, essential surfaces,...)

The computational complexity involved requires that theoretical ways to study and describe them are explored.

1. The 1-dimensional component of abelian characters
2. The 1-dimensional component of abelian characters
3. The distinguished curve containing the holonomy character
4. The 1-dimensional component of abelian characters
5. The distinguished curve containing the holonomy character
6. The Teichmüller components (for Montesinos knots)

Standard components for a hyperbolic (Montesinos) knot:

1. The 1-dimensional component of abelian characters
2. The distinguished curve containing the holonomy character
3. The Teichmüller components (for Montesinos knots)

Examples of non standard components:

Examples of non standard components:

1. For 2-bridge knots: they arise because of surjections of fundamental groups (Ohtsuki-Riley-Sakuma)

Examples of non standard components:

1. For 2-bridge knots: they arise because of surjections of fundamental groups (Ohtsuki-Riley-Sakuma)
2. For certain pretzel knots: they are due to "symmetry" (Mattman's r-components)

Riley studied this Montesinos knot and found that it admits several parabolic representations into $\operatorname{PSL}(2, p)$

A Montesinos link (left) and a rational tangle (right)

Orientations of the two vertical arcs on the far left can be the same or opposite.

Definition:

A Montesinos knot with $\mathrm{n}+1$ tangles is of Kinoshita-Terasaka type if precisely one amongst the α_{i} is even. Up to cyclic reordering we can assume this is the $\mathrm{n}+1^{\text {st }}$ tangle.

Definition:

A Montesinos knot with $\mathrm{n}+1$ tangles is of Kinoshita-Terasaka type if precisely one amongst the α_{i} is even. Up to cyclic reordering we can assume this is the $\mathrm{n}+1^{\text {st }}$ tangle.

Remark:
These Montesinos knots are "closely related" to composite knots whose summands are 2-bridge knots.

Remarks:

These Montesinos knots are "closely related" to composite knots whose summands are 2-bridge knots.

By quotienting the two knot groups by the relations that make the meridians $\mu_{1}, \mu_{1}^{\prime}, \mu_{n+1}$, and μ_{n+1}^{\prime} commute one obtains the same group Γ (commuting trick).

Remarks:

These Montesinos knots are "closely related" to composite knots whose summands are 2-bridge knots.

By quotienting the two knot groups by the relations that make the meridians $\mu_{1}, \mu_{1}^{\prime}, \mu_{n+1}$, and μ_{n+1}^{\prime} commute one obtains the same group Γ (commuting trick).

As a consequence, representations of this common quotient are representations of both the Montesinos and the composite knot.

Remarks:

These Montesinos knots are "closely related" to composite knots whose summands are 2-bridge knots.

By quotienting the two knot groups by the relations that make the meridians $\mu_{1}, \mu_{1}^{\prime}, \mu_{n+1}$, and μ_{n+1}^{\prime} commute one obtains the same group Γ (commuting trick).

As a consequence, representations of this common quotient are representations of both the Montesinos and the composite knot.

Composite knots have lots of representations obtained by bending.

Theorem (P-Porti):

Let K be a Montesinos knot of Kinoshita-Terasaka type with $\mathrm{n}+1>3$ tangles. Its character variety contains the following non standard components:

Theorem (P-Porti):

Let K be a Montesinos knot of Kinoshita-Terasaka type with $\mathrm{n}+1>3$ tangles. Its character variety contains the following non standard components:

1. At least one irreducible component of dimension (at least) n -2 of parabolic irreducible characters;

Theorem (P-Porti):

Let K be a Montesinos knot of Kinoshita-Terasaka type with $\mathrm{n}+1>3$ tangles. Its character variety contains the following non standard components:

1. At least one irreducible component of dimension (at least) n -2 of parabolic irreducible characters;
2. At least one irreducible component of dimension (at least) n -2 of irreducible characters on which the trace of the meridian is not constant.

Remarks:

1. The dimensions in the statement are precisely $\mathrm{n}-2$.

Remarks:

1. The dimensions in the statement are precisely $\mathrm{n}-2$.
2. The number of these non standard components can be arbitrarily large (uses Ohtsuki-Riley-Sakuma's result on 2bridge knots).

Remarks:

1. The dimensions in the statement are precisely $\mathrm{n}-2$.
2. The number of these non standard components can be arbitrarily large (uses Ohtsuki-Riley-Sakuma's result on 2bridge knots).
3. There are non standard irreducible components of dimension d, for each $d=1, \ldots, n-2$ (uses surjections between knot groups) and again their number can be arbitrarily large.

Remarks:

1. The dimensions in the statement are precisely $\mathrm{n}-2$.
2. The number of these non standard components can be arbitrarily large (uses Ohtsuki-Riley-Sakuma's result on 2bridge knots).
3. There are non standard irreducible components of dimension d, for each $d=1, \ldots, n-2$ (uses surjections between knot groups) and again their number can be arbitrarily large.
4. There might be other non standard components.

Sketch of proof (parabolic component):

1. Construct irreducible parabolic representations for the associated composite knot $K^{\prime}=B_{1} \# \ldots \# B_{n}$.

Choose $\rho_{i}: \pi_{1}\left(B_{i}\right) \rightarrow S L(2, C)$ parabolic irrep (e.g. holonomy)
Build $\rho=\rho_{1}{ }^{*} a_{1} \rho_{2} a_{1}^{-1 *} \ldots{ }^{*} a_{n-1} \rho_{n} a_{n-1}{ }^{-1}$ a parabolic irrep for K^{\prime} (here a_{i} is any element belonging to the centraliser of $\rho_{i}\left(\mu_{i}\right)$ in PSL(2,C))

This gives an (n-1) parameter family of parabolic irreps for K^{\prime} up to conjugacy.

Sketch of proof (parabolic component):
2. Show that the family of representations just constructed meets the variety of representations of Γ, thus giving representations of the Montesinos knot K.

It is sufficient to choose a_{n-1} so that the fixed point on $\mathbf{C P}{ }^{1}$ of $\rho_{1}\left(\mu_{1}\right)$ and $a_{n-1} \rho_{n} a_{n-1}^{-1}\left(\mu_{n+1}\right)$ are the same: two parabolic elements commute if and only if they have the same fixed point on $\mathbf{C P}{ }^{1}$.

This way one loses one degree of freedom at the most.

Sketch of proof (second component):
Same strategy as before but

1. In principle one more degree of freedom (the trace of the meridian is non constant);
2. Two non parabolic elements commute if and only if they have the same axis (i.e. they fix the same two points of $C P^{1}$): one needs to conjugate twice to make sure that this is indeed the case (the argument uses cross-ratios).

The defining relations for the character variety of a group are the same in every characteristic ($\neq 2$).

The defining relations for the character variety of a group are the same in every characteristic ($\neq 2$).

For almost every prime p the character variety in characteristic p "looks exactly like" the one in characteristic 0 .

Why bother?
One can use the character variety to detect essential surfaces (Culler-Shalen) but not all of them can be detected in characteristic 0 (Schanuel-Zhang).

Why bother?
One can use the character variety to detect essential surfaces (Culler-Shalen) but not all of them can be detected in characteristic 0 (Schanuel-Zhang).

Hope: (extremely hard)
Can one detect them by looking at character varieties in characteristic p, where p is a ramified prime?

Proposition (P-Porti):

Consider $\Gamma_{p}=\Gamma /\left\langle\mu^{p}\right\rangle$. For almost every prime $p>2$ the character variety $X\left(\Gamma_{p}\right)$ of Γ_{p} ramifies at p, in the sense that its dimension is at least $\mathrm{n}-2$ while its expected dimension is at most n-3.

Proposition (P-Porti):

Consider $\Gamma_{p}=\Gamma /\left\langle\mu^{p}\right\rangle$. For almost every prime $p>2$ the character variety $X\left(\Gamma_{p}\right)$ of Γ_{p} ramifies at p, in the sense that its dimension is at least $n-2$ while its expected dimension is at most n-3.

Remark:
The extra ideal points should correspond to Conway spheres.

Proof:

1. $X\left(\Gamma_{p}\right)=X(\Gamma) \cap\left(U_{k}\{\right.$ trace of meridian $\left.=2 \cos (k \pi / p)\}\right)$ So, for almost all prime characteristics $>2, \operatorname{dim} X\left(\Gamma_{p}\right) \leq n-3$.

Proof:

1. $X\left(\Gamma_{p}\right)=X(\Gamma) \cap\left(U_{k}\{\right.$ trace of meridian $\left.=2 \cos (k \pi / p)\}\right)$ So, for almost all prime characteristics $>2, \operatorname{dim} X\left(\Gamma_{p}\right) \leq n-3$.
2. In characteristic $p>2$ we have $X\left(\Gamma_{p}\right)=X \operatorname{par}(\Gamma)$ and we know that in characteristic $0 \operatorname{dim} \operatorname{Xpar}(\Gamma) \geq \mathrm{n}-2$.
