Geometric Identities RIMS Seminar 2012

Greg McShane

June 5, 2012

Part I

Introduction

Surfaces

- Σ is a surface
- totally geodesic boundary
- finite volume hyperbolic structure

Surfaces

- Σ is a surface
- totally geodesic boundary
- finite volume hyperbolic structure
- $\Gamma \simeq \pi_{1}(\Sigma)$
- $\Lambda=$ limit set of Γ
- $\operatorname{CC}(\Lambda) / \Gamma=\Sigma$

Spectra

	definition	length
Closed geodesic	$[\gamma], \gamma \neq 1 \in \Gamma$	$\|\operatorname{tr} \gamma\|=2 \cosh \left(\frac{1}{2} \ell(\gamma)\right.$

Spectra

	definition	length
Closed geodesic	$[\gamma], \gamma \neq 1 \in \Gamma$	$\|\operatorname{tr} \gamma\|=2 \cosh \left(\frac{1}{2} \ell(\gamma)\right.$
Simple closed geodesic	same as above + no self intersection	same as above

Spectra

	definition	length
Closed geodesic	$[\gamma], \gamma \neq 1 \in \Gamma$	$\|\operatorname{tr} \gamma\|=2 \cosh \left(\frac{1}{2} \ell(\gamma)\right.$
Simple closed geodesic	same as above + no self intersection	same as above

Spectra

	definition	length
Closed geodesic	$[\gamma], \gamma \neq 1 \in \Gamma$	$\|\operatorname{tr} \gamma\|=2 \cosh \left(\frac{1}{2} \ell(\gamma)\right.$
Simple closed geodesic	same as above + no self intersection	same as above
Ortho geodesic	γ^{*} shortest arc joins 2 geodesic boundary components	see below $\tanh ^{2}$ is cross ratio
Immersed pair of pants	$\gamma \cdot \beta \cdot \alpha=1 \in \Gamma$	$(\ell(\alpha), \ell(\beta), \ell(\gamma))$

Spectra

	definition	length			
Closed geodesic	$[\gamma], \gamma \neq 1 \in \Gamma$	$\|\operatorname{tr} \gamma\|=2 \cosh \left(\frac{1}{2} \ell(\gamma)\right.$			
Simple closed geodesic	same as above + no self intersection	same as above	$	$	γ^{*} shortest arc
:---					
joins 2 geodesic					
boundary components	\quad	see below			
:---					
$\tanh ^{2}$ is cross ratio					

Spectra

	definition	length
Closed geodesic	$[\gamma], \gamma \neq 1 \in \Gamma$	$\|\operatorname{tr} \gamma\|=2 \cosh \left(\frac{1}{2} \ell(\gamma)\right.$
Simple closed geodesic	same as above + no self intersection	same as above
Ortho geodesic	γ^{*} shortest arc joins 2 geodesic boundary components	see below $\tanh ^{2}$ is cross ratio
Immersed pair of pants	$\gamma \cdot \beta \cdot \alpha=1 \in \Gamma$	$(\ell(\alpha), \ell(\beta), \ell(\gamma))$
Embedded pair of pants	same as above but $[\gamma],[\beta],[\alpha]$ simple,disjoint	same as above

Ortho geodesic is a pair $\alpha, \beta \in \Gamma,[\alpha],[\beta] \subset \partial \Sigma$

$$
\frac{\left(\alpha^{-}-\beta^{-}\right)\left(\alpha^{+}-\beta^{+}\right)}{\left(\alpha^{-}-\beta^{+}\right)\left(\alpha^{+}-\beta^{-}\right)}=\tanh ^{2}\left(\frac{1}{2} \ell\left(\gamma^{*}\right)\right)
$$

Spectra

- Length spectrum $=\{$ lengths of closed geodesics $\}$

Spectra

- Length spectrum $=$ \{lengths of closed geodesics $\}$
- Simple length spectrum $=$ \{lengths of simple closed geods $\}$

Spectra

- Length spectrum $=$ \{lengths of closed geodesics $\}$
- Simple length spectrum $=$ \{lengths of simple closed geods $\}$
- Ortho spectrum $=\{$ lengths of ortho geodesics $\}$

Spectra

- Length spectrum $=$ \{lengths of closed geodesics $\}$
- Simple length spectrum $=$ \{lengths of simple closed geods $\}$
- Ortho spectrum $=\{$ lengths of ortho geodesics $\}$
- Pant's spectrum $=$ \{lengths of embedded pants $\}$

Spectra

- Length spectrum $=$ \{lengths of closed geodesics $\}$
- Simple length spectrum $=$ \{lengths of simple closed geods $\}$
- Ortho spectrum $=\{$ lengths of ortho geodesics $\}$
- Pant's spectrum $=$ \{lengths of embedded pants $\}$
- $\delta=$ Hausdorff dimension of the limit set.
- $\operatorname{Vol}(\Sigma)$
- $\operatorname{Vol}(\partial \Sigma)$

Length spectrum

- (Weyl) Spectrum of Laplacian determines the area

$$
N_{\Gamma}(t):=\mid\left\{\text { eigenvalues of } \Delta_{\mathbb{H} / \Gamma}<t\right\} \left\lvert\, \sim \frac{\operatorname{Vol}(\mathbb{H} / \Gamma)}{4 \pi} t\right.
$$

Length spectrum

- (Weyl) Spectrum of Laplacian determines the area

$$
N_{\Gamma}(t):=\mid\left\{\text { eigenvalues of } \Delta_{\mathbb{H} / \Gamma}<t\right\} \left\lvert\, \sim \frac{\operatorname{Vol}(\mathbb{H} / \Gamma)}{4 \pi} t\right.
$$

- (Huber, Selberg) Length spectrum determines the spectrum of the Laplacian.

Length spectrum

- (Weyl) Spectrum of Laplacian determines the area

$$
N_{\Gamma}(t):=\mid\left\{\text { eigenvalues of } \Delta_{\mathbb{H} / \Gamma}<t\right\} \left\lvert\, \sim \frac{\operatorname{Vol}(\mathbb{H} / \Gamma)}{4 \pi} t\right.
$$

- (Huber, Selberg) Length spectrum determines the spectrum of the Laplacian.
- (Margulis/Sullivan) Length spectrum determines the Hausdorff dimension

$$
N_{\Gamma}(t):=\mid\{\text { primitive geodesics } \ell(\alpha)<t\} \left\lvert\, \sim \frac{e^{\delta t}}{\delta t}\right.
$$

Length spectrum

- (Weyl) Spectrum of Laplacian determines the area

$$
N_{\Gamma}(t):=\mid\left\{\text { eigenvalues of } \Delta_{\mathbb{H} / \Gamma}<t\right\} \left\lvert\, \sim \frac{\operatorname{Vol}(\mathbb{H} / \Gamma)}{4 \pi} t\right.
$$

- (Huber, Selberg) Length spectrum determines the spectrum of the Laplacian.
- (Margulis/Sullivan) Length spectrum determines the Hausdorff dimension

$$
N_{\Gamma}(t):=\mid\{\text { primitive geodesics } \ell(\alpha)<t\} \left\lvert\, \sim \frac{e^{\delta t}}{\delta t}\right.
$$

- (Wolpert) Length spectrum determines the isometry type of the surface up to finitely many choices

Trace formula

- h even function, satisfying a growth condition
- \hat{h} Fourier transform

Trace formula

- h even function, satisfying a growth condition
- \hat{h} Fourier transform

$$
\begin{aligned}
\sum_{n} h\left(\lambda_{n}\right)= & \frac{\operatorname{Vol}(\mathbb{H} / \Gamma)}{4 \pi} \int_{\mathbb{R}} r h(r) \tanh (\pi r) d r \\
& +\sum_{[\gamma]} \frac{2 \ell(\gamma)}{\sinh \left(\frac{1}{2} \ell(\gamma)\right)} \hat{h}(\ell(\gamma))
\end{aligned}
$$

where

- λ_{n} are the eigenvalues of the Laplacian.
- $\ell(\gamma)$ is the length of the geodesic in the homotopy class $[\gamma]$

Simple Length Spectra

- (Wolpert) Simple length spectrum determines the surface up to finitely many choices.
- (Mirkzahani)

$$
N(t):=\mid\{\text { simple geodesics } \ell(\alpha)<t\} \mid \sim C(\mathbb{H} / \Gamma) t^{6 g-6} .
$$

$$
g=\text { genus of } \Sigma
$$

Part II

Identities

Basmajian Identity

Theorem (1992)

$$
\sum_{\alpha^{*}} 2 \sinh ^{-1}\left(\frac{1}{\sinh \left(\ell\left(\alpha^{*}\right)\right.}\right)=\ell(\delta)
$$

Basmajian Identity

Theorem (1992)

$$
\sum_{\alpha^{*}} 2 \sinh ^{-1}\left(\frac{1}{\sinh \left(\ell\left(\alpha^{*}\right)\right.}\right)=\ell(\delta)
$$

$$
\sum_{\alpha^{*}} \operatorname{Vol}_{n-1}\left(\text { Ball radius }=\sinh ^{-1}\left(\frac{1}{\sinh \left(\ell\left(\alpha^{*}\right)\right.}\right)\right)=\operatorname{Vol}_{n-1}(\partial M)
$$

Bridgeman-Kahn Identity

Theorem (2008)

$$
2 \pi \operatorname{Vol}(M)=8 \sum_{\alpha^{*}} \mathcal{L}\left(\frac{1}{\cosh ^{2}\left(\ell\left(\alpha^{*}\right) / 2\right)}\right)
$$

Bridgeman-Kahn Identity

Theorem (2008)

$$
2 \pi \operatorname{Vol}(M)=8 \sum_{\alpha^{*}} \mathcal{L}\left(\frac{1}{\cosh ^{2}\left(\ell\left(\alpha^{*}\right) / 2\right)}\right)
$$

- Dilogarithm

$$
\operatorname{Li}_{2}(z)=\sum \frac{z^{k}}{k^{2}}=-\int_{0}^{z} \frac{\log (1-x)}{x} d x
$$

Bridgeman-Kahn Identity

Theorem (2008)

$$
2 \pi \operatorname{Vol}(M)=8 \sum_{\alpha^{*}} \mathcal{L}\left(\frac{1}{\cosh ^{2}\left(\ell\left(\alpha^{*}\right) / 2\right)}\right)
$$

- Dilogarithm

$$
\operatorname{Li}_{2}(z)=\sum \frac{z^{k}}{k^{2}}=-\int_{0}^{z} \frac{\log (1-x)}{x} d x
$$

- Roger's dilogarithm

$$
\begin{gathered}
\mathcal{L}(x)=\mathrm{Li}_{2}(x)+\frac{1}{2} \log |x| \log (1-x), x<1 . \\
\mathcal{L}^{\prime}(x)=\frac{1}{2}\left(\frac{\log (1-x)}{x}+\frac{\log (x)}{1-x}\right) .
\end{gathered}
$$

Bridgeman-Kahn Identity in general

Theorem

$$
2 \pi \operatorname{Vol}(M)=8 \sum_{\alpha^{*}} \mathcal{L}\left(\frac{1}{\cosh ^{2}\left(\ell\left(\alpha^{*}\right) / 2\right)}\right)
$$

Bridgeman-Kahn Identity in general

Theorem

$$
2 \pi \operatorname{Vol}(M)=8 \sum_{\alpha^{*}} \mathcal{L}\left(\frac{1}{\cosh ^{2}\left(\ell\left(\alpha^{*}\right) / 2\right)}\right)
$$

Exist F_{n} such that for any hyperbolic n-manifold M with totally geodesic boundary

$$
\operatorname{Vol}(M)=\sum_{\beta} F_{n}\left(\ell\left(\alpha^{*}\right)\right)
$$

the volume of M is equal to the sum of the values of F_{n} on the orthospectrum of M.

Bridgeman-Kahn Identity in general

Theorem

$$
2 \pi \operatorname{Vol}(M)=8 \sum_{\alpha^{*}} \mathcal{L}\left(\frac{1}{\cosh ^{2}\left(\ell\left(\alpha^{*}\right) / 2\right)}\right)
$$

Exist F_{n} such that for any hyperbolic n-manifold M with totally geodesic boundary

$$
\operatorname{Vol}(M)=\sum_{\beta} F_{n}\left(\ell\left(\alpha^{*}\right)\right)
$$

the volume of M is equal to the sum of the values of F_{n} on the orthospectrum of M .

- integral formula for F_{n} in terms of elementary functions.

Identity for embedded pants

Σ has a single boundary component of length $\ell(\delta) \geq 0$

- Punctured torus $\ell(\delta)=0$

$$
\sum_{\alpha} \frac{1}{1+e^{\ell(\alpha)}}=\frac{1}{2}
$$

Identity for embedded pants

Σ has a single boundary component of length $\ell(\delta) \geq 0$

- Punctured torus $\ell(\delta)=0$

$$
\sum_{\alpha} \frac{1}{1+e^{\ell(\alpha)}}=\frac{1}{2}
$$

- One-holed torus

$$
\sum_{\alpha} \log \left(\frac{1+e^{\frac{1}{2}(\ell(\alpha)-\ell(\delta))}}{1+e^{\frac{1}{2}(\ell(\alpha)+\ell(\delta))}}\right)=\ell(\delta)
$$

Identity for embedded pants

Σ has a single boundary component of length $\ell(\delta) \geq 0$

- Punctured torus $\ell(\delta)=0$

$$
\sum_{\alpha} \frac{1}{1+e^{\ell(\alpha)}}=\frac{1}{2}
$$

- One-holed torus

$$
\sum_{\alpha} \log \left(\frac{1+e^{\frac{1}{2}(\ell(\alpha)-\ell(\delta))}}{1+e^{\frac{1}{2}(\ell(\alpha)+\ell(\delta))}}\right)=\ell(\delta)
$$

- One-holed genus g

$$
\sum_{P} \log \left(\frac{1+e^{\frac{1}{2}(\ell(\alpha)+\ell(\beta)-\ell(\delta))}}{1+e^{\frac{1}{2}(\ell(\alpha)+\ell(\beta)+\ell(\delta))}}\right)=\ell(\delta)
$$

P is an embedded pair of pants with waist δ and legs α, β

Identity for embedded pants

Σ has a single boundary component of length $\ell(\delta) \geq 0$

- Punctured torus $\ell(\delta)=0$

$$
\sum_{\alpha} \frac{1}{1+e^{\ell(\alpha)}}=\frac{1}{2}
$$

- One-holed torus

$$
\sum_{\alpha} \log \left(\frac{1+e^{\frac{1}{2}(\ell(\alpha)-\ell(\delta))}}{1+e^{\frac{1}{2}(\ell(\alpha)+\ell(\delta))}}\right)=\ell(\delta)
$$

- One-holed genus g

$$
\sum_{P} \log \left(\frac{1+e^{\frac{1}{2}(\ell(\alpha)+\ell(\beta)-\ell(\delta))}}{1+e^{\frac{1}{2}(\ell(\alpha)+\ell(\beta)+\ell(\delta))}}\right)=\ell(\delta)
$$

P is an embedded pair of pants with waist δ and legs α, β
P on a holed torus is pants with waist δ and legs α, α

Luo-Tan

Theorem (2010)

$$
\sum_{P} f(P)+\sum_{T} g(T)=2 \pi \operatorname{Vol}(M)
$$

where

$$
\begin{gathered}
f(P):=4 \sum_{i \neq j}\left[2 \mathcal{L}\left(\frac{1-x_{i}}{1-x_{i} y_{j}}\right)-2 \mathcal{L}\left(\frac{1-y_{j}}{1-x_{i} y_{j}}\right)-\mathcal{L}\left(y_{j}\right)-\mathcal{L}\left(\frac{\left(1-x_{i}\right)^{2} y_{j}}{\left(1-y_{j}\right)^{2} x_{i}}\right)\right] \\
g(T):=4 \pi^{2}+8 \sum_{A}\left[2 \mathcal{L}\left(\frac{1-x_{A}}{1-x_{A} y_{A}}\right)-2 \mathcal{L}\left(\frac{1-y_{A}}{1-x_{A} y_{A}}\right)-2 \mathcal{L}\left(y_{A}\right)-\mathcal{L}\left(\frac{\left(1-x_{A}\right)^{2} y_{A}}{\left.\left(1-y_{A}\right)^{2} x_{A}\right)}\right)\right]
\end{gathered}
$$

Part III
Proofs

Decompositions

Given an identity :
what is the associated decomposition of the surface ?

Decompositions

Given an identity :
what is the associated decomposition of the surface ?
Decomposition:
some space $X=(\sqcup\{$ geometric pieces $\}) \sqcup\{$ negligible $\}$

- $X=\partial \Sigma$
- $X=\partial \mathbb{H}$, negligible $=\Lambda$
- $X=$ unit tangent bundle Σ,
negligible $=$ geodesics that stay in convex core.

Limit set

$\Lambda:=$ limit set.
Theorem (Ahlfors)
$M=\mathbb{H} / \Gamma$ is geometrically finite, and $\Lambda^{c} \neq \emptyset$ then Λ has measure zero.

Limit set

$\Lambda:=$ limit set.
Theorem (Ahlfors)
$M=\mathbb{H} / \Gamma$ is geometrically finite, and $\Lambda^{c} \neq \emptyset$ then Λ has measure zero.

Proposition
$\Lambda^{c} \neq \emptyset$ then for any point in $C C(\Lambda)$ the set of vectors v such that γ_{v} exits the convex core $C C(\Lambda)$ is full measure. γ_{v} geodesic such that $\dot{\gamma}_{v}(0)=v$

Limit set

$\Lambda:=$ limit set.
Theorem (Ahlfors)
$M=\mathbb{H} / \Gamma$ is geometrically finite, and $\Lambda^{c} \neq \emptyset$ then Λ has measure zero.

Proposition
$\Lambda^{c} \neq \emptyset$ then for any point in $C C(\Lambda)$ the set of vectors v such that γ_{v} exits the convex core $C C(\Lambda)$ is full measure.
γ_{v} geodesic such that $\dot{\gamma}_{v}(0)=v$
Theorem (Birman-Series)
Let K_{x} be the set of endpoints x such that $\left[x_{0}, x\right]$ projects to a simple geodesic. Then K_{x} is Hausdorff dimension 0.

Convex core

Convex core

Caligari's Chimneys

Proposition

Let M be a compact hyperbolic n-manifold with totally geodesic boundary S. Let M_{S} be the covering space of M associated to S.
Then M_{S} has a canonical decomposition into a piece of zero measure, together with two chimneys of height l_{i} for each number l_{i} in the orthospectrum.

Caligari's Chimneys

Proposition

Let M be a compact hyperbolic n-manifold with totally geodesic boundary S. Let M_{S} be the covering space of M associated to S.
Then M_{S} has a canonical decomposition into a piece of zero measure, together with two chimneys of height l_{i} for each number I_{i} in the orthospectrum.
Picture in \mathbb{H}^{3}

Caligari's Chimneys

Proposition

Let M be a compact hyperbolic n-manifold with totally geodesic boundary S. Let M_{S} be the covering space of M associated to S.
Then M_{S} has a canonical decomposition into a piece of zero measure, together with two chimneys of height l_{i} for each number I_{i} in the orthospectrum.
Picture in \mathbb{H}^{3}

Caligari's Chimneys

The boundary of M_{S} consists of a copy of S, together with a union of totally geodesic planes.
Plane is the top of a chimney, with base a round disk in S, and these chimneys are pairwise disjoint and embedded.
Since M is geometrically finite, the limit set has measure zero, and therefore these chimneys exhaust all of M_{S} except for a subset of measure zero. Every oriented ortho geodesic in $\alpha \subset M$ lifts to a unique geodesic arc with initial point in M_{S}. This arc is the core of a unique chimney in the decomposition, and all chimneys arise this way.

Caligari's Chimneys

The boundary of M_{S} consists of a copy of S, together with a union of totally geodesic planes.
Plane is the top of a chimney, with base a round disk in S, and these chimneys are pairwise disjoint and embedded.
Since M is geometrically finite, the limit set has measure zero, and therefore these chimneys exhaust all of M_{S} except for a subset of measure zero. Every oriented ortho geodesic in $\alpha \subset M$ lifts to a unique geodesic arc with initial point in M_{S}. This arc is the core of a unique chimney in the decomposition, and all chimneys arise this way. Thurston calls the chimney bases leopard spots; they arise in the definition of the skinning map

Basmajian

- $\partial M=(\sqcup l e o p a r d$ spots $) ~ \sqcup$ projection of \wedge
- $\operatorname{Vol}(\partial M)=\sum \operatorname{Vol}($ leopard spots $)$

Bridgeman-Kahn

- Group unit tangent vectors v, u of $C C(\Lambda)$ such that the geodesics γ_{v}, γ_{u} are homotopic rel the (ideal) boundary of Σ.
- Represesentative of each class is an ortho geodesic.

Bridgeman-Kahn

- Group unit tangent vectors v, u of $C C(\Lambda)$ such that the geodesics γ_{v}, γ_{u} are homotopic rel the (ideal) boundary of Σ.
- Represesentative of each class is an ortho geodesic.

Vol(unit tangent bundle M) $=\sum$ Vol(tetrahedra)
Would be an rectangle cross \mathbb{R} but we truncate when the geodesic leaves the convex core $C C(\Lambda)$.

Pants

$$
\sum_{\alpha} 2 \log \left(\frac{1+e^{\frac{1}{2}(\ell(\alpha)+\ell(\beta)-\ell(\delta))}}{1+e^{\frac{1}{2}(\ell(\alpha)+\ell(\beta)+\ell(\delta))}}\right)=\ell(\delta)
$$

What is the associated decomposition of the surface?

Pre proof

Pre proof

Gap decomposition of δ

Define $X \subset \delta$ to be the set of x starting points for $\gamma_{x}:=$ geodesic leaving δ at right angles which

- is simple
- stays in the convex core.

Gap decomposition of δ

Define $X \subset \delta$ to be the set of x starting points for $\gamma_{x}:=$ geodesic leaving δ at right angles which

- is simple
- stays in the convex core.

Gap decomposition of δ

The geodesic ray γ_{x}

- either exits a pair of pants by one of the boundaries α, β.
- or spirals to one of the boundaries α, β.

Lemma
There are a pair of intervals $\subset \delta$ which contain no point of X

Gap decomposition of δ

The geodesic ray γ_{x}

- either exits a pair of pants by one of the boundaries α, β.
- or spirals to one of the boundaries α, β.

Lemma

There are a pair of intervals $\subset \delta$ which contain no point of X
Decomposition

$$
\partial M=(\sqcup \text { gaps }) \sqcup \text { projection of } K \subset \Lambda
$$

$K=$ endpoints of certain simple ortho geodesics

Proof

Proof

Proof

Proof

Tan's lassoo decomposition

- Previous construction gives decomposition of the boundary $\partial \Sigma$ into measurable pieces.

Tan's lassoo decomposition

- Previous construction gives decomposition of the boundary $\partial \Sigma$ into measurable pieces.
- Each piece measures the contribution of an embedded pair of pants to the boundary.

Tan's lassoo decomposition

- Previous construction gives decomposition of the boundary $\partial \Sigma$ into measurable pieces.
- Each piece measures the contribution of an embedded pair of pants to the boundary.
- The contribution is the probability that the ortho geodesic has it's first self intersection in the pants.

Tan's lassoo decomposition

- Previous construction gives decomposition of the boundary $\partial \Sigma$ into measurable pieces.
- Each piece measures the contribution of an embedded pair of pants to the boundary.
- The contribution is the probability that the ortho geodesic has it's first self intersection in the pants.
- Get a decomposition of the unit tangent bundle of Σ into measurable pieces.

Tan's lassoo decomposition

- Previous construction gives decomposition of the boundary $\partial \Sigma$ into measurable pieces.
- Each piece measures the contribution of an embedded pair of pants to the boundary.
- The contribution is the probability that the ortho geodesic has it's first self intersection in the pants.
- Get a decomposition of the unit tangent bundle of Σ into measurable pieces.
- What is the contribution of an embedded pair of pants to the volume of the unit tangent bundle of Σ ?

Tan's lassoo decomposition

- Previous construction gives decomposition of the boundary $\partial \Sigma$ into measurable pieces.
- Each piece measures the contribution of an embedded pair of pants to the boundary.
- The contribution is the probability that the ortho geodesic has it's first self intersection in the pants.
- Get a decomposition of the unit tangent bundle of Σ into measurable pieces.
- What is the contribution of an embedded pair of pants to the volume of the unit tangent bundle of Σ ?
- What is the probability that a geodesic segment has it's first intersection in a pair of pants

Tan's lassoo decomposition

Tan's lassoo decomposition

Tan's lassoo functions

$$
\begin{aligned}
& f(P)=4 \pi^{2} \\
& -8\left\{\sum \mathcal{L}\left(\cosh ^{-2}\left(M_{i} / 2\right)\right)+\mathcal{L}\left(\cosh ^{-2}\left(B_{i} / 2\right)\right)\right\} \\
& +\quad \sum_{i \neq j} L a\left(L_{i}, M_{j}\right) \\
& =\operatorname{Vol}(P)-\operatorname{Vol}(\text { just an arc })-\operatorname{Vol}(\text { makes a lasso }) \\
& \operatorname{La}(x, y)=\mathcal{L}(x)-\mathcal{L}\left(\frac{1-x}{1-x y}\right)+\mathcal{L}\left(\frac{1-y}{1-x y}\right) .
\end{aligned}
$$

Just an arc

$$
f(P)=\operatorname{Vol}(P)-\operatorname{Vol}(\text { just an arc })-\operatorname{Vol}(m a k e s ~ a ~ l a s s o)
$$

Makes a lassoo

$$
f(P)=\operatorname{Vol}(P)-\operatorname{Vol}(\text { just an arc })-\operatorname{Vol}(\text { makes a lasso })
$$

Applications

$I:=$ length shortest orthogeodesic then

$$
\operatorname{Vol}_{n}(M) \geq F_{n}(I)
$$

where $F_{n}(t)=$
Theorem
There exists

- A function $H_{n}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$
- Constants $C_{n}>0$
∂M totally geodesic then

$$
\operatorname{Vol}_{n}(M) \geq H_{n}\left(\operatorname{VoI}_{n-1}(\partial M)\right) \geq C_{n} \operatorname{VoI}_{n-1}(\partial M)^{\frac{n-2}{n-1}}
$$

Applications

For $S \subset \mathbb{H}$ an ideal n-gon,

- hyp area $(n-2) \pi$
- n cusps
the Length Spectrum Identity is a finite summation relation. associated relations give an infinite list of finite relations including the classical identities of Euler, Abel etc
Theorem

$$
\sum_{i, j} \mathcal{L}\left(\left[x_{i}, x_{i+1}, x_{j}, x_{j+1}\right]\right)=\sum_{\alpha} \mathcal{L}\left(\frac{1}{\cosh ^{2}\left(I_{\alpha} / 2\right)}\right)=\frac{(n-3) \pi^{2}}{6}
$$

We now consider the Poincaré disk model

- $x_{i}, i=1, \ldots, n$ vertices
- $l_{i j}=$ length of the orthogeodesic $x_{i} x_{i+1} x_{j} x_{j+1}$

$$
\left[x_{i}, x_{i+1}, x_{j}, x_{j+1}\right]=\cosh ^{-2}\left(\frac{1}{2} l_{i j}\right)
$$

Euler reflection

$$
\begin{aligned}
\mathcal{L}(x)+\mathcal{L}(1-x) & =\mathcal{L}(1)=\frac{\pi^{2}}{6} \\
\mathcal{L}(x)+\mathcal{L}(1 / x) & =2 \mathcal{L}(-1)=-\frac{\pi^{2}}{6}
\end{aligned}
$$

- The ideal quadrilateral has 4 cusps two ortholengths I_{1}, l_{2}.
- Cut into quadrilaterals lengths $\infty, \infty, \frac{1}{2} l_{1}, \frac{1}{2} l_{2}$.

$$
\begin{aligned}
\cosh ^{-2}\left(\frac{1}{2} I_{1}\right)+\cosh ^{-2}\left(\frac{1}{2} I_{2}\right) & =1 \\
\Rightarrow \mathcal{L}\left(\cosh ^{-2}\left(\frac{1}{2} I_{1}\right)\right)+\mathcal{L}\left(\cosh ^{-2}\left(\frac{1}{2} I_{2}\right)\right) & =\frac{(4-3) \pi^{2}}{6}
\end{aligned}
$$

Symplectic volumes

Weil-Petersson volumes and cone surfaces, (2005)

- Mapping class group $\mathcal{M C G}$.
- Teichmuller space $=\mathcal{T}(\Sigma), \omega_{W P}-\mathcal{M C G}$-invar. symplectic form.
- Moduli space $=\mathcal{T}(\Sigma) / \mathcal{M C G}$, - symplectic vol. form

Symplectic volume of the moduli space of a surface

- = a number for surface with marked points.

Wolpert (1982), Penner, Harer-Zagier

- = a polynomial for surface with boundary. Nakanishi-Naatanen (2001), Mirzakhani(2003).
torus, one hole, $V_{1}\left(l_{1}\right)=\frac{1}{24}\left(4 \pi^{2}+l_{1}^{2}\right)$
torus, two hole, $V_{1}\left(I_{1}, I_{2}\right)=\frac{1}{192}\left(4 \pi^{2}+l_{1}^{2}+l_{2}^{2}\right)\left(12 \pi^{2}+l_{1}^{2}+I_{2}^{2}\right)$

Symplectic volume of a once punctured torus

Fenchel Nielsen coordinates $\ell(\alpha), \tau(\alpha)$

$$
\begin{aligned}
\int_{\mathcal{T} / \mathcal{M C G}} 1 \cdot d \ell(\alpha) d \tau(\alpha) & =\int_{\mathcal{T} / \mathcal{M C G}} \sum_{\alpha}\left(\frac{2}{1+e^{\ell(\alpha)}}\right) d \ell(\alpha) d \tau(\alpha) \\
& =\int_{\mathcal{T} / \text { Dehn twist }}\left(\frac{2}{1+e^{\ell(\alpha)}}\right) d \ell(\alpha) d \tau(\alpha) \\
& =\int_{0}^{\infty} \int_{0}^{\ell(\alpha)} \frac{2}{1+e^{\ell(\alpha)}} d \tau(\alpha) d \ell(\alpha) \\
& =\int_{0}^{\infty} \frac{2 \ell(\alpha)}{1+e^{\ell(\alpha)}} d \ell(\alpha) \\
& =\int_{0}^{\infty} 2 \sum x(-1)^{k} e^{-(k+1) x} d x \\
& =\frac{\pi^{2}}{6}
\end{aligned}
$$

Symplectic volumes

$$
\begin{aligned}
V_{1}\left(l_{1}\right) & =\frac{1}{24}\left(4 \pi^{2}+l_{1}^{2}\right) \\
V_{1}\left(l_{1}, l_{2}\right) & =\frac{1}{192}\left(4 \pi^{2}+l_{1}^{2}+l_{2}^{2}\right)\left(12 \pi^{2}+l_{1}^{2}+l_{2}^{2}\right) \\
\frac{d}{d l_{2}} V_{1}\left(I_{1}, l_{2}\right) & =\frac{1}{96} I_{2}\left(16 \pi^{2}+2 l_{1}^{2}+2 l_{2}^{2}\right) \\
\left.\frac{d}{d l_{2}}\right|_{2 \pi i} V_{1}\left(l_{1}, l_{2}\right) & =\frac{2 \pi i}{96}\left(8 \pi^{2}+2 l_{1}^{2}\right) \\
& =\frac{2 \pi i}{4.24}\left(4 \pi^{2}+l_{1}^{2}\right)=\frac{2 \pi i}{4} V_{1}\left(l_{1}\right)
\end{aligned}
$$

Do,Norbury

Cone point $=$ geodesic boundary with complex length i θ Use cone surface with a cone point of angle $0<\theta<2 \pi$:

- to interpolate the forgetful map $\left(\Sigma_{g}, p\right) \rightarrow \Sigma_{g}$
- study degeneration of associated fibration (Schumacher-Trappani)

$$
\Sigma_{g} \rightarrow \mathcal{T}\left(\Sigma_{g, 1}\right) / \mathcal{M C G} \rightarrow \mathcal{T}\left(\Sigma_{g}\right) / \mathcal{M C G}
$$

- Volume should go to zero (Schumacher-Trappani + some work)

$$
V_{g}(\pm 2 \pi)=0
$$

- But what happens to
- the topology of the moduli space $\mathcal{T}(\Sigma)_{\theta}$
- the dynamics of $\mathcal{M C G}$ as $\theta \rightarrow 2 \pi$.

