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Hyperbolic volume

Mostow-Prasad rigidity

Today, by the word " hyperbolic 3-manifold”
(or just "manifold”), we mean a connected orientable
complete hyperbolic 3-manifold of finite volume.

Theorem (Mostow-Prasad rigidity theorem)

Let My, M, be hyperbolic 3-manifolds. Then,
7T1(M1) = 7T1(M2) <— M, is isometric to M,

m By Mostow-Prasad rigidity the volume of a given
hyperbolic 3-manifold is a topological invariant.

m For example, for a given hyperbolic link, the volume is a
link invariant.
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Hyperbolic volume

Volume

Theorem (J¢rgensen-Thurston)

Let 'H be isometry classes of hyperbolic 3-manifolds. Then the
volume function vol : H — Ryq is a finite-to-one function.
Further, the image vol(H) is a well-ordered subset of R~ of
order type w*.

By this theorem, for a given v € R. g, there exists a natural
number N(v) := tvol }(v).
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N(v)

What can we say about N(v)?

Not much is known!

m Gabai-Meyerhoff-Milley proved that the Weeks manifold
W is the unique smallest volume manifold among all
hyperbolic 3-manifolds.

i.e N(vol(W)) =1 and for v < vol(W), N(v) =0

m (As far as | know) prior to our work, this is the only result

which gives the exact value of N(v).
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Hyperbolic volume

Classes of hyperbolic 3-manifolds

There are many interesting classes of hyperbolic 3-manifolds.
For example,

m C: cusped manifolds.

m A: arithmetic manifolds.

m G: manifolds with geodesic boundaries.
m L: link complements.

It is also interesting to ask

Nx(v) = t{vol *(v) N X}
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N;\g(v)

For particular classes some of the exact values are known.

m Cao-Meyerhoff proved that m003 and m004 are the
smallest cusped manifolds i.e. Ng(vol(m003)) = 2.

m Gabai-Meyerhoff-Milley detected first 10 smallest cusped
manifolds.

m For Weeks manifold W and Meyerhoff manifold M,
Chinburg-Friedman-Jones-Reid proved
N4(vol(W))) = 1, Ny(vol(M))) =1

m Kojima-Miyamoto detected the smallest compact

manifolds with geodesic boundaries and Fujii proved that
there are 8 of them. i.e. Ngg(6.452...) = 8.

8/42
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SnapPy has many good censuses of hyperbolic manifolds.
m Orientable Cusped Census. (at most 8 ideal tetrahedra)
m Orientable Closed Census. ( by Hodgson and Weeks)
Census Knots. (at most 7 ideal tetrahedra)

Link Exteriors (using Rolfsen’s notation).
(Non) Alternating Knot Exteriors (up to 16 crossings).
MorwenLinks(up to 14 crossings, about 180k links).

Nonorientable Cusped (or Closed) Census.
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On small N(v)

Computer experiments

SnapPy has many good censuses of hyperbolic manifolds.
m Orientable Cusped Census. (at most 8 ideal tetrahedra)
m Orientable Closed Census. ( by Hodgson and Weeks)

® m H EH H

We used the first two censuses and compute Neepsus(V)'s.
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On small N(v)

Main theorem 1

Theorem (Unique volume Manifolds)

There exists an infinite sequence of hyperbolic manifolds {M,;}
such that N(vol(M;)) = 1.

Theorem (Unique volume Cusped manifolds)

There exists an infinite sequence of cusped hyperbolic
manifolds {M¢} such that Ne(vol(MF)) = 1.

m These manifolds are obtained by Dehn filling on m004
and m129 respectively.

(m004 = complement of figure eight knot,
m129 = complement of Whitehead link)
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On large N(v)

Growth rate

In the above theorem, we discussed the case N(v) is small.

How large can N(v) be? l

m Wielenberg: For all n € N, there exists v € R.q such that
N(v) > n.

m Zimmerman: Ngosea(V) > n.

c.f.

Theorem (Chesebro-DeBlois, 2012)

C(v) can be arbitrary large. Where C(v) is the number of
commensurability classes that contain manifolds of volume v.
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On large N(v)

Growth rate

How fast can N(v) grow?

In other words, what can we say about G(V)? Where

max N(v) < G(V)

v<V
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On large N(v)

Known results

Theorem (Belolipetsky, Gelander, Lubotzky, Shalev,
2010)

There exists constants a, b > 0 such that for x > 0,

x¥ < max Na(x) < x>

X <x

| \

Theorem (Frigerio, Martelli and Petronio, 2003)

There exists a constant ¢ > 0 such that for x > 0,

Ng(x) > x<

A

(A: arithmetic manifolds

G: manifolds with geodesic boundaries)
17/42
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On large N(v)

Main theorem 2

Theorem (Hodgson-M)
There exists ¢ > 1 such that

NK(X) > c*

(L: Link complements)
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Main theorem 1

Theorem (Unique volume Manifolds)

There exists an infinite sequence of hyperbolic manifolds {M,;}
such that N(vol(M;)) = 1.

Theorem (Unique volume Cusped manifolds)

There exists an infinite sequence of cusped hyperbolic
manifolds {M¢} such that Ne(vol(MF)) = 1.

m These manifolds are obtained by Dehn filling on m004
and m129 respectively.

(m004 = complement of figure eight knot,
m129 = complement of Whitehead link)
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Main theorem 1

Hyperbolic Dehn surgery theorem

m M : hyperbolic 3-manifold with a cusp T.
m M(a, b) : manifold after Dehn filling T along slope (a, b).
m L(a, b) : length of the slope (a,b) on T.

Theorem (Thurston)

Then there exist a constant C; = C;(M) such that the Dehn
filling M(a, b) is hyperbolic whenever L(a, b) > C;, and
vol(M(a, b)) — vol(M) as L(a, b) — o

21/42



sketch of proofs
0®0000

Main theorem 1

Neuman-Zagier asymptotic formula

m A : area of the horotori
= Q(a,b) = L(a, b)?/A
m A(a, b) = vol(M) — vol(M(a, b)) >0

Theorem (Neumann-Zagier)

There exist a constant C; = C3(M) > 0 such that,

71_2

A(a, b)

= Q(a, b) < C2
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Main theorem 1

Key idea

Key idea

(a0, bo) : pair of relatively prime integers such that

(i) Q(a,b) = Q(ao, bp) = Qo has few integer solutions,

(ii) there is large enough 2-sided gap around @ in the set of

possible value of Q(x,y) for (x,y) relatively prime
integers.

= There are few Dehn fillings M(a, b) with the same volume
as M(ag, bo)
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m004 : the figure eight knot complement

m m004:the figure eight knot complement.

m Then Q(a, b) = a® + 12b? for suitably chosen basis on
the cusp of m004.
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Main theorem 1

m004 : the figure eight knot complement

m m004:the figure eight knot complement.

m Then Q(a, b) = a® + 12b? for suitably chosen basis on
the cusp of m004.

=> some number theory proves the existence of a sequence
{(aj, b;)} such that

( ) (QO _) (aa b) - Q(ai7 bl) = (aa b) - (ai7 bl)

(ii) there is large enough 2-sided gap around @y in the set of

possible value of Q(x,y) for (x,y) relatively prime
integers.

= M(a;, b;) is a unique volume manifold among all Dehn
fillings of m004 and m003.
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Main theorem 1

Smallest cusped manifolds

By the work of Cao-Meyerhoff, m003 and m004 are the
smallest volume cusped manifolds.
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smallest volume cusped manifolds.

= (4 Hyperbolic Dehn surgery theorem)

Je > 0 such that for all manifolds N with
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Main theorem 1

Smallest cusped manifolds

By the work of Cao-Meyerhoff, m003 and m004 are the
smallest volume cusped manifolds.

= (4 Hyperbolic Dehn surgery theorem)

Je > 0 such that for all manifolds N with

2.029... — £ < vol(N) < 2.029...

can be obtained from m004 or m003 by a Dehn filling.

= If M(a, b) is a unique volume manifold among all Dehn
fillings of m004 or m003, then M(a, b) is unique among all
hyperbolic 3-manifolds.

(m004: the figure eight knot complement

m003: the sister of m004)
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Main theorem 1

Theorem (Unique volume Manifolds)

There is an infinite sequence of hyperbolic manifolds { M;}
such that N(vol(M;)) = 1.

Theorem (Unique volume Cusped manifolds)

There is an infinite sequence of hyperbolic manifolds {M¢}
such that Ne(vol(M¢)) = 1.

m These manifolds are obtained by Dehn filling on m004
and m129 respectively.

(m004 = complement of figure eight knot,
m129 = complement of Whitehead link)
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Main theorem 2

Main theorem 2

Theorem (Hodgson-M)
There exists ¢ > 1 such that

NK(X) > c*

(L: Link complements)

27 /42



sketch of proofs
0@00000000000

Main theorem 2

Hyperbolic graph

m G: trivalent spatial graph in S3.

m V: the set of vertices of G.
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Main theorem 2

Hyperbolic graph

m G: trivalent spatial graph in S3.
m V: the set of vertices of G.

Define Ng by

N =M\ G\ (L N(v)

veV

where N(v) is an open regular neighborhood of v.
Then Ng is a manifold with 3-punctured sphere boundaries,
one corresponds to each vertex of G.

28 /42
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Main theorem 2

Definition

A spacial graph G is hyperbolic if Ng admits complete
hyperbolic structure (with parabolic meridians) of finite
volume with totally geodesic boundaries.

Example (Intuitive picture) of a hyperbolic graph.

D) &) &
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Main theorem 2

Volume preserving moves

Lemma

The following moves on hyperbolic graphs in S* are volume
preserving.

gluing___f;

glumg \K
cuttmg /\

This lemma relates hyperbolic graphs with hyperbolic links.

f’:cutting::g
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Example.

IRES

Two complements have the same volume.

31/42



sketch of proofs
00000@0000000

Main theorem 2

We apply one of the moves to the following graph.

Then we get possibly distinct 2" links of a same volume.
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Main theorem 2

We apply one of the moves to the following graph.

Then we get possibly distinct 2" links of a same volume.

m We distinguish these manifold by computing the moduli
of cusps and edges of canonical decomposition.
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Main theorem 2

Our graph

The graph comes from a planar graph
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Main theorem 2

The complements of planar hyperbolic graphs admit useful

polyhedral decompositions.
Remark.

This decomposition is same as the decomposition of a fully
augmented link found by Agol-Thurston.
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Main theorem 2

Since each dihedral angle is /2, this decomposition gives a
circle packing on OH® = S2.

m This circle packing enables us to compute modulus of
each cusp.
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Our graph

Our graph, its polyhedral decomposition and corresponding
circle packing.
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Main theorem 2

Moduli of cusps

For our graph, there are 3

different types of annuli cusps.
By gluing annuli cusps
together we get a torus cusp.

=
We can compute cusp moduli.

37/42



sketch of proofs
0000000000080

Main theorem 2

Example.

N ErANE
XL XY

k

><><7

This graphs has 3 types of tori cusps and their shapes are

=
T

A
S S |
A A 4 4

ll

2% (k+1)
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For each link that we obtain after gluing the 3-punctured
sphere of

we can assign (horoball) volume to each cusp in terms of the
moduli.

It gives us a way to fix a canonical decomposition.
(SnapPy demo.)
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Open problems

Open problems

Find additional exact values or upper bounds on N(v).
A (Gromov, 1979) Is N(v) locally bounded?
Are all hyperbolic Dehn fillings on m004 (or m003)

determined by their volumes, amongst Dehn fillings on
m004 (or m003)?

B What is the largest volume v < v, = 2.029883... of a
closed hyperbolic 3-manifold which does not arise from
Dehn filling of m004 or m003? (This would allow us to
make the above results explicit.)

Guess: v = 2.02885309.. = vol(m006(—5, 2)).

HA Does there exist C > 0 such that Ny(x) > x&?
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Open problems

Thank you for your attention.

-

Great Ocean Road (Australia)
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