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Mapping class groups

Σ = Σg,n; closed orientable surface of genus g by removing n punctures

Homeo+(Σ) = {f : Σ → Σ : ori. pres. homeo. pres. punctures setwise}
Mod(Σ) = Homeo+(Σ)/Homeo0(Σ)

We focus on elements ϕ ∈ Mod(Σ), called pseudo-Anosov (pA).
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Theorem 1 (Thurston). ϕ ∈ Mod(Σ) is pseudo-Anosov ⇐⇒ ∃f ∈ ϕ

such that f is a pseudo-Anosov homeo.

A homeomorphism f : Σ → Σ is pseudo-Anosov if ∃λ > 1, and
∃Fs,Fu ; a pair of transverse measured foliations such that

f(Fs) = 1
λ
Fs and f(Fu) = λFu.

The constant λ is called the dilatation of f .

Fs and Fu are called the stable and unstable foliation of f .

λ

1

1

1/ λ

stable foliation
unstable foliation
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Invariants of pA mapping classes

Let f ∈ ϕ be a pseudo-Anosov homeomorphism. Then λ(f) does not

depend on the choice of a representative.

• λ(ϕ) := λ(f) > 1; dilatation of ϕ

• ent(ϕ) := log λ(f); entropy of ϕ

• Ent(ϕ) := |χ(Σ)| log λ(f); normalized entropy of ϕ

= |χ(Σ)| ent(ϕ)
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Mapping classes and Fibered 3-manifolds
From ϕ ∈ Mod(Σ), we obtain the mapping torus

T(ϕ) = Σ × [0, 1]/(x,0)∼(f(x),1),

where f ∈ ϕ is a representative

f

図 1 a fiber Σ of T(ϕ), and a monodromy f of a fibration

Theorem 2 (Thurston). ϕ ∈ Mod(Σ) is pA ⇐⇒ T(ϕ) is a hyperbolic 3-

manifold with finite volume
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Minimal dilatations problem

Fix a surface Σ = Σg,n.

Spec(Σ) := {λ(ϕ) | pseudo-Anosov ϕ ∈ Mod(Σ)}.

⋆ There exists a minimum of Spec(Σ) (Ivanov)

δg,n := min{λ | λ ∈ Spec(Σg,n)}

Problem 1. Determine the explicit value of δg,n. Describe pseudo-

Anosov elements which achieve δg,n.
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The purpose of this talk...

⋆ find sequences of pseudo-Anosovs with small dialtation

⋆ Our conjecture: they could have the minimal dilatation

⋆ These pseudo-Anosovs are coming from a single 3-manifold.
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The purpose of this talk...

⋆ Magic manifold N = S3 \ (3 chain link)

図 2 3 chain link (left), braided link of a 3-braid (right)

• N is a hyperbolic, fibered 3-manifold.
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Minimal dilatation δ0,n

Dn: n-punctured disk

Mod(Dn)(= Homeo+(Dn)/isotopy rel ∂D point wise) < Mod(Σ0,n+1)

Bn ≃ Mod(Dn)

(minimal dilatation of n-braids)

δ(Dn) := min{λ(ϕ) | ϕ ∈ Mod(Dn), pseudo-Anosov}

Clearly, δ(Dn) ≥ δ0,n+1

Question 1. What is the value of δ(Dn)?
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m n

図 3 σm,n ∈ Bm+n+1

Theorem 3 (Hironaka-K (2006)). • σm,n is pA ⇐⇒ |m− n| ≥ 2

• When (m,n) = (g − 1, g + 1),

g log λ(σg−1,g+1) < log(2 +
√
3)

g log λ(σg−1,g+1) → log(2 +
√
3) as g → ∞

Corollary 1 (HK (2006)). log δ0,n ≍ 1/n

⋆ σg−1,g+1 ∈ B2g+1 has the smallest known dilatation (true for g = 2, 3)
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For m ≥ 3, 1 ≤ p ≤ m− 1,

Tm,p := (σ2
1σ2σ3 · · ·σm−1)

pσ−2
m−1 ∈ Bm

(e.g, T6,1 = σ2
1σ2σ3σ4σ5σ

−2
5 = σ2

1σ2σ3σ4σ
−1
5 )

By forgetting the 1st strand of Tm,p, we can define T ′
m,p ∈ Bm−1

Theorem 4 (KT2). Let g ≥ 2.

(1) σg−1,g+1 is conjugate to T ′
2g+2,2

(2) S3 \ T̂2g+2,2 ≃ magic manifold N , where b̂ denotes the braided link

of a braid b
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We can prove more (see [KT2])

• Tm,p is pseudo-Anosov ⇐⇒ gcd(m− 1, p) = 1

• If Tm,p is pseudo-Anosov, then S3 \ T̂m,p ≃ N

Remark 1 (potential candidates with the smallest dilatation (KT2)).

Pseudo-Anosov m-braids with the smallest known dilatation are of the

form Tm,p or T ′
m+1,p. (True for m ≤ 8.)

⋆ The places where the braids Tm,p live?
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Thurston norm of hyperbolic 3-manifolds M
Thurston norm ∥ · ∥ : H2(M,∂M ;R) → R;

For an integral class a ∈ H2(M,∂M ;Z), define

∥a∥ = min
F

{|χ(F )|},

where the minimum is taken over all oriented surface F embedded in

M , such that a = [F ] and F has no components of non-negative Euler

characteristic.

⋆ The surface F which realizes this minimum is denoted by Fa.

⋆ The norm ∥ · ∥ defined on integral classes admits a unique continuous

extension ∥ · ∥ : H2(M,∂M ;R) → R which is linear on the ray through the

origin.

⋆ The unit ball UM w.r.t to ∥ · ∥ is a compact, convex polyhedron.
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The places where the braids Tm,p live

Consider the Thurston norm ∥ · ∥ : H2(N, ∂N ;R) → R
α := [Fα], β := [Fβ ], γ := [Fγ ] ∈ H2(N, ∂N ;Z)
∥α∥ = ∥β∥ = ∥γ∥ = 1

(1,0,0)

(0,1,0)
(1,1,1)

(0,0,1)

(0,-1,0)

(-1,0,0)

(-1,-1,-1)

(0,0,-1)

(0,0,1)

∆

α axis

β axis

γ axis 

Every top dimensional face ∆ of ∂UN is a fibered face
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C∆ := a cone over ∆ through 0

for any ∀a ∈ int(C∆): integral class, the minimal representative Fa (i.e,

a = [Fa]) becomes a fiber of a fibration of N

Take a particular fibered face

∆ = {(X,Y, Z) | X + Y − Z = 1, X ≥ 0, Y ≥ 0, X ≥ Z, Y ≥ Z}.

• When gcd(m − 1, p) = 1, we can talk about the integral class, say

am,p ∈ H2(N, ∂N ;Z), associated to the monodromy Tm,p
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Where do the braids Tm,p live? Answer (see [KT2])

• (the projective class) am,p ∈ ∆1 ⊂ ∆, where ∆1 = {(X,Y, 0) ∈ ∆}

(Recall : the braid by forgetting the 1st strand of T2g+2,2 is conjugate to

σg−1,g+1)

lim
g→∞

a2g+2,2 = (1/2, 1/2, 0) ∼ (1, 1, 0)

⋆ The monodromy associated to (1, 1, 0) is a 3-braid with the dilatation

2 +
√
3. (Geometric proof of g log λ(σg−1,g+1) → log(2 +

√
3) as g → ∞)

(0,0,-1)

(0,1,0) (1,1,1)

(1,0,0)

1
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Minimal dilatation δg,n, g > 1

Theorem 5 (Tsai 2009). For any fixed g > 1, log δg,n ≍ log n

n
.

⋆ This is in contrast with the cases g = 0, 1.

∃cg > 0 such that

logn

cgn
< log δg,n <

cg logn

n
(⇐⇒ 1

cg
<

n log δg,n
logn

< cg)

⋆ What is the value of cg?
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(Examples by Tsai)

Given g ≥ 2, ∃{fg,n : Σg,n → Σg,n}n∈N such that log λ(fg,n) ≍ log n
n

lim
n→∞

n log λ(fg,n)
logn = 2(2g + 1). (So lim sup

n→∞

n log δg,n
log n ≤ 2(2g + 1).)

See [KT0]
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Thm A. [KT0] ∃∞ ly many g’s such that if we fix such a g, then

lim sup
n→∞

n log δg,n
log n

≤ 2.

Thm B. [KT0] ∀g ≥ 2, ∃{ni}∞i=0 with ni → ∞ such that

lim sup
i→∞

ni log δg,ni

log ni
≤ 2.
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Sketch of proof of Theorem B

(useful formula) Let a = (x, y, z) ∈ int(C∆) be a primitive fibered class.

(1) ∥a∥ = x+ y − z.

(2) the number of the boundary components of the mini. representa-

tive Fa = F(x,y,z) is equal to

gcd(x, y + z) + gcd(y, z + x) + gcd(z, x+ y).

(3) the dilatation λ(x,y,z) is the largest real root of

f(x,y,z)(t) = tx+y−z − tx − ty − tx−z − ty−z + 1.
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• For g ≥ 2 and p ≥ 0, take a fibered class

a(g,p) = (p+ g + 1, 2p+ 1, p− g) ∈ int(C∆).

If a(g,p) is primitive, then Fa(g,p)
≃ Σg,2p+4.

• ∀g ≥ 2, ∃{a(g,pi)}
∞
i=0 such that a(g,pi) is primitive, pi → ∞, and

a(g,pi) → (1/2, 1, 1/2) ∈ ∂∆ as i → ∞

(0,0,-1)
(0,0,-1)

(0,1,0) (1,1,1)

(0,0,1)

(-1,-1,-1) (0,-1,0)

(1,0,0)

(0,0,-1) (1,0,0)

(1,1,1)(0,1,0)
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The next proposition implies Theorem B.

Proposition 1.

lim
i→∞

∥a(g,pi)∥ log λ(a(g,pi))

log ∥a(g,pi)∥
= 2.
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Remark. (Fried, S. Matsumoto, McMullen) Ω: a fibered face of a

hyperbolic fibered 3-manifold.

(1) ent : int(CΩ(Z)) → R admits a continuous extension

ent : int(CΩ) → R

(2) Ent(·) = ∥ · ∥ ent(·) : int(CΩ) → R is constant on each ray through 0.

(3) ent|int(Ω) : int(Ω) → R is strictly convex, and if a ∈ int(Ω) goes to ∂Ω,

then ent(a) → ∞.

So, ent|int(Ω) has the minimum at a unique point.
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Minimal dilatation δ1,n

⋆ log δ1,n ≍ 1/n (Tsai)

Theorem 6 (KKT).

lim sup
n→∞

|χ(Σ1,n)| log δ1,n ≤ 2 log δ(D4) ≈ 1.6628

⋆ We study the monodromies of fibrations of the whitehead link exterior

≃ N(1). R.H.S is the minimum of ent|int(Ω) for N(1).
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How can one get ∥ · ∥ and ent(·) for the Dehn filling N(r)?

⋆ For the computation of the Thurston norm and the entropy function

of N(r), use a natural injection ι : H2(N(r), ∂N(r)) → H2(N, ∂N(r))

whose image is S(r) := {(X,Y, Z) ∈ H2(N, ∂N) | r = Z+X
−Y )}, see [KKT]
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Minimal dilatation δg := δg,0

⋆ log δg ≍ 1/g (Penner 1991)

Theorem 7 (Hironaka, Aaber-Dunfield, KT1).

lim sup
g→∞

|χ(Σg,0)| log δg ≤ 2 log( 3+
√
5

2 ) = 2 log δ(D3)

⋆ Hironaka · · · N( 1
−2 ) ≃ S3 \ σ̂1σ

−1
2

⋆ AD, KT · · · N( 3
−2 ) ≃ S3 \ (−2, 3, 8)-pretzel link

R.H.S is the minimum of ent|int(Ω) for both N( 1
−2

) and N( 3
−2

)



The places where pseudo-Anosovs with small dilatation live 28/ 30

Aside: infinitely many twins

⋆ N( 1
−2 ) and N( 3

−2 ) are twins. (They are entropy equivalent)

Hyperbolic fibered 3-manifolds M and M ′ are entropy equivalent

=⇒ the minimum of ent|int(Ω) for M is equal to that for M ′.

⋆ N(r) and N(−r − 2) are entropy equivalent for “almost all” r ∈ Q,

see [KKT]
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Places where pseudo-Anosovs defined on Σg,n with the smallest

known dilatation live

(0,0,-1)

(0,1,0) (1,1,1)

(1,0,0) (0,0,-1) (1,0,0)

N(-1)

N(1)

N(-1/2) N(-3/2)

Σ0,n (   ; vary)n

Σg,n (        ; fix,    ; vary)g>1 n

Σ1,n (   ; vary)n

Σg,0 (   ; vary)g

8N(   )

(1)

(2)

(3)

(4)

(1) log δ0,n ≍ 1/n (2) For any fixed g ≥ 2, log δg,n ≍ logn

n
(3) log δ1,n ≍ 1/n. (4) log δg ≍ 1/g
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Question 2. Let fg,n : Σg,n → Σg,n be a pseudo-Anosov homeo. which

achieves δg,n. It is true that T(fg,n) ≃ N , or T(fg,n) is the manifold

obtained from N by Dehn filling cusps along a fiber of N?


