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Character varieties are a powerful tool for understanding 
manifolds and knots (invariants, essential surfaces,...)

The computational complexity involved requires that 
theoretical ways to study and describe them are explored.
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1. Motivations

Examples of non standard components:

1. For 2-bridge knots: they arise because of surjections of 
fundamental groups (Ohtsuki-Riley-Sakuma)

2. For certain pretzel knots: they are due to “symmetry” 
(Mattman's r-components)

   



  

2. Montesinos knots of Kinoshita-Terasaka type: Riley's example

Riley studied this Montesinos knot and found that it admits 
several parabolic representations into PSL(2,p) 



  

2. Montesinos knots of Kinoshita-Terasaka type: arbitrary Montesinos links

A Montesinos link (left) 
and a rational tangle (right)

Orientations of the two vertical arcs on the far left can be the 
same or opposite.  



  

2. Montesinos knots of Kinoshita-Terasaka type: definition and properties

Definition:

A Montesinos knot with n+1 tangles is of Kinoshita-Terasaka 
type if precisely one amongst the α

i
s is even. Up to cyclic 

reordering we can assume this is the n+1st tangle.
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Definition:

A Montesinos knot with n+1 tangles is of Kinoshita-Terasaka 
type if precisely one amongst the α

i
s is even. Up to cyclic 

reordering we can assume this is the n+1st tangle.

Remark:

These Montesinos knots are “closely related” to composite 
knots whose summands are 2-bridge knots. 
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2. Montesinos knots of Kinoshita-Terasaka type: definition and properties

Remarks:

These Montesinos knots are “closely related” to composite 
knots whose summands are 2-bridge knots.

By quotienting the two knot groups by the relations that 
make the meridians μ

1
, μ'

1
, μ

n+1
, and μ'

n+1
 commute one 

obtains the same group Γ (commuting trick).

As a consequence, representations of this common quotient 
are representations of both the Montesinos and the 
composite knot.

Composite knots have lots of representations obtained by 
bending.  
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Theorem (P-Porti): 

Let K be a Montesinos knot of Kinoshita-Terasaka type with 
n+1>3 tangles. Its character variety contains the following 
non standard components:

1. At least one irreducible component of dimension (at least) 
n-2 of parabolic irreducible characters;

2. At least one irreducible component of dimension (at least) 
n-2 of  irreducible characters on which the trace of the 
meridian is not constant.
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3. Main result: statement

Remarks: 

1. The dimensions in the statement are precisely n-2.

2. The number of these non standard components can be 
arbitrarily large (uses Ohtsuki-Riley-Sakuma's result on 2-
bridge knots).

3. There are non standard irreducible components of 
dimension d, for each d=1,...,n-2 (uses surjections between 
knot groups) and again their number can be arbitrarily large.

4. There might be other non standard components.



  

3. Main result: proof

Sketch of proof (parabolic component): 

1. Construct irreducible parabolic representations for the 
associated composite knot K'=B

1
#...#B

n
.

Choose ρ
i
 : π

1
(B

i
) → SL(2,C) parabolic irrep (e.g. holonomy)

Build  ρ=ρ
1
 * a

1
ρ

2 
a

1

-1*...*a
n-1

ρ
n
a

n-1

-1 a parabolic irrep for K' 

(here a
i 
is any element belonging to the centraliser of ρ

i
(μ

i
) in 

PSL(2,C))

This gives an (n-1) parameter family of parabolic irreps for 
K' up to conjugacy.



  

3. Main result: proof

Sketch of proof (parabolic component): 

2. Show that the family of representations just constructed 
meets the variety of representations of Г, thus giving 
representations of the Montesinos knot K.

It is sufficient to choose a
n-1 

so that the fixed point on CP1 of 

ρ
1
(μ

1
) and a

n-1
ρ

n
a

n-1

-1(μ
n+1

) are the same: two parabolic 

elements commute if and only if they have the same fixed 
point on CP1. 

This way one loses one degree of freedom at the most.



  

3. Main result: proof

Sketch of proof (second component): 

Same strategy as before but

1. In principle one more degree of freedom (the trace of the 
meridian is non constant);

2. Two non parabolic elements commute if and only if they 
have the same axis (i.e. they fix the same two points of 
CP1): one needs to conjugate twice to make sure that this is 
indeed the case (the argument uses cross-ratios). 
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The defining relations for the character variety of a group 
are the same in every characteristic ( ≠ 2 ). 



  

4. Characteristic p: more motivations

The defining relations for the character variety of a group 
are the same in every characteristic ( ≠ 2 ). 

For almost every prime p the character variety in 
characteristic p “looks exactly like” the one in characteristic 
0.
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One can use the character variety to detect essential 
surfaces (Culler-Shalen) but not all of them can be detected 
in characteristic 0 (Schanuel-Zhang).

 

 



  

4. Characteristic p: more motivations

Why bother?

One can use the character variety to detect essential 
surfaces (Culler-Shalen) but not all of them can be detected 
in characteristic 0 (Schanuel-Zhang).

Hope: (extremely hard) 

Can one detect them by looking at character varieties in 
characteristic p, where p is a ramified prime? 



  

4. Characteristic p: a toy example

Proposition (P-Porti):

Consider Γ
p
=Γ/‹μp›. For almost every prime p>2 the 

character variety X(Γ
p
) of Γ

p
 ramifies at p, in the sense that 

its dimension is at least n-2 while its expected dimension is 
at most n-3.



  

4. Characteristic p: a toy example

Proposition (P-Porti):

Consider Γ
p
=Γ/‹μp›. For almost every prime p>2 the 

character variety X(Γ
p
) of Γ

p
 ramifies at p, in the sense that 

its dimension is at least n-2 while its expected dimension is 
at most n-3.

Remark:

The extra ideal points should correspond to Conway 
spheres.



  

4. Characteristic p: a toy example

Proof:

1. X(Γ
p
) = X(Γ)∩ (U

k
 {trace of meridian =2cos(kπ/p)})

So, for almost all prime characteristics >2, dim X(Γ
p
) ≤ n-3.



  

4. Characteristic p: a toy example

Proof:

1. X(Γ
p
) = X(Γ)∩ (U

k
 {trace of meridian =2cos(kπ/p)})

So, for almost all prime characteristics >2, dim X(Γ
p
) ≤ n-3.

2. In characteristic p>2 we have X(Γ
p
)=Xpar(Γ) and we know 

that in characteristic 0 dim Xpar(Γ) ≥ n-2.
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