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Hyperbolic volume

Mostow-Prasad rigidity

Today, by the word ”hyperbolic 3-manifold”
(or just ”manifold”), we mean a connected orientable
complete hyperbolic 3-manifold of finite volume.

.

Theorem (Mostow-Prasad rigidity theorem)

.

.

.

. ..

.

.

Let M1, M2 be hyperbolic 3-manifolds. Then,
π1(M1) ∼= π1(M2) ⇐⇒ M1 is isometric to M2

By Mostow-Prasad rigidity the volume of a given
hyperbolic 3-manifold is a topological invariant.

For example, for a given hyperbolic link, the volume is a
link invariant.
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Hyperbolic volume

Volume

.

Theorem (Jφrgensen-Thurston)

.

.

.

. ..

.

.

Let H be isometry classes of hyperbolic 3-manifolds. Then the
volume function vol : H → R>0 is a finite-to-one function.
Further, the image vol(H) is a well-ordered subset of R>0 of
order type ωω.

By this theorem, for a given v ∈ R>0, there exists a natural
number N(v) := ]vol−1(v).
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Hyperbolic volume

N(v)

.

Question

.

.

.

. ..

.

.

What can we say about N(v)?

Not much is known!

Gabai-Meyerhoff-Milley proved that the Weeks manifold
W is the unique smallest volume manifold among all
hyperbolic 3-manifolds.
i.e N(vol(W )) = 1 and for v < vol(W ), N(v) = 0

(As far as I know) prior to our work, this is the only result
which gives the exact value of N(v).
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Hyperbolic volume

Classes of hyperbolic 3-manifolds

There are many interesting classes of hyperbolic 3-manifolds.
For example,

C: cusped manifolds.

A: arithmetic manifolds.

G: manifolds with geodesic boundaries.

L: link complements.

It is also interesting to ask

NX (v) = ]{vol−1(v) ∩ X}
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NX (v)

For particular classes some of the exact values are known.

Cao-Meyerhoff proved that m003 and m004 are the
smallest cusped manifolds i.e. NC(vol(m003)) = 2.

Gabai-Meyerhoff-Milley detected first 10 smallest cusped
manifolds.

For Weeks manifold W and Meyerhoff manifold M ,
Chinburg-Friedman-Jones-Reid proved
NA(vol(W ))) = 1, NA(vol(M))) = 1

Kojima-Miyamoto detected the smallest compact
manifolds with geodesic boundaries and Fujii proved that
there are 8 of them. i.e. NCG(6.452...) = 8.

8 / 42
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On small N(v)

Computer experiments

SnapPy has many good censuses of hyperbolic manifolds.

Orientable Cusped Census. (at most 8 ideal tetrahedra)

Orientable Closed Census. ( by Hodgson and Weeks)

Census Knots. (at most 7 ideal tetrahedra)

Link Exteriors (using Rolfsen’s notation).

(Non) Alternating Knot Exteriors (up to 16 crossings).

MorwenLinks(up to 14 crossings, about 180k links).

Nonorientable Cusped (or Closed) Census.

We used the first two censuses and compute Ncensus(v)’s.
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On small N(v)

Main theorem 1

.

Theorem (Unique volume Manifolds)

.

.

.

. ..

.

.

There exists an infinite sequence of hyperbolic manifolds {Mi}
such that N(vol(Mi)) = 1.

.

Theorem (Unique volume Cusped manifolds)

.

.

.

. ..

.

.

There exists an infinite sequence of cusped hyperbolic
manifolds {MC

i } such that NC(vol(MC
i )) = 1.

These manifolds are obtained by Dehn filling on m004
and m129 respectively.

(m004 = complement of figure eight knot,
m129 = complement of Whitehead link)
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On large N(v)

Growth rate

In the above theorem, we discussed the case N(v) is small.

.

Question

.

.

.

. ..

.

.

How large can N(v) be?

Wielenberg: For all n ∈ N, there exists v ∈ R>0 such that
N(v) > n.

Zimmerman: Nclosed(v) > n.

c.f.

.

Theorem (Chesebro-DeBlois, 2012)

.

.

.

. ..

.

.

C (v) can be arbitrary large. Where C (v) is the number of
commensurability classes that contain manifolds of volume v.

13 / 42
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Computer experiments
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On large N(v)

Growth rate

.

Question

.

.

.

. ..

. .

How fast can N(v) grow?

In other words, what can we say about G (V )? Where

max
v≤V

N(v) � G (V )
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On large N(v)

Known results

.

Theorem (Belolipetsky, Gelander, Lubotzky, Shalev,
2010)

.

.

.

. ..

.

.

There exists constants a, b > 0 such that for x � 0,

xax < max
xi≤x

NA(xi) < xbx

.

Theorem (Frigerio, Martelli and Petronio, 2003)

.

.

.

. ..

.

.

There exists a constant c > 0 such that for x � 0,

NG(x) > xcx

(A: arithmetic manifolds
G: manifolds with geodesic boundaries)
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On large N(v)

Main theorem 2

.

Theorem (Hodgson-M)

.

.

.

. ..

. .

There exists c > 1 such that

NL(x) > cx

(L: Link complements)
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Main theorem 1

.

Theorem (Unique volume Manifolds)
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.

.
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Main theorem 1

Hyperbolic Dehn surgery theorem

M : hyperbolic 3-manifold with a cusp T .

M(a, b) : manifold after Dehn filling T along slope (a, b).

L(a, b) : length of the slope (a, b) on T .

.

Theorem (Thurston)

.

.

.

. ..

.

.

Then there exist a constant C1 = C1(M) such that the Dehn
filling M(a, b) is hyperbolic whenever L(a, b) > C1, and
vol(M(a, b)) → vol(M) as L(a, b) → ∞

21 / 42
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Main theorem 1

Neuman-Zagier asymptotic formula

A : area of the horotori

Q(a, b) = L(a, b)2/A

∆(a, b) = vol(M) − vol(M(a, b)) > 0

.

Theorem (Neumann-Zagier)

.

.

.

. ..

.

.

There exist a constant C2 = C2(M) > 0 such that,∣∣∣∣ π2

∆(a, b)
− Q(a, b)

∣∣∣∣ < C2

22 / 42
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Main theorem 1

Key idea

.

Key idea

.

.

.

. ..

.

.

(a0, b0) : pair of relatively prime integers such that

(i) Q(a, b) = Q(a0, b0) = Q0 has few integer solutions,

(ii) there is large enough 2-sided gap around Q0 in the set of
possible value of Q(x , y) for (x , y) relatively prime
integers.

⇒ There are few Dehn fillings M(a, b) with the same volume
as M(a0, b0)

23 / 42
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Main theorem 1

m004 : the figure eight knot complement

m004:the figure eight knot complement.

Then Q(a, b) = a2 + 12b2 for suitably chosen basis on
the cusp of m004.

⇒ some number theory proves the existence of a sequence
{(ai , bi)} such that

(i) (Q0 :=)Q(a, b) = Q(ai , bi) ⇒ (a, b) = (ai , bi)

(ii) there is large enough 2-sided gap around Q0 in the set of
possible value of Q(x , y) for (x , y) relatively prime
integers.

⇒ M(ai , bi) is a unique volume manifold among all Dehn
fillings of m004 and m003.

24 / 42
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Main theorem 1

Smallest cusped manifolds

By the work of Cao-Meyerhoff, m003 and m004 are the
smallest volume cusped manifolds.

⇒ (+ Hyperbolic Dehn surgery theorem)
∃ε > 0 such that for all manifolds N with

2.029... − ε < vol(N) < 2.029...

can be obtained from m004 or m003 by a Dehn filling.
⇒ If M(a, b) is a unique volume manifold among all Dehn
fillings of m004 or m003, then M(a, b) is unique among all
hyperbolic 3-manifolds.
(m004: the figure eight knot complement
m003: the sister of m004)
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Main theorem 1

Main theorem 1

.

Theorem (Unique volume Manifolds)

.

.

.

. ..

.

.

There is an infinite sequence of hyperbolic manifolds {Mi}
such that N(vol(Mi)) = 1.

.

Theorem (Unique volume Cusped manifolds)

.

.

.

. ..

.

.

There is an infinite sequence of hyperbolic manifolds {MC
i }

such that NC(vol(MC
i )) = 1.

These manifolds are obtained by Dehn filling on m004
and m129 respectively.

(m004 = complement of figure eight knot,
m129 = complement of Whitehead link)
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Main theorem 2

Main theorem 2

.

Theorem (Hodgson-M)

.

.

.

. ..

. .

There exists c > 1 such that

NL(x) > cx

(L: Link complements)
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Main theorem 2

Hyperbolic graph

G : trivalent spatial graph in S3.

V : the set of vertices of G .

Define NG by

NG := M \ G \ (
∪
v∈V

N (v))

where N (v) is an open regular neighborhood of v .
Then NG is a manifold with 3-punctured sphere boundaries,
one corresponds to each vertex of G .

28 / 42
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where N (v) is an open regular neighborhood of v .

Then NG is a manifold with 3-punctured sphere boundaries,
one corresponds to each vertex of G .
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.

Definition

.

.

.

. ..

.

.

A spacial graph G is hyperbolic if NG admits complete
hyperbolic structure (with parabolic meridians) of finite
volume with totally geodesic boundaries.

Example (Intuitive picture) of a hyperbolic graph.
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Volume preserving moves

.

Lemma

.

.

.

. ..

.

.

The following moves on hyperbolic graphs in S3 are volume
preserving.

�������

������ ������

�������

This lemma relates hyperbolic graphs with hyperbolic links.
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Example.

Two complements have the same volume.
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We apply one of the moves to the following graph.

Then we get possibly distinct 2n links of a same volume.

We distinguish these manifold by computing the moduli
of cusps and edges of canonical decomposition.
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Our graph

The graph comes from a planar graph

�
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The complements of planar hyperbolic graphs admit useful
polyhedral decompositions.

Remark.
This decomposition is same as the decomposition of a fully
augmented link found by Agol-Thurston.
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Since each dihedral angle is π/2, this decomposition gives a
circle packing on ∂H3 ∼= S2.

This circle packing enables us to compute modulus of
each cusp.
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Our graph

Our graph, its polyhedral decomposition and corresponding
circle packing.

�
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Moduli of cusps

�

For our graph, there are 3
different types of annuli cusps.
The example we observed
By gluing annuli cusps
together we get a torus cusp.
The example we observed
⇒
We can compute cusp moduli.
The example we observedhe
example we observedhe
example we observed
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Example.

�

�

This graphs has 3 types of tori cusps and their shapes are

���������
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For each link that we obtain after gluing the 3-punctured
sphere of

we can assign (horoball) volume to each cusp in terms of the
moduli.
It gives us a way to fix a canonical decomposition.
(SnapPy demo.)
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1 Introduction
Hyperbolic volume
On small N(v)
On large N(v)

2 sketch of proofs
Main theorem 1
Main theorem 2

3 Open problems
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Open problems

1 Find additional exact values or upper bounds on N(v).

2 (Gromov, 1979) Is N(v) locally bounded?

3 Are all hyperbolic Dehn fillings on m004 (or m003)
determined by their volumes, amongst Dehn fillings on
m004 (or m003)?

4 What is the largest volume v < vω = 2.029883... of a
closed hyperbolic 3-manifold which does not arise from
Dehn filling of m004 or m003? (This would allow us to
make the above results explicit.)
Guess: v = 2.02885309.. = vol(m006(−5, 2)).

5 Does there exist C > 0 such that NL(x) > xCx?
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Thank you for your attention.

Great Ocean Road (Australia)
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