The character varieties of Montesinos knots of Kinoshita-Terasaka type

Luisa Paoluzzi
(LATP Marseilles – France)

Joint with: Joan Porti
(UAB Barcelona – Spain)

Camp-style seminar – Hakone

May 29th, 2012
1. Motivations
1. Motivations

2. Montesinos knots of Kinoshita-Terasaka type
1. Motivations

2. Montesinos knots of Kinoshita-Terasaka type

3. Main result and a sketch of its proof
1. Motivations

2. Montesinos knots of Kinoshita-Terasaka type

3. Main result and a sketch of its proof

4. Some considerations in characteristic $p > 2$
Character varieties are a powerful tool for understanding manifolds and knots (invariants, essential surfaces,...)
1. Motivations

Character varieties are a powerful tool for understanding manifolds and knots (invariants, essential surfaces,...)

The computational complexity involved requires that theoretical ways to study and describe them are explored.
1. The 1-dimensional component of abelian characters
1. The 1-dimensional component of abelian characters

2. The distinguished curve containing the holonomy character
1. The 1-dimensional component of abelian characters

2. The distinguished curve containing the holonomy character

3. The Teichmüller components (for Montesinos knots)
1. Motivations

Standard components for a hyperbolic (Montesinos) knot:

1. The 1-dimensional component of abelian characters

2. The distinguished curve containing the holonomy character

3. The Teichmüller components (for Montesinos knots)
Examples of non standard components:
Examples of non standard components:

1. For 2-bridge knots: they arise because of surjections of fundamental groups (Ohtsuki-Riley-Sakuma)
Examples of non standard components:

1. For 2-bridge knots: they arise because of surjections of fundamental groups *(Ohtsuki-Riley-Sakuma)*

2. For certain pretzel knots: they are due to “symmetry” *(Mattman's r-components)*
Riley studied this Montesinos knot and found that it admits several parabolic representations into $\PSL(2,p)$
2. Montesinos knots of Kinoshita-Terasaka type: arbitrary Montesinos links

A Montesinos link (left) and a rational tangle (right)

Orientations of the two vertical arcs on the far left can be the same or opposite.
Definition:

A Montesinos knot with $n+1$ tangles is of Kinoshita-Terasaka type if precisely one amongst the α_is is even. Up to cyclic reordering we can assume this is the $n+1^{st}$ tangle.
Definition:

A Montesinos knot with $n+1$ tangles is of Kinoshita-Terasaka type if precisely one amongst the α_is is even. Up to cyclic reordering we can assume this is the $n+1$st tangle.

Remark:

These Montesinos knots are “closely related” to composite knots whose summands are 2-bridge knots.
2. Montesinos knots of Kinoshita-Terasaka type: definition and properties
Remarks:

These Montesinos knots are “closely related” to composite knots whose summands are 2-bridge knots.

By quotienting the two knot groups by the relations that make the meridians μ_1, μ'_1, μ_{n+1}, and μ'_{n+1} commute one obtains the same group Γ (commuting trick).
Remarks:

These Montesinos knots are “closely related” to composite knots whose summands are 2-bridge knots.

By quotienting the two knot groups by the relations that make the meridians \(\mu_1, \mu'_1, \mu_{n+1}, \) and \(\mu'_{n+1} \) commute one obtains the same group \(\Gamma \) (commuting trick).

As a consequence, representations of this common quotient are representations of both the Montesinos and the composite knot.
Remarks:

These Montesinos knots are “closely related” to composite knots whose summands are 2-bridge knots.

By quotienting the two knot groups by the relations that make the meridians $\mu_1, \mu'_1, \mu_{n+1},$ and μ'_{n+1} commute one obtains the same group Γ (commuting trick).

As a consequence, representations of this common quotient are representations of both the Montesinos and the composite knot.

Composite knots have lots of representations obtained by bending.
Theorem (P-Porti):

Let K be a Montesinos knot of Kinoshita-Terasaka type with $n+1>3$ tangles. Its character variety contains the following non standard components:
Theorem (P-Porti):

Let K be a Montesinos knot of Kinoshita-Terasaka type with $n+1>3$ tangles. Its character variety contains the following non standard components:

1. At least one irreducible component of dimension (at least) $n-2$ of parabolic irreducible characters;
Theorem (P-Porti):

Let K be a Montesinos knot of Kinoshita-Terasaka type with $n+1>3$ tangles. Its character variety contains the following non standard components:

1. At least one irreducible component of dimension (at least) $n-2$ of parabolic irreducible characters;

2. At least one irreducible component of dimension (at least) $n-2$ of irreducible characters on which the trace of the meridian is not constant.
3. Main result: statement

Remarks:

1. The dimensions in the statement are precisely $n-2$.
Remarks:

1. The dimensions in the statement are precisely n-2.

2. The number of these non-standard components can be arbitrarily large (uses Ohtsuki-Riley-Sakuma's result on 2-bridge knots).
Remarks:

1. The dimensions in the statement are precisely n-2.

2. The number of these non standard components can be arbitrarily large (uses Ohtsuki-Riley-Sakuma's result on 2-bridge knots).

3. There are non standard irreducible components of dimension d, for each d=1,...,n-2 (uses surjections between knot groups) and again their number can be arbitrarily large.
Remarks:

1. The dimensions in the statement are precisely $n-2$.

2. The number of these non standard components can be arbitrarily large (uses Ohtsuki-Riley-Sakuma's result on 2-bridge knots).

3. There are non standard irreducible components of dimension d, for each $d=1,...,n-2$ (uses surjections between knot groups) and again their number can be arbitrarily large.

4. There might be other non standard components.
Sketch of proof (parabolic component):

1. Construct irreducible parabolic representations for the associated composite knot $K' = B_1 \# \ldots \# B_n$.

Choose $\rho_i : \pi_1(B_i) \to \text{SL}(2, \mathbb{C})$ parabolic irrep (e.g. holonomy) \\

Build $\rho = \rho_1 \ast a_1 \rho_2 a_1^{-1} \ast \ldots \ast a_{n-1} \rho_n a_{n-1}^{-1}$ a parabolic irrep for K' (here a_i is any element belonging to the centraliser of $\rho_i(\mu_i)$ in $\text{PSL}(2, \mathbb{C})$) \\

This gives an $(n-1)$ parameter family of parabolic irreps for K' up to conjugacy.
Sketch of proof (parabolic component):

2. Show that the family of representations just constructed meets the variety of representations of \(\Gamma \), thus giving representations of the Montesinos knot \(K \).

It is sufficient to choose \(a_{n-1} \) so that the fixed point on \(\mathbb{C}P^1 \) of \(\rho_1(\mu_1) \) and \(a_{n-1} \rho_n a_{n-1}^{-1}(\mu_{n+1}) \) are the same: two parabolic elements commute if and only if they have the same fixed point on \(\mathbb{C}P^1 \).

This way one loses one degree of freedom at the most.
Sketch of proof (second component):

Same strategy as before but

1. In principle one more degree of freedom (the trace of the meridian is non constant);

2. Two non parabolic elements commute if and only if they have the same axis (i.e. they fix the same two points of \(\mathbb{CP}^1 \)): one needs to conjugate twice to make sure that this is indeed the case (the argument uses cross-ratios).
4. Characteristic p: more motivations

The defining relations for the character variety of a group are the same in every characteristic ($\neq 2$).
The defining relations for the character variety of a group are the same in every characteristic (≠ 2).

For almost every prime p the character variety in characteristic p “looks exactly like” the one in characteristic 0.
Why bother?

One can use the character variety to detect essential surfaces (**Culler-Shalen**) but not all of them can be detected in characteristic 0 (**Schanuel-Zhang**).
4. Characteristic p: more motivations

Why bother?

One can use the character variety to detect essential surfaces (Culler-Shalen) but not all of them can be detected in characteristic 0 (Schanuel-Zhang).

Hope: (extremely hard)

Can one detect them by looking at character varieties in characteristic p, where p is a ramified prime?
Proposition (P-Porti):

Consider $\Gamma_p = \Gamma/\langle \mu^p \rangle$. For almost every prime $p > 2$ the character variety $X(\Gamma_p)$ of Γ_p ramifies at p, in the sense that its dimension is at least $n-2$ while its expected dimension is at most $n-3$.
Proposition (P-Porti):

Consider $\Gamma_p = \Gamma / \langle \mu_p \rangle$. For almost every prime $p > 2$ the character variety $X(\Gamma_p)$ of Γ_p ramifies at p, in the sense that its dimension is at least $n-2$ while its expected dimension is at most $n-3$.

Remark:

The extra ideal points should correspond to Conway spheres.
4. Characteristic p: a toy example

Proof:

1. $X(\Gamma_p) = X(\Gamma) \cap \left(\bigcup_k \{ \text{trace of meridian} = 2\cos(k\pi/p) \} \right)$

So, for almost all prime characteristics >2, $\dim X(\Gamma_p) \leq n-3$.
4. Characteristic p: a toy example

Proof:

1. $X(\Gamma_p) = X(\Gamma) \cap (\bigcup_k \{\text{trace of meridian} = 2\cos(k\pi/p)\})$
 So, for almost all prime characteristics >2, $\dim X(\Gamma_p) \leq n-3$.

2. In characteristic $p>2$ we have $X(\Gamma_p) = X_{\text{par}}(\Gamma)$ and we know that in characteristic 0 $\dim X_{\text{par}}(\Gamma) \geq n-2$.