The places where pseudo-Anosovs with small dilatation live

Eiko Kin

Tokyo Institute of Technology
(joint work with M. Takasawa and S. Kojima)

$$
|*|
$$

RIMS seminar
2012.5.29

This talk is based on the following papers:
[KT0] E. Kin and M. Takasawa, The boundary of a fibered face of the magic 3-manifold and the asymptotic behavior of the minimal pseudo-Anosovs dilatations. preprint (2012) arXiv:1205.2956
[KKT] E. Kin, S. Kojima and M. Takasawa, Minimal dilatations of pseudoAnosovs generated by the magic 3-manifold and their asymptotic behavior. preprint (2011) arXiv:1104.3939
[KT1] E. Kin and M. Takasawa, Pseudo-Anosovs on closed surfaces having small entropy and the Whitehead sister link exterior, to appear in "Jounal of the Mathematical Society of Japan"
[KT2] E. Kin and M. Takasawa, Pseudo-Anosov braids with small entropy and the magic 3-manifold, Communications in Analysis and Geometry 19, volume 4 (2011), 705-758.

Mapping class groups

$\Sigma=\Sigma_{g, n}$; closed orientable surface of genus g by removing n punctures Homeo $_{+}(\Sigma)=\{f: \Sigma \rightarrow \Sigma$: ori. pres. homeo. pres. punctures setwise $\}$ $\operatorname{Mod}(\Sigma)=$ Homeo $_{+}(\Sigma) / \operatorname{Homeo}_{0}(\Sigma)$

We focus on elements $\phi \in \operatorname{Mod}(\Sigma)$, called pseudo-Anosov (pA).

Theorem 1 (Thurston). $\phi \in \operatorname{Mod}(\Sigma)$ is pseudo-Anosov $\Longleftrightarrow{ }^{\exists} f \in \phi$ such that f is a pseudo-Anosov homeo.

A homeomorphism $f: \Sigma \rightarrow \Sigma$ is pseudo-Anosov if ${ }^{\exists} \lambda>1$, and
${ }^{\exists} \mathcal{F}^{s}, \mathcal{F}^{u}$; a pair of transverse measured foliations such that

$$
f\left(\mathcal{F}^{s}\right)=\frac{1}{\lambda} \mathcal{F}^{s} \text { and } f\left(\mathcal{F}^{u}\right)=\lambda \mathcal{F}^{u}
$$

The constant λ is called the dilatation of f.
\mathcal{F}^{s} and \mathcal{F}^{u} are called the stable and unstable foliation of f.

Invariants of pA mapping classes

Let $f \in \phi$ be a pseudo-Anosov homeomorphism. Then $\lambda(f)$ does not depend on the choice of a representative.

- $\lambda(\phi):=\lambda(f)>1$; dilatation of ϕ
- $\operatorname{ent}(\phi):=\log \lambda(f)$; entropy of ϕ
- $\operatorname{Ent}(\phi):=|\chi(\Sigma)| \log \lambda(f) ;$ normalized entropy of ϕ $=|\chi(\Sigma)| \operatorname{ent}(\phi)$

Mapping classes and Fibered 3-manifolds

From $\phi \in \operatorname{Mod}(\Sigma)$, we obtain the mapping torus

$$
\mathbb{T}(\phi)=\Sigma \times[0,1] /(x, 0) \sim(f(x), 1)
$$

where $f \in \phi$ is a representative

図 1 a fiber Σ of $\mathbb{T}(\phi)$, and a monodromy f of a fibration

Theorem 2 (Thurston). $\phi \in \operatorname{Mod}(\Sigma)$ is $p A \Longleftrightarrow \mathbb{T}(\phi)$ is a hyperbolic 3manifold with finite volume

Minimal dilatations problem

Fix a surface $\Sigma=\Sigma_{g, n}$.

$$
\operatorname{Spec}(\Sigma):=\{\lambda(\phi) \mid \text { pseudo-Anosov } \phi \in \operatorname{Mod}(\Sigma)\}
$$

\star There exists a minimum of $\operatorname{Spec}(\Sigma)$ (Ivanov)
$\delta_{g, n}:=\min \left\{\lambda \mid \lambda \in \operatorname{Spec}\left(\Sigma_{g, n}\right)\right\}$
Problem 1. Determine the explicit value of $\delta_{g, n}$. Describe pseudoAnosov elements which achieve $\delta_{g, n}$.

The purpose of this talk...

\star find sequences of pseudo-Anosovs with small dialtation
\star Our conjecture: they could have the minimal dilatation
\star These pseudo-Anosovs are coming from a single 3-manifold.

The purpose of this talk...
\star Magic manifold $N=S^{3} \backslash(3$ chain link $)$

図 23 chain link (left), braided link of a 3-braid (right)

- N is a hyperbolic, fibered 3-manifold.

Minimal dilatation $\delta_{0, n}$
D_{n} : n-punctured disk
$\operatorname{Mod}\left(D_{n}\right)\left(=\operatorname{Homeo}_{+}\left(\mathrm{D}_{\mathrm{n}}\right) /\right.$ isotopy rel ∂D point wise $)<\operatorname{Mod}\left(\Sigma_{0, n+1}\right)$
$B_{n} \simeq \operatorname{Mod}\left(D_{n}\right)$
(minimal dilatation of n-braids)

$$
\delta\left(D_{n}\right):=\min \left\{\lambda(\phi) \mid \phi \in \operatorname{Mod}\left(D_{n}\right), \text { pseudo-Anosov }\right\}
$$

Clearly, $\delta\left(D_{n}\right) \geq \delta_{0, n+1}$
Question 1. What is the value of $\delta\left(D_{n}\right)$?

図 $3 \sigma_{m, n} \in B_{m+n+1}$

Theorem 3 (Hironaka-K (2006)). • $\sigma_{m, n}$ is $p A \Longleftrightarrow|m-n| \geq 2$

- When $(m, n)=(g-1, g+1)$,

$$
\begin{aligned}
& g \log \lambda\left(\sigma_{g-1, g+1}\right)<\log (2+\sqrt{3}) \\
& g \log \lambda\left(\sigma_{g-1, g+1}\right) \rightarrow \log (2+\sqrt{3}) \text { as } g \rightarrow \infty
\end{aligned}
$$

Corollary 1 (HK (2006)). $\log \delta_{0, n} \asymp 1 / n$
$\star \sigma_{g-1, g+1} \in B_{2 g+1}$ has the smallest known dilatation (true for $g=2,3$)

For $m \geq 3,1 \leq p \leq m-1$,

$$
T_{m, p}:=\left(\sigma_{1}^{2} \sigma_{2} \sigma_{3} \cdots \sigma_{m-1}\right)^{p} \sigma_{m-1}^{-2} \in B_{m}
$$

$$
\left(\mathrm{e} . \mathrm{g}, T_{6,1}=\sigma_{1}^{2} \sigma_{2} \sigma_{3} \sigma_{4} \sigma_{5} \sigma_{5}^{-2}=\sigma_{1}^{2} \sigma_{2} \sigma_{3} \sigma_{4} \sigma_{5}^{-1}\right)
$$

By forgetting the 1st strand of $T_{m, p}$, we can define $T_{m, p}^{\prime} \in B_{m-1}$
Theorem 4 (KT2). Let $g \geq 2$.
(1) $\sigma_{g-1, g+1}$ is conjugate to $T_{2 g+2,2}^{\prime}$
(2) $S^{3} \backslash \widehat{T_{2 g+2,2}} \simeq$ magic manifold N, where \widehat{b} denotes the braided link of a braid b

We can prove more (see [KT2])

- $T_{m, p}$ is pseudo-Anosov $\Longleftrightarrow \operatorname{gcd}(m-1, p)=1$
- If $T_{m, p}$ is pseudo-Anosov, then $S^{3} \backslash \widehat{T_{m, p}} \simeq N$

Remark 1 (potential candidates with the smallest dilatation (KT2)). Pseudo-Anosov m-braids with the smallest known dilatation are of the form $T_{m, p}$ or $T_{m+1, p}^{\prime} . \quad(T r u e$ for $m \leq 8$.)
\star The places where the braids $T_{m, p}$ live?

Thurston norm of hyperbolic 3-manifolds M
Thurston norm $\|\cdot\|: H_{2}(M, \partial M ; \mathbb{R}) \rightarrow \mathbb{R} ;$
For an integral class $a \in H_{2}(M, \partial M ; \mathbb{Z})$, define

$$
\|a\|=\min _{F}\{|\chi(F)|\}
$$

where the minimum is taken over all oriented surface F embedded in M, such that $a=[F]$ and F has no components of non-negative Euler characteristic.
\star The surface F which realizes this minimum is denoted by F_{a}.
\star The norm $\|\cdot\|$ defined on integral classes admits a unique continuous extension $\|\cdot\|: H_{2}(M, \partial M ; \mathbb{R}) \rightarrow \mathbb{R}$ which is linear on the ray through the origin.
\star The unit ball U_{M} w.r.t to $\|\cdot\|$ is a compact, convex polyhedron.

The places where the braids $T_{m, p}$ live
Consider the Thurston norm $\|\cdot\|: H_{2}(N, \partial N ; \mathbb{R}) \rightarrow \mathbb{R}$
$\alpha:=\left[F_{\alpha}\right], \beta:=\left[F_{\beta}\right], \gamma:=\left[F_{\gamma}\right] \in H_{2}(N, \partial N ; \mathbb{Z})$
$\|\alpha\|=\|\beta\|=\|\gamma\|=1$

Every top dimensional face Δ of ∂U_{N} is a fibered face
$C_{\Delta}:=$ a cone over Δ through 0
for any ${ }^{\forall} a \in \operatorname{int}\left(C_{\Delta}\right)$: integral class, the minimal representative F_{a} (i.e, $\left.a=\left[F_{a}\right]\right)$ becomes a fiber of a fibration of N
Take a particular fibered face

$$
\Delta=\{(X, Y, Z) \mid X+Y-Z=1, X \geq 0, Y \geq 0, X \geq Z, Y \geq Z\}
$$

- When $\operatorname{gcd}(m-1, p)=1$, we can talk about the integral class, say $a_{m, p} \in H_{2}(N, \partial N ; \mathbb{Z})$, associated to the monodromy $T_{m, p}$

Where do the braids $T_{m, p}$ live? Answer (see [KT2])

- (the projective class) $\overline{a_{m, p}} \in \Delta_{1} \subset \Delta$, where $\Delta_{1}=\{(X, Y, 0) \in \Delta\}$
(Recall : the braid by forgetting the 1st strand of $T_{2 g+2,2}$ is conjugate to $\sigma_{g-1, g+1}$)

$$
\lim _{g \rightarrow \infty} \overline{a_{2 g+2,2}}=(1 / 2,1 / 2,0) \sim(1,1,0)
$$

\star The monodromy associated to $(1,1,0)$ is a 3 -braid with the dilatation $2+\sqrt{3}$. (Geometric proof of $g \log \lambda\left(\sigma_{g-1, g+1}\right) \rightarrow \log (2+\sqrt{3})$ as $\left.g \rightarrow \infty\right)$

Minimal dilatation $\delta_{g, n}, g>1$
Theorem 5 (Tsai 2009). For any fixed $g>1, \log \delta_{g, n} \asymp \frac{\log n}{n}$.
\star This is in contrast with the cases $g=0,1$.
${ }^{\exists} c_{g}>0$ such that

$$
\frac{\log n}{c_{g} n}<\log \delta_{g, n}<\frac{c_{g} \log n}{n}\left(\Longleftrightarrow \frac{1}{c_{g}}<\frac{n \log \delta_{g, n}}{\log n}<c_{g}\right)
$$

\star What is the value of c_{g} ?
(Examples by Tsai)
Given $g \geq 2,{ }^{\exists}\left\{f_{g, n}: \Sigma_{g, n} \rightarrow \Sigma_{g, n}\right\}_{n \in \mathbb{N}}$ such that $\log \lambda\left(f_{g, n}\right) \asymp \frac{\log n}{n}$

$$
\lim _{n \rightarrow \infty} \frac{n \log \lambda\left(f_{g, n}\right)}{\log n}=2(2 g+1) .\left(\text { So } \limsup _{n \rightarrow \infty} \frac{n \log \delta_{g, n}}{\log n} \leq 2(2 g+1) .\right)
$$

See [KT0]

Thm A. [KT0] ${ }^{\exists} \infty$ ly many g 's such that if we fix such a g, then

$$
\limsup _{n \rightarrow \infty} \frac{n \log \delta_{g, n}}{\log n} \leq 2
$$

Thm B. [KT0] ${ }^{\forall} g \geq 2,{ }^{\exists}\left\{n_{i}\right\}_{i=0}^{\infty}$ with $n_{i} \rightarrow \infty$ such that

$$
\limsup _{i \rightarrow \infty} \frac{n_{i} \log \delta_{g, n_{i}}}{\log n_{i}} \leq 2
$$

Sketch of proof of Theorem B

(useful formula) Let $a=(x, y, z) \in \operatorname{int}\left(C_{\Delta}\right)$ be a primitive fibered class.
(1) $\|a\|=x+y-z$.
(2) the number of the boundary components of the mini. representative $F_{a}=F_{(x, y, z)}$ is equal to

$$
\operatorname{gcd}(x, y+z)+\operatorname{gcd}(y, z+x)+\operatorname{gcd}(z, x+y)
$$

(3) the dilatation $\lambda_{(x, y, z)}$ is the largest real root of

$$
f_{(x, y, z)}(t)=t^{x+y-z}-t^{x}-t^{y}-t^{x-z}-t^{y-z}+1 .
$$

- For $g \geq 2$ and $p \geq 0$, take a fibered class

$$
a_{(g, p)}=(p+g+1,2 p+1, p-g) \in \operatorname{int}\left(C_{\Delta}\right)
$$

If $a_{(g, p)}$ is primitive, then $F_{a_{(g, p)}} \simeq \Sigma_{g, 2 p+4}$.

- ${ }^{\forall} g \geq 2,{ }^{\exists}\left\{a_{\left(g, p_{i}\right)}\right\}_{i=0}^{\infty}$ such that $a_{\left(g, p_{i}\right)}$ is primitive, $p_{i} \rightarrow \infty$, and $\overline{a_{\left(g, p_{i}\right)}} \rightarrow(1 / 2,1,1 / 2) \in \partial \Delta$ as $i \rightarrow \infty$

The next proposition implies Theorem B.

Proposition 1.

$$
\lim _{i \rightarrow \infty} \frac{\left\|a_{\left(g, p_{i}\right)}\right\| \log \lambda\left(a_{\left(g, p_{i}\right)}\right)}{\log \left\|a_{\left(g, p_{i}\right)}\right\|}=2 .
$$

Remark. (Fried, S. Matsumoto, McMullen) Ω : a fibered face of a hyperbolic fibered 3-manifold.
(1) ent : $\operatorname{int}\left(C_{\Omega}(\mathbb{Z})\right) \rightarrow \mathbb{R}$ admits a continuous extension

$$
\text { ent }: \operatorname{int}\left(C_{\Omega}\right) \rightarrow \mathbb{R}
$$

(2) $\operatorname{Ent}(\cdot)=\|\cdot\| \operatorname{ent}(\cdot): \operatorname{int}\left(C_{\Omega}\right) \rightarrow \mathbb{R}$ is constant on each ray through 0 .
(3) ent $\left.\right|_{\operatorname{int}(\Omega)}: \operatorname{int}(\Omega) \rightarrow \mathbb{R}$ is strictly convex, and if $a \in \operatorname{int}(\Omega)$ goes to $\partial \Omega$, then $\operatorname{ent}(a) \rightarrow \infty$.

So, ent $\left.\right|_{\text {int }(\Omega)}$ has the minimum at a unique point.

Minimal dilatation $\delta_{1, n}$

$\star \log \delta_{1, n} \asymp 1 / n$ (Tsai)

Theorem 6 (KKT).

$$
\limsup _{n \rightarrow \infty}\left|\chi\left(\Sigma_{1, n}\right)\right| \log \delta_{1, n} \leq 2 \log \delta\left(D_{4}\right) \approx 1.6628
$$

\star We study the monodromies of fibrations of the whitehead link exterior $\simeq N(1)$. R.H.S is the minimum of ent $\left.\right|_{\operatorname{int}(\Omega)}$ for $N(1)$.

How can one get $\|\cdot\|$ and ent (\cdot) for the Dehn filling $N(r)$?

\star For the computation of the Thurston norm and the entropy function of $N(r)$, use a natural injection $\iota: H_{2}(N(r), \partial N(r)) \rightarrow H_{2}(N, \partial N(r))$ whose image is $\left.S(r):=\left\{(X, Y, Z) \in H_{2}(N, \partial N) \left\lvert\, r=\frac{Z+X}{-Y}\right.\right)\right\}$, see [KKT]

Minimal dilatation $\delta_{g}:=\delta_{g, 0}$
$\star \log \delta_{g} \asymp 1 / g$ (Penner 1991)
Theorem 7 (Hironaka, Aaber-Dunfield, KT1).

$$
\limsup _{g \rightarrow \infty}\left|\chi\left(\Sigma_{g, 0}\right)\right| \log \delta_{g} \leq 2 \log \left(\frac{3+\sqrt{5}}{2}\right)=2 \log \delta\left(D_{3}\right)
$$

\star Hironaka $\cdots N\left(\frac{1}{-2}\right) \simeq S^{3} \backslash \widehat{\sigma_{1} \sigma_{2}^{-1}}$
$\star \mathrm{AD}, \mathrm{KT} \cdots N\left(\frac{3}{-2}\right) \simeq S^{3} \backslash(-2,3,8)$-pretzel link
R.H.S is the minimum of ent $\left.\right|_{\text {int }(\Omega)}$ for both $N\left(\frac{1}{-2}\right)$ and $N\left(\frac{3}{-2}\right)$

Aside: infinitely many twins
$\star N\left(\frac{1}{-2}\right)$ and $N\left(\frac{3}{-2}\right)$ are twins. (They are entropy equivalent) Hyperbolic fibered 3-manifolds M and M^{\prime} are entropy equivalent \Longrightarrow the minimum of ent $\left.\right|_{\operatorname{int}(\Omega)}$ for M is equal to that for M^{\prime}.
$\star N(r)$ and $N(-r-2)$ are entropy equivalent for "almost all" $r \in \mathbb{Q}$, see [KKT]

Places where pseudo-Anosovs defined on $\Sigma_{g, n}$ with the smallest known dilatation live

(1) $\log \delta_{0, n} \asymp 1 / n$
(2) For any fixed $g \geq 2, \log \delta_{g, n} \asymp \frac{\log n}{n}$
(3) $\quad \log \delta_{1, n} \asymp 1 / n$.
(4) $\log \delta_{g} \asymp 1 / g$

Question 2. Let $f_{g, n}: \Sigma_{g, n} \rightarrow \Sigma_{g, n}$ be a pseudo-Anosov homeo. which achieves $\delta_{g, n}$. It is true that $\mathbb{T}\left(f_{g, n}\right) \simeq N$, or $\mathbb{T}\left(f_{g, n}\right)$ is the manifold obtained from N by Dehn filling cusps along a fiber of N ?

