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Part I

Introduction



Surfaces

I Σ is a surface

I totally geodesic boundary

I finite volume hyperbolic structure

I Γ ' π1(Σ)

I Λ = limit set of Γ

I CC (Λ)/Γ = Σ
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Spectra

definition length

Closed geodesic [γ], γ 6= 1 ∈ Γ |tr γ| = 2 cosh( 1
2`(γ))

Simple closed geodesic same as above
+ no self intersection same as above

Ortho geodesic γ∗ shortest arc
joins 2 geodesic see below
boundary components tanh2 is cross ratio

Immersed pair of pants γ.β.α = 1 ∈ Γ (`(α), `(β), `(γ))

Embedded pair of pants same as above but
[γ], [β], [α]
simple,disjoint same as above

Ortho geodesic is a pair α, β ∈ Γ, [α], [β] ⊂ ∂Σ

(α− − β−)(α+ − β+)

(α− − β+)(α+ − β−)
= tanh2(

1

2
`(γ∗))
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Spectra

I Length spectrum = {lengths of closed geodesics}

I Simple length spectrum = {lengths of simple closed geods}
I Ortho spectrum = {lengths of ortho geodesics}
I Pant’s spectrum = {lengths of embedded pants}

I δ = Hausdorff dimension of the limit set.

I Vol(Σ)

I Vol(∂Σ)
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Length spectrum

I (Weyl) Spectrum of Laplacian determines the area

NΓ(t) := |{eigenvalues of∆H/Γ < t}| ∼ Vol(H/Γ)

4π
t

I (Huber, Selberg) Length spectrum determines the spectrum of
the Laplacian.

I (Margulis/Sullivan) Length spectrum determines the
Hausdorff dimension

NΓ(t) := |{primitive geodesics `(α) < t}| ∼ eδt

δt
.

I (Wolpert) Length spectrum determines the isometry type of
the surface up to finitely many choices



Length spectrum

I (Weyl) Spectrum of Laplacian determines the area

NΓ(t) := |{eigenvalues of∆H/Γ < t}| ∼ Vol(H/Γ)

4π
t

I (Huber, Selberg) Length spectrum determines the spectrum of
the Laplacian.

I (Margulis/Sullivan) Length spectrum determines the
Hausdorff dimension

NΓ(t) := |{primitive geodesics `(α) < t}| ∼ eδt

δt
.

I (Wolpert) Length spectrum determines the isometry type of
the surface up to finitely many choices



Length spectrum

I (Weyl) Spectrum of Laplacian determines the area

NΓ(t) := |{eigenvalues of∆H/Γ < t}| ∼ Vol(H/Γ)

4π
t

I (Huber, Selberg) Length spectrum determines the spectrum of
the Laplacian.

I (Margulis/Sullivan) Length spectrum determines the
Hausdorff dimension

NΓ(t) := |{primitive geodesics `(α) < t}| ∼ eδt

δt
.

I (Wolpert) Length spectrum determines the isometry type of
the surface up to finitely many choices



Length spectrum

I (Weyl) Spectrum of Laplacian determines the area

NΓ(t) := |{eigenvalues of∆H/Γ < t}| ∼ Vol(H/Γ)

4π
t

I (Huber, Selberg) Length spectrum determines the spectrum of
the Laplacian.

I (Margulis/Sullivan) Length spectrum determines the
Hausdorff dimension

NΓ(t) := |{primitive geodesics `(α) < t}| ∼ eδt

δt
.

I (Wolpert) Length spectrum determines the isometry type of
the surface up to finitely many choices



Trace formula

I h even function, satisfying a growth condition

I ĥ Fourier transform

∑
n

h(λn) =
Vol(H/Γ)

4π

∫
R

rh(r) tanh(πr)dr

+
∑
[γ]

2`(γ)

sinh( 1
2`(γ))

ĥ(`(γ))

where

I λn are the eigenvalues of the Laplacian.

I `(γ) is the length of the geodesic in the homotopy class [γ]
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Simple Length Spectra

I (Wolpert) Simple length spectrum determines the surface up
to finitely many choices.

I (Mirkzahani)

N(t) := |{simple geodesics `(α) < t}| ∼ C (H/Γ)t6g−6.

g = genus of Σ.
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Identities



Basmajian Identity

Theorem (1992)

∑
α∗

2 sinh−1

(
1

sinh(`(α∗)

)
= `(δ)

∑
α∗

Voln−1

(
Ball radius = sinh−1

(
1

sinh(`(α∗)

))
= Voln−1(∂M)
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Bridgeman-Kahn Identity

Theorem (2008)

2πVol(M) = 8
∑
α∗

L
(

1

cosh2(`(α∗)/2)

)

I Dilogarithm

Li2(z) =
∑ zk

k2
= −

∫ z

0

log(1− x)

x
dx

I Roger’s dilogarithm

L(x) = Li2(x) +
1

2
log |x | log(1− x), x < 1.

L′(x) =
1

2

(
log(1− x)

x
+

log(x)

1− x

)
.
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Bridgeman-Kahn Identity in general

Theorem

2πVol(M) = 8
∑
α∗

L
(

1

cosh2(`(α∗)/2)

)

Exist Fn such that for any hyperbolic n-manifold M with totally
geodesic boundary

Vol(M) =
∑
β

Fn(`(α∗))

the volume of M is equal to the sum of the values of Fn on the
orthospectrum of M.

I integral formula for Fn in terms of elementary functions.
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Identity for embedded pants
Σ has a single boundary component of length `(δ) ≥ 0

I Punctured torus `(δ) = 0∑
α

1

1 + e`(α)
=

1

2

I One-holed torus∑
α

log

(
1 + e

1
2

(`(α)−`(δ))

1 + e
1
2

(`(α)+`(δ))

)
= `(δ)

I One-holed genus g

∑
P

log

(
1 + e

1
2

(`(α)+`(β)−`(δ))

1 + e
1
2

(`(α)+`(β)+`(δ))

)
= `(δ)

P is an embedded pair of pants with waist δ and legs α, β
P on a holed torus is pants with waist δ and legs α, α
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Luo-Tan

Theorem (2010)∑
P

f (P) +
∑
T

g(T ) = 2πVol(M)

where



Part III

Proofs



Decompositions

Given an identity :
what is the associated decomposition of the surface ?

Decomposition:

some space X = (t{geometric pieces}) t {negligible}
I X = ∂Σ

I X = ∂H,
negligible = Λ

I X = unit tangent bundle Σ,
negligible = geodesics that stay in convex core.
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Limit set

Λ:= limit set.

Theorem (Ahlfors)

M = H/Γ is geometrically finite,
and Λc 6= ∅ then Λ has measure zero.

Proposition

Λc 6= ∅ then for any point in CC (Λ) the set of vectors v
such that γv exits the convex core CC (Λ) is full measure.

γv geodesic such that γ̇v (0) = v

Theorem (Birman-Series)

Let Kx be the set of endpoints x such that [x0, x ] projects to a
simple geodesic. Then Kx is Hausdorff dimension 0.
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Caligari’s Chimneys

Proposition

Let M be a compact hyperbolic n-manifold with totally geodesic
boundary S. Let MS be the covering space of M associated to S.
Then MS has a canonical decomposition into a piece of zero
measure, together with two chimneys of height li for each number
li in the orthospectrum.

Picture in H3
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Caligari’s Chimneys

The boundary of MS consists of a copy of S, together with a union
of totally geodesic planes.
Plane is the top of a chimney, with base a round disk in S, and
these chimneys are pairwise disjoint and embedded.
Since M is geometrically finite, the limit set has measure zero, and
therefore these chimneys exhaust all of MS except for a subset of
measure zero. Every oriented ortho geodesic in α ⊂ M lifts to a
unique geodesic arc with initial point in MS . This arc is the core
of a unique chimney in the decomposition, and all chimneys arise
this way.

Thurston calls the chimney bases leopard spots; they
arise in the definition of the skinning map
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Basmajian

I ∂M = (tleopard spots) t projection ofΛ

I Vol(∂M) =
∑

Vol(leopard spots)



Bridgeman-Kahn

I Group unit tangent vectors v , u of CC (Λ)
such that the geodesics γv , γu
are homotopic rel the (ideal) boundary of Σ.

I Represesentative of each class is an ortho geodesic.

Vol(unit tangent bundleM) =
∑

Vol(tetrahedra)
Would be an rectangle cross R but we truncate when the geodesic
leaves the convex core CC (Λ).



Bridgeman-Kahn

I Group unit tangent vectors v , u of CC (Λ)
such that the geodesics γv , γu
are homotopic rel the (ideal) boundary of Σ.

I Represesentative of each class is an ortho geodesic.

Vol(unit tangent bundleM) =
∑

Vol(tetrahedra)
Would be an rectangle cross R but we truncate when the geodesic
leaves the convex core CC (Λ).



Pants

∑
α

2 log

(
1 + e

1
2

(`(α)+`(β)−`(δ))

1 + e
1
2

(`(α)+`(β)+`(δ))

)
= `(δ)

What is the associated decomposition of the surface ?
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Gap decomposition of δ

Define X ⊂ δ to be the set of x starting points for
γx := geodesic leaving δ at right angles which

I is simple

I stays in the convex core.
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Gap decomposition of δ

The geodesic ray γx
I either exits a pair of pants by one of the boundaries α, β.

I or spirals to one of the boundaries α, β.

Lemma
There are a pair of intervals ⊂ δ which contain no point of X

Decomposition

∂M = (tgaps) t projection of K ⊂ Λ

K = endpoints of certain simple ortho geodesics
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Tan’s lassoo decomposition

I Previous construction gives decomposition of the boundary
∂Σ into measurable pieces.

I Each piece measures the contribution of an embedded pair of
pants to the boundary.

I The contribution is the probability that the ortho geodesic has
it’s first self intersection in the pants.

I Get a decomposition of the unit tangent bundle of Σ into
measurable pieces.

I What is the contribution of an embedded pair of pants to the
volume of the unit tangent bundle of Σ?

I What is the probability that a geodesic segment has it’s first
intersection in a pair of pants
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Tan’s lassoo functions

f (P) = 4π2

− 8
{∑
L(cosh−2(Mi/2)) + L(cosh−2(Bi/2))

}
+

∑
i 6=j La(Li ,Mj)

= Vol(P)− Vol(just an arc)− Vol(makes a lasso)

La(x , y) = L(x)− L(
1− x

1− xy
) + L(

1− y

1− xy
).



Just an arc

f (P) = Vol(P) − Vol(just an arc) − Vol(makes a lasso)
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Applications

l := length shortest orthogeodesic then

Voln(M) ≥ Fn(l)

where Fn(t) =

Theorem
There exists

I A function Hn : R+ → R+

I Constants Cn > 0

∂M totally geodesic then

Voln(M) ≥ Hn(Voln−1(∂M)) ≥ CnVoln−1(∂M)
n−2
n−1



Applications
For S ⊂ H an ideal n-gon,

I hyp area (n − 2)π
I n cusps

the Length Spectrum Identity is a finite summation relation.
associated relations give an infinite list of finite relations including
the classical identities of Euler, Abel etc

Theorem

∑
i ,j

L([xi , xi+1, xj , xj+1]) =
∑
α

L
(

1

cosh2(lα/2)

)
=

(n − 3)π2

6

We now consider the Poincaré disk model
I xi , i = 1, . . . , n vertices
I lij = length of the orthogeodesic xixi+1 xjxj+1

[xi , xi+1, xj , xj+1] = cosh−2(
1

2
lij)



Euler reflection

L(x) + L(1− x) = L(1) =
π2

6

L(x) + L(1/x) = 2L(−1) = −π
2

6

I The ideal quadrilateral has 4 cusps two ortholengths l1, l2.

I Cut into quadrilaterals lengths ∞,∞, 1
2 l1,

1
2 l2.

cosh−2(
1

2
l1) + cosh−2(

1

2
l2) = 1

⇒ L
(

cosh−2(
1

2
l1)

)
+ L

(
cosh−2(

1

2
l2)

)
=

(4− 3)π2

6



Symplectic volumes
Weil-Petersson volumes and cone surfaces, ( 2005)

I Mapping class group MCG.

I Teichmuller space = T (Σ), ωWP – MCG-invar. symplectic
form.

I Moduli space = T (Σ)/MCG, – symplectic vol. form

Symplectic volume of the moduli space of a surface

I = a number for surface with marked points.
Wolpert (1982), Penner, Harer-Zagier

I = a polynomial for surface with boundary.
Nakanishi-Naatanen (2001), Mirzakhani(2003).

torus, one hole, V1(l1) =
1

24
(4π2 + l2

1 )

torus, two hole, V1(l1, l2) =
1

192
(4π2 + l2

1 + l2
2 )(12π2 + l2

1 + l2
2 )



Symplectic volume of a once punctured torus

Fenchel Nielsen coordinates `(α), τ(α)

∫
T /MCG

1.d`(α)dτ(α) =

∫
T /MCG

∑
α

(
2

1 + e`(α)

)
d`(α)dτ(α)

=

∫
T /Dehn twist

(
2

1 + e`(α)

)
d`(α)dτ(α)

=

∫ ∞
0

∫ `(α)

0

2

1 + e`(α)
dτ(α)d`(α)

=

∫ ∞
0

2`(α)

1 + e`(α)
d`(α)

=

∫ ∞
0

2
∑

x(−1)ke−(k+1)xdx

=
π2

6



Symplectic volumes

V1(l1) =
1

24
(4π2 + l2

1 )

V1(l1, l2) =
1

192
(4π2 + l2

1 + l2
2 )(12π2 + l2

1 + l2
2 )

d

dl2
V1(l1, l2) =

1

96
l2(16π2 + 2l2

1 + 2l2
2 )

d

dl2

∣∣∣∣
2πi

V1(l1, l2) =
2πi

96
(8π2 + 2l2

1 )

=
2πi

4.24
(4π2 + l2

1 ) =
2πi

4
V1(l1)



Do,Norbury

Cone point = geodesic boundary with complex length iθ
Use cone surface with a cone point of angle 0 < θ < 2π :

I to interpolate the forgetful map (Σg , p)→ Σg

I study degeneration of associated fibration
(Schumacher-Trappani)

Σg → T (Σg ,1)/MCG → T (Σg )/MCG

I Volume should go to zero (Schumacher-Trappani + some
work)

Vg (±2π) = 0

I But what happens to
I the topology of the moduli space T (Σ)θ
I the dynamics of MCG

as θ → 2π.
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