Tangle sums and factorization of \boldsymbol{A}-polynomials

Masaharu ISHIKAWA

Tohoku University
RIMS Seminar in Hakone, 1 June 2012

PLAN OF THIS TALK

§1. Factorization of A-polynomials
§2. Alexander polynomials and epimorphisms
§3. Cyclic surgeries
§1. Factorization of \boldsymbol{A}-polynomials
K : a knot in S^{3}
M_{K} : the complement of K
$\imath^{*}: X\left(M_{K}\right) \rightarrow X\left(\partial M_{K}\right):$ induced by the $\imath_{\#}: \pi_{1}\left(\partial M_{K}\right) \rightarrow \pi_{1}\left(M_{K}\right)$
$\Lambda \subset R\left(\partial M_{K}\right):$ the set of diagonal representations of $\pi_{1}\left(\partial M_{K}\right)$
$\left.t\right|_{\Lambda}: \Lambda \rightarrow X\left(\partial M_{K}\right)$
$p: \Lambda \rightarrow \mathbb{C}^{*} \times \mathbb{C}^{*}$: taking the left-top entries of $\rho(\mu)$ and $\rho(\lambda)$
X_{1}, \cdots, X_{k} : irreducible components of $X\left(M_{K}\right)$

$$
X_{i} \xrightarrow{\imath^{*}} \imath^{*}\left(X_{i}\right) \xrightarrow{\text { alg. closure in } X\left(\partial M_{K}\right)} Y_{i} \xrightarrow{\left.p \cdot t\right|_{\Lambda} ^{-1}} D_{i}
$$

$A_{i}(L, M)$: the defining equation of D_{i}

Definition

The A-polynomial of a knot K is defined as

$$
A_{K}(L, M)=\prod_{i=1}^{k} A_{i}(L, M)
$$

\leftrightarrow D :\# Yahoo! Japan Gmail Tohoku Univ. asahi.com YouTube

Table of Knot Invariants

Please Cite Knotlnfo	Knot Atlas					Knot Theory Lirks
Knot Thoory Calculators	Unknown Valucs (last updated: 06 Feb 2009)					

Build a Knot Table. Welcome to Knotlifo. Check the desired boxes in the sections below and then click SUBMIT on the page to produce your desired table of knots. If you do not know the name of a particular knot you are interested in, KnotFinder can help you.

Preferences (Select invariants to hide.)
New advanced search feature is now available! [Advanced Search]
Select knots you want tabulated. [Advanced Search]
Specify crossing numbers. The letters a and n designate alternating and nonalternating knots. 12 crossing knots are grouped.

$\square 3-6$	$\square 7$	\square	$\square 9$	$\square 10$
$\square 11 \mathrm{a}$	$\square 11 \mathrm{n}$	$\square 12 \mathrm{a}(1-200)$	$-12 \mathrm{a}(201-400)$	$\square 12 \mathrm{a}(401-600)$
$-12 \mathrm{a}(601-800)$	$\square 12 \mathrm{a}(801-1000)$	$\square 12 \mathrm{a}(1001-1200)$	$\square 12 \mathrm{n}(1-200)$	
$-12 \mathrm{n}(201-400)$	$\square 12 \mathrm{n}(401-600)$	$\square 12 \mathrm{n}(601-800)$	$-12 \mathrm{n}(801-888)$	

Names and descriptions. Please select the naming and notational descriptions desired. Names are linked to diagrams.

000
 The A-Polynomial

Knot Table: A-Polynomial
Џ http://www.indiana.edu/~knotinfo/descriptions/a_polynomial.hti C Q. Google \leftrightarrow [I] Yahoo! Japan Gmail Tohoku Univ. asahi.com YouTube

For more information about the A-poynomial we have posted a pdf version of a seminar presentation given by Marc Culler. The original source for the A-polynomial is the paper by Cooper, Culler, Gillet, Long, and P. Shalen, referenced below. We thank Abhijit Champanerkar for helping with the exposition on this page.

There is a map of the $\mathrm{SL}_{2}(\mathbf{C})$ representation space of a knot complement to $\mathbf{C}^{*} \times \mathbf{C}^{*}$, given by evaluating the trace of the representation on the meridian and longitude. The closure of the image is a variety defined by a single polynomial, called the A-Polynomial. Jim Hoste gave us information on 2-bridge knots and Marc Culler provided us with further tables, based on glueing equations. These have not been proved to equal the A-polynomial; the issue is described next.

The set of isometry classes of ideal hyperbolic tetrahedra is paramaterized by the upper half complex plane. Thus, if the complement of a knot is decomposed into tetrahedra, the set of glueings that yield hyperbolic structures on the knot complement is determined by the solutions to glueing equations. The set of glueing equations defines an algebraic variety that maps to the $\mathrm{PSL}_{2}(\mathbf{C})$ character variety of the knot. To the image variety there is associated an "A-polynomial", which is the $\mathrm{PSL}_{2}(\mathbf{C})$ version of the classical A-polynomial. In many cases the $\mathrm{PSL}_{2}(\mathbf{C}) \mathrm{A}$-polynomial can be computed directly from the glueing and completeness equations by eliminating the tetrahedral parameters to get a 2 -variable polynomial. However, the resulting polynomial depends on the choice of the triangulation and in general only divides the $\mathrm{PSL}_{2}(\mathrm{C}) \mathrm{A}-$ polynomial. For an exposition of this alternative viewpoint of A-polynomials, see the appendix by N. Dunfield to Mahler's Measure and the Dilogarithm by Boyd, Rodrigues-Villegas, and Dunfield or "A-polynomial and Bloch invariants of hyperbolic 3-manifolds" by A. Champanerkar.

We have provided three tables of A-polynomials, all linked in Table of A-Polynomials: two-bridge knots. Jim Hoste has provided us with this table of values for 2-bridge knots of 9 crossings or less.

Table of A-Polynomials (Glueing equations approach). This data, based on glueing equaitons, was provided by Marc Culler.
Table of A-Polynomial: tetrahedral census (Glueing equations approach). This table, also provided by Marc Culler, lists the A-polynomials of knots in the tetrahedral enumeration. There is an overlap in the two tables. Warning: in the overlap, orientations changed for some knots, so one polynomial is related to the other by a change of variable (something like L -> L^{-1}).

Warning: a change of orientation, from a knot to its mirror image, changes the A-polynomial. The data in our tables has not be checked for its match to the choice of orientation in our diagrams. Also, the A-polynomial can be defined so that repeated factors are significant. In our table repeated factors have been removed.
\leftrightarrow [A : Yahoo! Japan Gmail Tohoku Univ. asahi.com YouTube

A-Polynomials-gluing Equations

This list of A-polynomials was compiled by Marc Culler. For a table using the labelings of the tetrahedral enumeration, go to A-Polynomials: tetrahedral enumeration, and for one produced by Jim Hoste for two-bridge knots, visit A-polynomials: two bridge enumeration.

Warning: See the description section for the A-polynomial for details regarding the various defintions of the A-polynomial, and possible distinctions between them.a change of orientation, from a knot to its mirror image, changes the A-polynomial. The data in our tables has not be checked for its match to the choice of orientation in our diagrams. Also, the A-polynomial can be defined so that repeated factors are significant. In our tables all repeated factors have been removed.

A_L103001: $=\left(1^{*} \mathrm{M}^{\wedge} 6\right)+\left(\mathrm{L}^{\wedge} 1\right)^{*}(1)$;
A_L104001: $=\left(1^{*} \mathrm{M}^{\wedge} 4\right)+\left(\mathrm{L}^{\wedge} 1\right)^{*}\left(-1+1^{*} \mathrm{M}^{\wedge} 2+2^{*} \mathrm{M}^{\wedge} 4+1^{*} \mathrm{M}^{\wedge} 6-1^{*} \mathrm{M}^{\wedge} 8\right)+\left(\mathrm{L}^{\wedge} 2\right)^{*}\left(1^{*} \mathrm{M}^{\wedge} 4\right) ;$
A_L105001: $=\left(1^{*} \mathrm{M}^{\wedge} 10\right)+\left(\mathrm{L}^{\wedge} 1\right)^{*}(1)$;
A $_$L105002: $=(1)+\left(L^{\wedge} 1\right)^{*}\left(-1+2^{*} \mathrm{M}^{\wedge} 2+2^{*} \mathrm{M}^{\wedge} 4-1^{*} \mathrm{M}^{\wedge} 8+1^{*} \mathrm{M}^{\wedge} 10\right)+\left(\mathrm{L}^{\wedge} 2\right)^{*}\left(1^{*} \mathrm{M}^{\wedge} 4-1^{*} \mathrm{M}^{\wedge} 6+2^{*} \mathrm{M}^{\wedge} 10+2^{*} \mathrm{M}^{\wedge} 12-1^{*} \mathrm{M}^{\wedge} 14\right)+\left(\mathrm{L}^{\wedge} 3\right)^{*}\left(1^{*} \mathrm{M}^{\wedge} 14\right) ;$
A_L106001: $=\left(1^{*} \mathrm{M}^{\wedge} 8\right)+\left(\mathrm{L}^{\wedge} 1\right)^{*}\left(-2^{*} \mathrm{M}^{\wedge} 4+3^{*} \mathrm{M}^{\wedge} 6+3^{*} \mathrm{M}^{\wedge} 8+1^{*} \mathrm{M}^{\wedge} 14-1^{*} \mathrm{M}^{\wedge} 16\right)+\left(\mathrm{L}^{\wedge} 2\right)^{*}\left(1-3^{*} \mathrm{M}^{\wedge} 2-1^{*} \mathrm{M}^{\wedge} 4+3^{*} \mathrm{M}^{\wedge} 6+6^{*} \mathrm{M}^{\wedge} 8+3^{*} \mathrm{M}^{\wedge} 10-1^{*} \mathrm{M}^{\wedge} 12-3^{*} \mathrm{M}^{\wedge} 14\right.$ $\left.+1^{*} \mathrm{M}^{\wedge} 16\right)+\left(\mathrm{L}^{\wedge} 3\right)^{*}\left(-1+1^{*} \mathrm{M}^{\wedge} 2+3^{*} \mathrm{M}^{\wedge} 8+3^{*} \mathrm{M}^{\wedge} 10-2^{*} \mathrm{M}^{\wedge} 12\right)+\left(\mathrm{L}^{\wedge} 4\right)^{*}\left(1^{*} \mathrm{M}^{\wedge} 8\right) ;$

A_L106002: $=\left(1^{*} \mathrm{M}^{\wedge} 4\right)+\left(\mathrm{L}^{\wedge} 1\right)^{*}\left(-1+2^{*} \mathrm{M}^{\wedge} 2-1^{*} \mathrm{M}^{\wedge} 4-2^{*} \mathrm{M}^{\wedge} 6+5^{*} \mathrm{M}^{\wedge} 8+5^{*} \mathrm{M}^{\wedge} 10-3^{*} \mathrm{M}^{\wedge} 12\right)+\left(\mathrm{L}^{\wedge} 2\right)^{*}\left(-1^{*} \mathrm{M}^{\wedge} 2+3^{*} \mathrm{M}^{\wedge} 4-1^{*} \mathrm{M}^{\wedge} 6-5^{*} \mathrm{M}^{\wedge} 8-3^{*} \mathrm{M}^{\wedge} 10+12^{*} \mathrm{M}^{\wedge} 12\right.$ $\left.+13^{*} \mathrm{M}^{\wedge} 14-3^{*} \mathrm{M}^{\wedge} 16-8^{*} \mathrm{M}^{\wedge} 18+3^{*} \mathrm{M}^{\wedge} 20\right)+\left(\mathrm{L}^{\wedge} 3\right)^{*}\left(3^{*} \mathrm{M}^{\wedge} 10-8^{*} \mathrm{M}^{\wedge} 12-3^{*} \mathrm{M}^{\wedge} 14+13^{*} \mathrm{M}^{\wedge} 16+12^{*} \mathrm{M}^{\wedge} 18-3^{*} \mathrm{M}^{\wedge} 20-5^{*} \mathrm{M}^{\wedge} 22-1^{*} \mathrm{M}^{\wedge} 24+3^{*} \mathrm{M}^{\wedge} 26-1^{*} \mathrm{M}^{\wedge} 28\right)+$ $\left(\mathrm{L}^{\wedge} 4\right)^{*}\left(-3^{*} \mathrm{M}^{\wedge} 18+5^{*} \mathrm{M}^{\wedge} 20+5^{*} \mathrm{M}^{\wedge} 22-2^{*} \mathrm{M}^{\wedge} 24-1^{*} \mathrm{M}^{\wedge} 26+2^{*} \mathrm{M}^{\wedge} 28-1^{*} \mathrm{M}^{\wedge} 30\right)+\left(\mathrm{L}^{\wedge} 5\right)^{*}\left(1^{*} \mathrm{M}^{\wedge} 26\right)$;

A_L106003: $=\left(1^{*} \mathrm{M}^{\wedge} 14\right)+\left(\mathrm{L}^{\wedge} 1\right)^{*}\left(2^{*} \mathrm{M}^{\wedge} 8-5 * \mathrm{M}^{\wedge} 10+1^{*} \mathrm{M}^{\wedge} 12+10^{*} \mathrm{M}^{\wedge} 14+1^{*} \mathrm{M}^{\wedge} 16-5 * \mathrm{M}^{\wedge} 18+2^{*} \mathrm{M}^{\wedge} 20\right)+\left(\mathrm{L}^{\wedge} 2\right)^{*}\left(1^{*} \mathrm{M}^{\wedge} 2-4^{*} \mathrm{M}^{\wedge} 4+4^{*} \mathrm{M}^{\wedge} 6+2^{*} \mathrm{M}^{\wedge} 8-\right.$ $\left.6^{*} \mathrm{M}^{\wedge} 10+2^{*} \mathrm{M}^{\wedge} 12+17^{*} \mathrm{M}^{\wedge} 14+2^{*} \mathrm{M}^{\wedge} 16-6^{*} \mathrm{M}^{\wedge} 18+2^{*} \mathrm{M}^{\wedge} 20+4^{*} \mathrm{M}^{\wedge} 22-4^{*} \mathrm{M}^{\wedge} 24+1^{*} \mathrm{M}^{\wedge} 26\right)+\left(\mathrm{L}^{\wedge} 3\right)^{*}\left(1-5^{*} \mathrm{M}^{\wedge}{ }^{\wedge}+3^{*} \mathrm{M}^{\wedge} 4+9^{*} \mathrm{M}^{\wedge} 6-2^{*} \mathrm{M}^{\wedge} 8-21^{*} \mathrm{M}^{\wedge} 10+\right.$ $\left.8^{*} \mathrm{M}^{\wedge} 12+34^{*} \mathrm{M}^{\wedge} 14+8^{*} \mathrm{M}^{\wedge} 16-21^{*} \mathrm{M}^{\wedge} 18-2^{*} \mathrm{M}^{\wedge} 20+9^{*} \mathrm{M}^{\wedge} 22+3^{*} \mathrm{M}^{\wedge} 24-5^{*} \mathrm{M}^{\wedge} 26+1^{*} \mathrm{M}^{\wedge} 28\right)+\left(\mathrm{L}^{\wedge} 4\right)^{*}\left(1^{*} \mathrm{M}^{\wedge} 2-4^{*} \mathrm{M}^{\wedge} 4+4^{*} \mathrm{M}^{\wedge} 6+2^{*} \mathrm{M}^{\wedge} 8-6^{*} \mathrm{M}^{\wedge} 10+\right.$ $\left.2^{*} \mathrm{M}^{\wedge} 12+17^{*} \mathrm{M}^{\wedge} 14+2^{*} \mathrm{M}^{\wedge} 16-6^{*} \mathrm{M}^{\wedge} 18+2^{*} \mathrm{M}^{\wedge} 20+4^{*} \mathrm{M}^{\wedge} 22-4^{*} \mathrm{M}^{\wedge} 24+1^{*} \mathrm{M}^{\wedge} 26\right)+\left(\mathrm{L}^{\wedge} 5\right)^{*}\left(2^{*} \mathrm{M}^{\wedge} 8-5^{*} \mathrm{M}^{\wedge} 10+1^{*} \mathrm{M}^{\wedge} 12+10^{*} \mathrm{M}^{\wedge} 14+1^{*} \mathrm{M}^{\wedge} 16-5^{*} \mathrm{M}^{\wedge} 18+\right.$ $\left.2^{*} \mathrm{M}^{\wedge} 20\right)+\left(\mathrm{L}^{\wedge} 6\right)^{*}\left(1^{*} \mathrm{M}^{\wedge} 14\right)$;

A_L107001: $=\left(1^{*}\right.$ M $\left.^{\wedge} 14\right)+\left(L^{\wedge} 1\right)^{*}(1) ;$
A_L107002: $=\left(1^{*} \mathrm{M}^{\wedge} 22\right)+\left(\mathrm{L}^{\wedge} 1\right)^{*}\left(1^{*} \mathrm{M}^{\wedge} 8-1^{*} \mathrm{M}^{\wedge} 10+3^{*} \mathrm{M}^{\wedge} 18+4^{*} \mathrm{M}^{\wedge} 20-2^{*} \mathrm{M}^{\wedge} 22\right)+\left(\mathrm{L}^{\wedge} 2\right)^{*}\left(-2^{*} \mathrm{M}^{\wedge} 4+5^{*} \mathrm{M}^{\wedge} 6+1^{*} \mathrm{M}^{\wedge} 8-4^{*} \mathrm{M}^{\wedge} 10+6^{*} \mathrm{M}^{\wedge} 14+5^{*} \mathrm{M}^{\wedge} 16+\right.$ $\left.2^{*} \mathrm{M}^{\wedge} 18-4^{*} \mathrm{M}^{\wedge} 20+1^{*} \mathrm{M}^{\wedge} 22\right)+\left(\mathrm{L}^{\wedge} 3\right)^{*}\left(1-4^{*} \mathrm{M}^{\wedge} 2+2^{*} \mathrm{M}^{\wedge} 4+5^{*} \mathrm{M}^{\wedge} 6+6^{*} \mathrm{M}^{\wedge} 8-4^{*} \mathrm{M}^{\wedge} 12+1^{*} \mathrm{M}^{\wedge} 14+5^{*} \mathrm{M}^{\wedge} 16-2^{*} \mathrm{M}^{\wedge} 18\right)+\left(\mathrm{L}^{\wedge} 4\right)^{*}\left(-2+4^{*} \mathrm{M}^{\wedge} 2+3^{*} \mathrm{M}^{\wedge} 4-\right.$ $\left.1^{*} \mathrm{M}^{\wedge} 12+1^{*} \mathrm{M}^{\wedge} 14\right)+\left(\mathrm{L}^{\wedge} 5\right)^{*}(1)$;

A_L107003: $=\left(1^{*} \mathrm{M}^{\wedge} 52\right)+\left(\mathrm{L}^{\wedge} 1\right)^{*}\left(2^{*} \mathrm{M}^{\wedge} 38-3^{*} \mathrm{M}^{\wedge} 40+2^{*} \mathrm{M}^{\wedge} 42+5^{*} \mathrm{M}^{\wedge} 44-1^{*} \mathrm{M}^{\wedge} 48+2^{*} \mathrm{M}^{\wedge} 50-1^{*} \mathrm{M}^{\wedge} 52\right)+\left(\mathrm{L}^{\wedge}\right)^{*}\left(1^{*} \mathrm{M}^{\wedge} 24-3^{*} \mathrm{M}^{\wedge} 26+3^{*} \mathrm{M}^{\wedge} 28+2^{*} \mathrm{M}^{\wedge} 30+\right.$


```
\Maple 7 - [Untitled (1) - [Server 1]]
$. File Edit View Insert Format Spreadsheet Options Window Help
A_L104001 := (1*M^4) + (L^1)*(-1 + 1*M^2 + 2*M^4 + 1*M^6 - 1*M^8) + (L^2)*(1*M^4);
                        A_L104001:= M}\mp@subsup{M}{}{4}+L(-1+\mp@subsup{M}{}{2}+2M\mp@subsup{M}{}{4}+\mp@subsup{M}{}{6}-\mp@subsup{M}{}{8})+\mp@subsup{L}{}{2}\mp@subsup{M}{}{4

\begin{tabular}{|l|l|l|l|l|}
\hline \(\mathbf{x}\) & 退 & \((\sqrt{\prime})\) & \(!\) & \(!!!\) \\
\hline
\end{tabular}
[ \(>\)
\([>\)
> A_L104001 := (1*M^4) + (L^1)*(-1 + 1*M^2 + 2*M^4 + 1*M^6 - 1*M^8) + (L^2)*(1*M^4);
A_L104001: \(=M^{4}+L\left(-1+M^{2}+2 M^{4}+M^{6}-M^{8}\right)+L^{2} M^{4}\)
[>
\(A L 109024:=\left(1 * M^{\wedge} 54\right)+\left(L^{\wedge} 1\right) *\left(3 * M^{\wedge} 44-13 * M^{\wedge} 46+33 * M^{\wedge} 48-33 * M^{\wedge} 50-24 * M^{\wedge} 52+78 * M^{\wedge} 54-15 * M^{\wedge} 56\right.\) \(\left.D 5 * M^{\wedge} 58+20 * M^{\wedge} 60-5 * M^{\wedge} 62\right)+\left(L^{\wedge} 2\right) *\left(3 * M^{\wedge} 34-24 * M^{\wedge} 36+91 * M^{\wedge} 38-199 * M^{\wedge} 40+245 * M^{\wedge} 42-101 * M^{\wedge} 44\right.\) \(289 * M^{\wedge} 46+897 * M^{\wedge} 48-842 * M^{\wedge} 50-674 * M^{\wedge} 52+1835 * M^{\wedge} 54-543 * M^{\wedge} 56-907 * M^{\wedge} 58+1030 * M^{\wedge} 60-252 * M^{\wedge} 62\) \(\left.-273 * \mathrm{M}^{\wedge} 64+243 * \mathrm{M}^{\wedge} 66-79 * \mathrm{M}^{\wedge} 68+10 * \mathrm{M}^{\wedge} 70\right)+\left(\mathrm{L}^{\wedge} 3\right) *\left(1 * \mathrm{M}^{\wedge} 24-11 * \mathrm{M}^{\wedge} 26+59 * \mathrm{M}^{\wedge} 28-203 * \mathrm{M}^{\wedge} 30+\right.\) \(497 * \mathrm{M}^{\wedge} 32-935 * \mathrm{M}^{\wedge} 34+1234 * \mathrm{M}^{\wedge} 36-422 * \mathrm{M}^{\wedge} 38-2535 * \mathrm{M}^{\wedge} 40+6387 * \mathrm{M}^{\wedge} 42-5619 * \mathrm{M}^{\wedge} 44-5847 * \mathrm{M}^{\wedge} 46+\) \(19995 * M^{\wedge} 48-11757 * M^{\wedge} 50-18196 * M^{\wedge} 52+27784 * M^{\wedge} 54-2217 * M^{\wedge} 56-18376 * M^{\wedge} 58+15158 * M^{\wedge} 60-667 * M^{\wedge} 62\) \(\left.-7947 * M^{\wedge} 64+6383 * M^{\wedge} 66-1259 * M^{\wedge} 68-1487 * M^{\wedge} 70+1410 * M^{\wedge} 72-567 * M^{\wedge} 74+116 * M^{\wedge} 76-10 * M^{\wedge} 78\right)+\) \(\left(L^{\wedge} 4\right) *\left(2 * M^{\wedge} 18-28 * M^{\wedge} 20+186 * M^{\wedge} 22-755 * M^{\wedge} 24+1969 * M^{\wedge} 26-3132 * M^{\wedge} 28+2018 * M^{\wedge} 30+3102 * M^{\wedge} 32-\right.\) \(9493 * M^{\wedge} 34+11065 * M^{\wedge} 36-5142 * M^{\wedge} 38-12302 * M^{\wedge} 40+46515 * M^{\wedge} 42-55362 * M^{\wedge} 44-34299 * M^{\wedge} 46+\) \(147946 * M^{\wedge} 48-82077 * M^{\wedge} 50-124349 * M^{\wedge} 52+186668 * M^{\wedge} 54-30947 * M^{\wedge} 56-132273 * M^{\wedge} 58+146652 * M^{\wedge} 60\) \(13022 * M^{\wedge} 62-101277 * M^{\wedge} 64+77765 * M^{\wedge} 66+4801 * M^{\wedge} 68-39260 * M^{\wedge} 70+23857 * M^{\wedge} 72-2320 * M^{\wedge} 74-5823 * M^{\wedge} 76\) \(\left.+4758 * M^{\wedge} 78-2012 * M^{\wedge} 80+516 * M^{\wedge} 82-76 * M^{\wedge} 84+5 * M^{\wedge} 86\right)+\left(L^{\wedge} 5\right) *\left(1 * M^{\wedge} 12-19 * M^{\wedge} 14+178 * M^{\wedge} 16\right.\) \(1015 * \mathrm{M}^{\wedge} 18+3694 * \mathrm{M}^{\wedge} 20-8162 * \mathrm{M}^{\wedge} 22+7635 * \mathrm{M}^{\wedge} 24+11406 * \mathrm{M}^{\wedge} 26-43599 * \mathrm{M}^{\wedge} 28+32973 * \mathrm{M}^{\wedge} 30+67477 * \mathrm{M}^{\wedge} 32\) \(147093 * \mathrm{M}^{\wedge} 34+5587 * \mathrm{M}^{\wedge} 36+247428 * \mathrm{M}^{\wedge} 38-165305 * \mathrm{M}^{\wedge} 40-270074 * \mathrm{M}^{\wedge} 42+331996 * \mathrm{M}^{\wedge} 44+281141 * \mathrm{M}^{\wedge} 46\) \(543051 * M^{\wedge} \wedge 8-317374 * M^{\wedge} 50+926222 * M^{\wedge} 52+186813 * M^{\wedge} 54-1321177 * M^{\wedge} 56+270071 * M^{\wedge} 58+1288151 * M^{\wedge} 60\) \(733456 * M^{\wedge} 62-695881 * M^{\wedge} 64+775723 *\) M \(^{\wedge} 66+38320 * M^{\wedge} 68-402955 * M^{\wedge} 70+200725 * M^{\wedge} 72+46685 * M^{\wedge} 74\) \(105368 * M^{\wedge} 76+52111 * M^{\wedge} 78-460 * M^{\wedge} 80-15048 * M^{\wedge} 82+10608 * M^{\wedge} 84-4205 * M^{\wedge} 86+1095 * M^{\wedge} 88-189 * M^{\wedge} 90+\) \(\left.20 * M^{\wedge} 92-1 * M^{\wedge} 94\right)+\left(L^{\wedge} 6\right) *\left(-3 * M^{\wedge} 8+56 * M^{\wedge} 10-488 * M^{\wedge} 12+2522 * M^{\wedge} 14-8112 * M^{\wedge} 16+14786 * M^{\wedge} 18\right.\) \(5515 * M^{\wedge} 20-41612 * M^{\wedge} 22+91245 * M^{\wedge} 24-10726 * M^{\wedge} 26-245488 * M^{\wedge} 28+329170 * M^{\wedge} 30+213227 * M^{\wedge} 32\) \(906741 * M^{\wedge} 34+353261 * M^{\wedge} 36+1398486 * M^{\wedge} 38-1517702 * M^{\wedge} 40-1384323 * M^{\wedge} 42+2879991 * M^{\wedge} 44+848225 * M^{\wedge} 46\) \(-3972796 * M^{\wedge} 48-49986 * M^{\wedge} 50+4512594 * M^{\wedge} 52-894885 * M^{\wedge} 54-4159096 * M^{\wedge} 56+1877235 * M^{\wedge} 58+\) \(2712789 * M^{\wedge} 60-2361986 * M^{\wedge} 62-601374 * M^{\wedge} 64+1881180 * M^{\wedge} 66-948938 * M^{\wedge} 68-733330 * M^{\wedge} 70+1214651 * M^{\wedge} 72\) \(-201354 * M^{\wedge} 74-623707 * M^{\wedge} 76+412621 * M^{\wedge} 78+72895 * M^{\wedge} 80-192791 * M^{\wedge} 82+77022 * M^{\wedge} 84+12136 * M^{\wedge} 86\) \(\left.26750 * M^{\wedge} 88+14815 * \mathrm{M}^{\wedge} 90-5124 * \mathrm{M}^{\wedge} 92+1237 * \mathrm{M}^{\wedge} 94-205 * \mathrm{M}^{\wedge} 96+21 * \mathrm{M}^{\wedge} 98-1 * \mathrm{M}^{\wedge} 100\right)+\left(\mathrm{L}^{\wedge} 7\right) *\left(3 * \mathrm{M}^{\wedge} 4\right.\) \(59 * M^{\wedge} 6+521 * M^{\wedge} 8-2662 * M^{\wedge} 10+8327 * M^{\wedge} 12-14504 * M^{\wedge} 14+4332 * M^{\wedge} 16+40110 * M^{\wedge} 18-78968 * M^{\wedge} 20\) \(8053 * \mathrm{M}^{\wedge} 22+239382 * \mathrm{M}^{\wedge} 24-282143 * \mathrm{M}^{\wedge} 26-250368 * \mathrm{M}^{\wedge} 28+890978 * \mathrm{M}^{\wedge} 30-321216 * \mathrm{M}^{\wedge} 32-1476912 * \mathrm{M}^{\wedge} 34+\) \(1740481 * M^{\wedge} 36+1272328 * M^{\wedge} 38-3471079 * M^{\wedge} 40+198703 * M^{\wedge} 42+4313576 * M^{\wedge} 44-2532416 * M^{\wedge} 46\) \(3362836 * M^{\wedge} 48+4769453 * M^{\wedge} 50+768458 * M^{\wedge} 52-6205978 * M^{\wedge} 54+2578526 * M^{\wedge} 56+6623661 * M^{\wedge} 58-\) \(5661932 * \mathrm{M}^{\wedge} 60-5627333 * \mathrm{M}^{\wedge} 62+7525636 * \mathrm{M}^{\wedge} 64+3302892 * \mathrm{M}^{\wedge} 66-7290352 * \mathrm{M}^{\wedge} 68-541914 * \mathrm{M}^{\wedge} 70+\) \(5084759 * \mathrm{M}^{\wedge} 72-1219685 * \mathrm{M}^{\wedge} 74-2320862 * \mathrm{M}^{\wedge} 76+1427687 * \mathrm{M}^{\wedge} 78+433771 * \mathrm{M}^{\wedge} 80-757899 * \mathrm{M}^{\wedge} 82+207119 * \mathrm{M}^{\wedge} 84\) \(+156810 * M^{\wedge} 86-157343 * M^{\wedge} 88+41733 * M^{\wedge} 90+22526 * M^{\wedge} 92-26413 * M^{\wedge} 94+12540 * M^{\wedge} 96-3567 * M^{\wedge} 98+\) \(\left.632 * M^{\wedge} 100-65 * M^{\wedge} 102+3 * M^{\wedge} 104\right)+\left(L^{\wedge} 8\right) *\left(-1+20 * M^{\wedge} 2-181 * M^{\wedge} 4+974 * M^{\wedge} 6-3420 * M^{\wedge} 8+7898 * M^{\wedge} 10-\right.\) \(10423 * M^{\wedge} 12-55 * M^{\wedge} 14+30410 * M^{\wedge} 16-48571 * M^{\wedge} 18-29475 * M^{\wedge} 20+207746 * M^{\wedge} 22-184259 * M^{\wedge} 24\) \(382260 * M^{\wedge} 26+868332 * M^{\wedge} 28+176198 * M^{\wedge} 30-2166851 * M^{\wedge} 32+1301637 * M^{\wedge} 34+3518027 * M^{\wedge} 36-4949815 * M^{\wedge} 38\) \(-3579780 * M^{\wedge} 40+10838404 * M^{\wedge} 42+1102322 * M^{\wedge} 44-17664776 * M^{\wedge} 46+3673531 * M^{\wedge} 48+23250770 * M^{\wedge} 50-\) \(8795064 * M^{\wedge} 52-25668578 * M^{\wedge} 54+12216889 * M^{\wedge} 56+23975844 * M^{\wedge} 58-13018204 * M^{\wedge} 60-18416468 * M^{\wedge} 62+\) \(11731741 * M^{\wedge} 64+10771196 * M^{\wedge} 66-8843572 * M^{\wedge} 68-3701319 * M^{\wedge} 70+5118642 * M^{\wedge} 72-611534 * M^{\wedge} 74\)

\section*{}

区围（n）！！！！
\[
\begin{aligned}
& \left.+1969 M^{00}-755 M^{00}+186 M^{26}-28 M^{39}+2 M^{00}\right)+L^{10}\left(15158 M^{40}-1487 M^{49}-1259 M^{40}+6383 M^{40}-7947 M^{00}\right. \\
& -667 M^{52}-18376 M^{56}-2217 M^{58}+27784 M^{60}-18196 M^{62}-10 M^{36}+116 M^{38}-567 M^{40}+1410 M^{42}-11757 M^{64} \\
& +19995 M^{66}-5847 M^{68}-5619 M^{70}+6387 M^{72}-2535 M^{74}-422 M^{76}+1234 M^{78}-935 M^{80}+497 M^{82}-203 M^{84}+59 M^{86} \\
& \left.-11 M^{88}+M^{90}\right)+L^{17}\left(10 M^{44}-79 M^{46}+243 M^{48}-273 M^{50}-252 M^{52}+1030 M^{54}-907 M^{56}-543 M^{58}+1835 M^{60}\right. \\
& \left.-674 M^{62}-842 M^{64}+897 M^{66}-289 M^{68}-101 M^{70}+245 M^{72}-199 M^{74}+91 M^{76}-24 M^{78}+3 M^{80}\right) \\
& +L^{18}\left(-5 M^{52}+20 M^{54}-25 M^{56}-15 M^{58}+78 M^{60}-24 M^{62}-33 M^{64}+33 M^{66}-13 M^{68}+3 M^{70}\right)+L^{19} M^{60}
\end{aligned}
\]
[> factor(A_L109024);
\(-\left(-L^{2} M^{4}+L-M^{2} L-2 M^{4} L-M^{4}-M^{6} L+M^{8} L\right)\left(91 L^{2} M^{34}-11 L^{3} M^{22}+L^{5} M^{8}+38225 L^{9} M^{84}+11260 L^{9} M^{12}\right.\)
\[
-163416 L^{9} M^{86}-2546365 L^{9} M^{72}+1180137 L^{9} M^{76}+919361 L^{9} M^{74}+381620 L^{6} M^{54}-324 L^{6} M^{8}-226162 L^{9} M^{22}
\]
\[
+399147 L^{9} M^{82}-372070 L^{9} M^{80}-2 L^{6} M^{4}+10 L^{15} M^{40}-723 L^{15} M^{60}+854 L^{15} M^{62}-24 L^{2} M^{32}-25 L M^{48}
\]
\[
-27 L^{4} M^{16}-L^{5} M^{90}-4643448 L^{9} M^{56}+5742849 L^{9} M^{60}+101956 L^{9} M^{58}-743671 L^{12} M^{48}+479673 L^{12} M^{52}
\]
\[
+1013983 L^{12} M^{50}+38705 L^{8} M^{16}-36729 L^{8} M^{90}+65056 L^{8} M^{88}-285561 L^{9} M^{48}+2574796 L^{9} M^{52}+289729 L^{9} M^{50}
\]
\[
+238 L^{15} M^{44}-568 L^{15} M^{54}-283959 L^{6} M^{58}-28380 L^{6} M^{62}+1421081 L^{6} M^{60}+76 L M^{50}-1035745 L^{6} M^{44}
\]
\[
+614294 L^{6} M^{48}+147612 L^{6} M^{46}+20 L M^{56}-231924 L^{9} M^{54}-117297 L^{9} M^{46}-1459341 L^{9} M^{44}-13 L M^{42}
\]
\[
-2590 L^{8} M^{92}+7743 L^{8} M^{10}+11260 L^{8} M^{94}-5504707 L^{9} M^{64}+4203183 L^{9} M^{68}+508221 L^{9} M^{66}-792 L^{15} M^{52}
\]
\[
-651 L^{15} M^{58}+1667 L^{15} M^{56}+38 L^{6} M^{6}-32 L M^{46}-196 L^{2} M^{36}-17 L^{5} M^{10}-850218 L^{9} M^{70}+439896 L^{9} M^{26}
\]
\[
+132933 L^{9} M^{24}-5 L M^{58}-707007 L^{9} M^{78}+32205 L^{9} M^{20}+65056 L^{9} M^{18}+33 L M^{44}+26 L^{9} M^{4}+1699 L^{9} M^{8}-L^{9} M^{2}
\]
\[
-165867 L^{9} M^{62}-2065094 L^{9} M^{36}+431569 L^{9} M^{34}+229 L^{2} M^{38}+26 L^{8} M^{102}-L^{8} M^{104}-79 L^{15} M^{42}-61 L^{15} M^{66}
\]
\[
-331 L^{15} M^{64}-594897 L^{9} M^{28}+1343929 L^{9} M^{32}-556611 L^{9} M^{30}+2 L^{4} M^{14}-24 L M^{54}-323127 L^{6} M^{50}
\]
\[
-866134 L^{6} M^{56}+101394 L^{6} M^{52}-16 L M^{52}-61 L^{2} M^{40}-19 M^{2} L^{7}-5997 L^{8} M^{96}-283 L^{8} M^{100}+1699 L^{8} M^{98}
\]
\[
-283 L^{9} M^{6}-1240986 L^{12} M^{54}-445954 L^{12} M^{46}+652324 L^{12} M^{44}-248 L^{15} M^{46}+1003 L^{15} M^{50}-286 L^{15} M^{48}
\]
\[
+3 L M^{40}+L^{3} M^{20}+3 L^{2} M^{30}-147934 L^{9} M^{38}-362 L^{9} M^{42}+2235115 L^{9} M^{40}+M^{50}-331 L^{2} M^{42}+854 L^{2} M^{44}
\]
\[
-723 L^{2} M^{46}-651 L^{2} M^{48}+1667 L^{2} M^{50}-568 L^{2} M^{52}-792 L^{2} M^{54}+1003 L^{2} M^{56}-286 L^{2} M^{58}-248 L^{2} M^{60}
\]

\section*{}
x|围 (n)! ! ! !
\[
\begin{aligned}
& -45 M^{30}+125 M^{32}-104 M^{34}-235 M^{36}+683 M^{38}-491 M^{40}-649 M^{42}+1321 M^{44}-159 M^{46}-787 M^{48}+523 M^{50} \\
& \left.-148 M^{52}-57 M^{54}+198 M^{56}-181 M^{58}+86 M^{60}-24 M^{62}+3 M^{64}\right) \\
& +L^{13}\left(-4 M^{36}+15 M^{38}-15 M^{40}-28 M^{42}+73 M^{44}-10 M^{46}-41 M^{48}+33 M^{50}-14 M^{52}+3 M^{54}\right)+L^{14} M^{44}
\end{aligned}
\]
[> factor(A_L109037);
\[
-\left(-L+M^{4}\right)\left(-L^{2} M^{4}+L-M^{2} L-2 M^{4} L-M^{4}-M^{6} L+M^{8} L\right)\left(3 M^{4} L+L^{2} M^{18}+2 L^{2} M^{8}-2 M^{16} L^{2}-2 M^{14} L+3 L^{2} M^{14}\right.
\]
\[
\left.+M^{8} L^{3}+2 M^{6} L+2 M^{10} L+6 M^{12} L+2 M^{12} L^{2}+6 L^{2} M^{6}-2 M^{2} L-7 M^{8} L-2 L^{2} M^{4}+L+M^{10}-7 L^{2} M^{10}\right)\left(31 L^{2} M^{34}\right.
\]
\[
+34 L^{2} M^{18}+12 L M^{28}+1091 L^{3} M^{22}+4 L^{5} M^{8}-30 M^{18} L-26 L^{2} M^{8}-89 L^{4} M^{4}+105 L^{3} M^{4}-254 M^{16} L^{2}-2 M^{14} L
\]
\[
+85 L^{2} M^{14}-15 L M^{30}+829 L^{2} M^{20}+41 L M^{20}+363 L^{2} M^{32}-1196 L^{4} M^{16}-69 L M^{24}+841 L^{4} M^{12}+164 M^{8} L^{3}
\]
\[
-37 L^{6} M^{44}-26 L^{6} M^{48}+42 L^{6} M^{46}+1604 L^{3} M^{16}+12 M^{16} L-113 L^{2} M^{36}-45 L^{5} M^{10}-442 M^{14} L^{3}-980 M^{12} L^{3}
\]
\[
+35 M^{26} L+45 L^{2} M^{38}-376 L^{3} M^{18}-37 M^{12} L^{2}+1085 L^{2} M^{26}-96 L^{2} M^{28}+4 L M^{32}-742 L^{2} M^{22}-687 L^{2} M^{24}
\]
\[
+449 L^{4} M^{14}+625 M^{10} L^{3}+242 L^{4} M^{6}-277 L^{3} M^{6}+8 L^{2} M^{6}+15 L^{4} M^{2}-17 L^{3} M^{2}+8 L^{6} M^{50}-L^{6} M^{52}-6 L^{2} M^{40}
\]
\[
-186 M^{8} L^{4}-1208 L^{3} M^{20}-588 L^{2} M^{30}-L^{2} M^{4}-M^{24}+L^{3}+190 L^{3} M^{44}-45 L^{3} M^{46}+4 L^{3} M^{48}-1236 L^{3} M^{34}
\]
\[
-751 L^{3} M^{36}+1073 L^{3} M^{38}-140 L^{3} M^{40}-308 L^{3} M^{42}+583 L^{3} M^{24}-1091 L^{3} M^{26}-1005 L^{3} M^{28}+947 L^{3} M^{30}
\]
\[
+1433 L^{3} M^{32}-L^{4}+15 L^{4} M^{54}+841 L^{4} M^{44}-471 L^{4} M^{46}-186 L^{4} M^{48}+242 L^{4} M^{50}-89 L^{4} M^{52}-L^{4} M^{56}
\]
\[
+1728 L^{4} M^{34}+1290 L^{4} M^{36}-919 L^{4} M^{38}-1196 L^{4} M^{40}+449 L^{4} M^{42}-1614 L^{4} M^{24}-1044 L^{4} M^{26}+1840 L^{4} M^{28}
\]
\[
-1044 L^{4} M^{30}-1614 L^{4} M^{32}-919 L^{4} M^{18}+1290 L^{4} M^{20}+1728 L^{4} M^{22}-17 L^{5} M^{54}-980 L^{5} M^{44}+625 L^{5} M^{46}
\]
\[
+164 L^{5} M^{48}-277 L^{5} M^{50}+105 L^{5} M^{52}+L^{5} M^{56}+1091 L^{5} M^{34}-1208 L^{5} M^{36}-376 L^{5} M^{38}+1604 L^{5} M^{40}-442 L^{5} M^{42}-
\]
\[
+1433 L^{5} M^{24}+947 L^{5} M^{26}-1005 L^{5} M^{28}-1091 L^{5} M^{30}+583 L^{5} M^{32}+1073 L^{5} M^{18}-751 L^{5} M^{20}-1236 L^{5} M^{22}
\]
\[
+190 L^{5} M^{12}-308 L^{5} M^{14}-140 L^{5} M^{16}-742 L^{6} M^{34}+829 L^{6} M^{36}+34 L^{6} M^{38}-254 L^{6} M^{40}+85 L^{6} M^{42}+363 L^{6} M^{24}
\]
\[
-588 L^{6} M^{26}-96 L^{6} M^{28}+1085 L^{6} M^{30}-687 L^{6} M^{32}+45 L^{6} M^{18}-113 L^{6} M^{20}+31 L^{6} M^{22}-6 L^{6} M^{16}+4 L^{7} M^{34}
\]
\[
+41 L^{7} M^{36}-30 L^{7} M^{38}+12 L^{7} M^{40}-2 L^{7} M^{42}+4 L^{7} M^{24}-15 L^{7} M^{26}+12 L^{7} M^{28}+35 L^{7} M^{30}-69 L^{7} M^{32}-L^{8} M^{32}
\]
\[
\left.+4 L M^{22}-471 M^{10} L^{4}+42 L^{2} M^{10}\right)
\]
- \(9_{24}\) is given by the sum of tangles \(1 / 3+(-1 / 3)\) and \(5 / 2\).

- \(9_{37}\) is given by the sum of tangles \(1 / 3+(-1 / 3)\) and \(5 / 3\).

\section*{Theorem (Mattman-Shimokawa-I., 2011)}

Suppose that \(N(T)\) and \(N(S+T)\) are knots and \(N(S)\) is a split link in \(S^{3}\). Then
\[
A_{N(T)}^{\circ}(L, M) \mid A_{N(S+T)}(L, M)
\]

Here \(A_{K}^{\circ}(L, M)\) is the product of factors of \(A_{K}(L, M)\) containing the variable \(L\).

§2. Alexander polynomials and epimorphisms
\begin{tabular}{|c|c|c|c|c|c|}
\hline & RTЯ & \(A_{K}\) fac. & type & Alex. poly. & epi. \\
\hline \(8_{10}\) & \(1 / 3,3 / 2,-1 / 3\) & \(3_{1}\) & A & \(\left(3_{1}\right)^{3}\) & \(\rightarrow 3_{1}\) \\
\hline \(8_{11}\) & {\([2,-2,3,2,-2]\)} & \(3_{1}\) & B & \(\left(3_{1}\right)\left(6_{1}\right)\) & No \\
\hline \(9_{24}\) & \(1 / 3,5 / 2,-1 / 3\) & \(4_{1}\) & A & \(\left(3_{1}\right)^{2}\left(4_{1}\right)\) & \(\rightarrow 3_{1}\) \\
\hline \(9_{37}\) & \(1 / 3,5 / 3,-1 / 3\) & \(4_{1}\) & B & \(\left(4_{1}\right)\left(6_{1}\right)\) & \(\rightarrow 4_{1}\) \\
\hline \(10_{21}\) & {\([2,-2,5,2,-2]\)} & \(5_{1}\) & B & \(\left(5_{1}\right)\left(6_{1}\right)\) & No \\
\hline \(10_{40}\) & {\([2,2,3,-2,-2]\)} & \(3_{1}\) & B & \(\left(3_{1}\right)\left(8_{8}\right)\) & \(\rightarrow 3_{1}\) \\
\hline
\end{tabular}


Table: Factorizations of RTЯ knots (2nd page)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & RTЯ & \(A_{K}\) fac. & type & Alex. poly. & epi. \\
\hline \(10_{59}\) & \(2 / 5,3 / 2,-2 / 5\) & \(3_{1}\) & A & \(\left(3_{1}\right)\left(4_{1}\right)^{2}\) & \(\rightarrow 4_{1}\) \\
\hline \(10_{62}\) & \(1 / 3,5 / 4,-1 / 3\) & \(5_{1}\) & A & \(\left(3_{1}\right)^{2}\left(5_{1}\right)\) & \(\rightarrow 3_{1}\) \\
\hline \(10_{65}\) & \(1 / 3,7 / 4,-1 / 3\) & \(5_{2}\) & A & \(\left(3_{1}\right)^{2}\left(5_{2}\right)\) & \(\rightarrow 3_{1}\) \\
\hline \(10_{67}\) & \(1 / 3,7 / 5,-1 / 3\) & \(5_{2}\) & B & \(\left(5_{2}\right)\left(6_{1}\right)\) & No \\
\hline \(10_{74}\) & \(1 / 3,7 / 3,-1 / 3\) & \(5_{2}\) & B & \(\left(5_{2}\right)\left(6_{1}\right)\) & \(\rightarrow 5_{2}\) \\
\hline \(10_{77}\) & \(1 / 3,7 / 2,-1 / 3\) & \(5_{2}\) & A & \(\left(3_{1}\right)^{2}\left(5_{2}\right)\) & \(\rightarrow 3_{1}\) \\
\hline \(10_{98}\) & \(1 / 3, T_{0},-1 / 3\) & \(3_{1} \# 3_{1}\) & B & \(\left(3_{1}\right)^{2}\left(6_{1}\right)\) & \(\rightarrow 3_{1}\) \\
\hline \(10_{99}\) & \(1 / 3, T_{1},-1 / 3\) & \(3_{1} \# 3_{1}^{\text {mir }}\) & A & \(\left(3_{1}\right)^{4}\) & \(\rightarrow 3_{1}\) \\
\hline \(10_{143}\) & \(1 / 3,3 / 4,-1 / 3\) & \(3_{1}\) & A & \(\left(3_{1}\right)^{3}\) & \(\rightarrow 3_{1}\) \\
\hline \(10_{147}\) & \(1 / 3,3 / 5,-1 / 3\) & \(3_{1}\) & B & \(\left(3_{1}\right)\left(6_{1}\right)\) & No \\
\hline
\end{tabular}

\section*{Lemma.}

Let \(K=N(R+T+\) Я) be an RTЯ knot with \(R=R(p / q)\) and \(q>0\). Then
(i) \(q>1\).
(ii) If \(K\) is of type \(A\) then \(\Delta_{K}(t)=\Delta_{N(T)}(t) \Delta_{D(R)}(t)^{2}\).
(iii) If \(\boldsymbol{K}\) is of type B then \(\Delta_{K}(t)=\Delta_{N(T)}(t) \Delta_{N(\mathrm{R}+\mathrm{R}(1 / 1)+\mathrm{f})}(t)\).
(iv) The knot determinant of \(K\) is divisible by \(\boldsymbol{q}^{2}\).

\section*{Proposition}

Let \(K\) be a prime knot of 10 or fewer crossings. Suppose that \(K\) is not \(8_{18}, 9_{40}, 10_{82}, 10_{87}\), or \(10_{103}\). Then \(K\) is RTЯ with \(N(T)\) a non-trivial knot of \(\mathbf{1 0}\) or fewer crossings if and only if it is in the above table.

\section*{Definition}

An epimorphism \(\phi: \pi_{1}\left(M_{K_{1}}\right) \rightarrow \pi_{1}\left(M_{K_{2}}\right)\) is said to be preserving peripheral structures if \(\phi\left(\pi_{1}\left(\partial M_{K_{1}}\right)\right) \subset \pi_{1}\left(\partial M_{K_{2}}\right)\).

\section*{Theorem (Hoste-Shanahan, 2010)}

Suppose that there exists an epimorphism \(\phi: \pi_{1}\left(M_{K_{1}}\right) \rightarrow \pi_{1}\left(M_{K_{2}}\right)\) preserving peripheral structures. Then
- \(\phi\left(\mu_{1}\right)=\mu_{2}\) and \(\phi\left(\lambda_{1}\right)=\lambda_{2}^{d}\) for some \(d \in \mathbb{Z}\).
- \(A_{K_{2}}(L, M) \mid\left(L^{d}-1\right) A_{K_{1}}\left(L^{d}, M\right)\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline & RTЯ & \(A_{K}\) fac. & type & Alex. poly. & epi. \\
\hline \(9_{24}\) & \(1 / 3,5 / 2,-1 / 3\) & \(4_{1}\) & A & \(\left(3_{1}\right)^{2}\left(4_{1}\right)\) & \(\rightarrow 3_{1}\) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline & RTЯ & \(A_{K}\) fac. & type & Alex. poly. & epi. \\
\hline \(8_{11}\) & {\([2,-2,3,2,-2]\)} & \(3_{1}\) & B & \(\left(3_{1}\right)\left(6_{1}\right)\) & No \\
\hline \(9_{37}\) & \(1 / 3,5 / 3,-1 / 3\) & \(4_{1}\) & B & \(\left(4_{1}\right)\left(6_{1}\right)\) & \(\rightarrow 4_{1}\) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline & RTЯ & \(A_{K}\) fac. & type & Alex. poly. & epi. \\
\hline \(9_{37}\) & \(1 / 3,5 / 3,-1 / 3\) & \(4_{1}\) & B & \(\left(4_{1}\right)\left(6_{1}\right)\) & \(\rightarrow 4_{1}\) \\
\hline
\end{tabular}

\section*{Fact (Kitano-Suzuki, 2008)}

There exists an epimorphism \(\phi: \pi_{1}\left(M_{9_{37}}\right) \rightarrow \pi_{1}\left(M_{4_{1}}\right)\) such that
\begin{tabular}{|c|l|}
\hline\(\pi_{1}\left(M_{9_{37}}\right)\) & \(81 \overline{8} \overline{2}, 72 \overline{8} \overline{3}, 94 \overline{9} \overline{3}, 34 \overline{3} \overline{5}, 15 \overline{1} \overline{5}, 56 \overline{5} \overline{7}, 27 \overline{2} \overline{8}, 49 \overline{4} \overline{8}\) \\
\hline\(\left(\mu_{1}, \lambda_{1}\right)\) & \((1, \overline{8} \overline{\mathbf{7}} 9 \overline{3} 1 \overline{5} \overline{2} 461)\) \\
\hline\(\left(\mu_{2}, \lambda_{2}\right)\) & \((2, \overline{1} 2 \overline{3} 4)\) \\
\hline\(\phi\) & \begin{tabular}{l}
\(1 \mapsto 2,2 \mapsto 3,3 \mapsto 14 \overline{1}, 4 \mapsto 3,5 \mapsto 1\), \\
\\
\(6 \mapsto \overline{1} 41,7 \mapsto 4,8 \mapsto 1,9 \mapsto 4\)
\end{tabular} \\
\hline\(\phi(\lambda)\) & \(\overline{4} 3 \overline{2} 1=-\lambda\) \\
\hline
\end{tabular}

By Hoste-Shanahan, \(A_{4_{1}}(L, M) \mid A_{9_{37}}(L, M)\).
\(K_{2, k}:(2, k)\)-torus knot.

\section*{Corollary (Mattman-Shimokawa-I., 2011)}

Let \(K\) be the 2 -bridge knot described below, where \(k>2\) is odd and \(n>1\). Then \(\pi_{1}\left(M_{K}\right)\) admits no epimorphism onto \(\pi_{1}\left(M_{K_{2, k}}\right)\) preserving peripheral structure, although \(A_{K_{2, k}}(L, M) \mid A_{K}(L, M)\).

- First assertion follows from González-Acuña - Ramírez.
- Second assertion is a corollary of our factorization.
§3. Cyclic surgeries
\(M\) : a compact, connected, irreducible and \(\partial\)-irreducible 3-manifold whose boundary \(\partial M\) is a torus.
\(R(M)=\operatorname{Hom}\left(\pi_{1}(M), S L(2, \mathbb{C})\right)\)
\(X(M)\) : the character variety of \(M\)
- \(R(M) \ni \rho \mapsto \chi_{\rho} \in X(M)\) : the character of \(\rho\)
\(\gamma \in \pi_{1}(M)\)
- \(I_{\gamma}: X(M) \rightarrow \mathbb{C}:\) the regular function defined by
\[
I_{\gamma}\left(\chi_{\rho}\right)=\chi_{\rho}(\gamma)
\]
- \(f_{\gamma}: X(M) \rightarrow \mathbb{C}:\) defined by \(f_{\gamma}=I_{\gamma}^{2}-4\).

\section*{Definition}

A 1-dimensional algebraic subset \(X_{1}\) of \(X(M)\) is called a norm curve if \(f_{\alpha}\) is not constant for any \(\alpha \in H_{1}(\partial M, \mathbb{Z}) \backslash\{0\}\).
\(X_{1}\) : a norm curve
\(\tilde{X}_{1}\) : the smooth model of the projective completion of \(X_{1}\)
\(\alpha \in \pi_{1}(\partial M)\)
\(\|\alpha\|_{X_{1}}\) : the degree of \(f_{\alpha}\) on \(\tilde{X}_{1}\)

\section*{Lemma}
\(\|\cdot\|_{X_{1}}\) is a norm.
\(X_{1}^{(i)}\) : irreducible component of \(X_{1}\)
\(d_{1}^{(i)}:\) the degree of the map \(\left.\imath^{*}\right|_{X_{1}^{(i)}}: X_{1}^{(i)} \rightarrow X(\partial M)\)

\section*{Definition}

The \(A\)-polynomial of \(X_{1}\) with multiplicity is defined as
\[
A_{1}^{\mathrm{d}}(L, M)=\prod_{i=1}^{k} A_{1}^{(i)}(L, M)^{d_{1}^{(i)}}
\]

Theorem (Boyer-Zhang, 2001)
\(\|\cdot\|_{X_{1}}=\|\cdot\|_{A_{1}^{d}}\).
Example:
\(A_{4_{1}}(L, M)=M^{4}+L\left(-1+M^{2}+2 M^{4}+M^{6}-M^{8}\right)+L^{2} M^{4}\)

The next results follow immediately from CGLS.

\section*{Theorem}

Suppose that \(N(S+T)\) is a knot, \(N(T)\) is a hyperbolic knot and \(N(S)\) is a split link in \(S^{3}\). Let \(X_{0}\) be the irreducible component of \(X\left(M_{N(T)}\right)\) containing the character of a discrete faithful representation of \(\pi_{1}\left(M_{N(T)}\right)\). If \(\alpha\) is not a strict boundary class of \(N(T)\) associated with an ideal point of \(X_{0}\) and satisfies \(\|\alpha\|_{X_{0}}>\|\mu\|_{X_{0}}\) then \(\pi_{1}\left(M_{N(S+T)}(\alpha)\right)\) is not cyclic as well as \(\pi_{1}\left(M_{N(T)}(\alpha)\right)\) is not.

\section*{Corollary}

Suppose further that \(N(S+T)\) is a small knot. If every \(\alpha \in H_{1}\left(\partial M_{N(T)} ; \mathbb{Z}\right) \backslash\{0\}\) except strict boundary classes of \(N(T)\) satisfies \(\|\alpha\|_{X_{0}}>\|\mu\|_{X_{0}}\) then \(N(S+T)\) has no non-trivial cyclic slope.

\section*{Definition}

A 1-dimensional algebraic subset \(Y\) of \(X(M)\) is called an \(r\)-curve if \(\|\cdot\|_{Y}\) is non-zero, not a norm curve and \(\|\alpha\|_{Y}=0\) only when \(\alpha=r\).

\section*{Proposition (CCGLS, 1994)}

The \(A\)-polynomial of the \((p, q)\)-torus knot has the factor \(1+L M^{p q}\) or \(L+M^{p q}\).

Hence the \((p, q)\)-torus knot has the \(r\)-curve with slope \(r=p q\).
\(K\) : a knot in \(S^{\mathbf{3}}\)
\(M_{K}\) : the complement of \(K\).

\section*{Proposition}

Suppose that \(X(M)\) contains an algebraic curve \(X_{1}\) consisting of two \(r\)-curves, with different slopes, containing the characters of irreducible representations. If \(\alpha\) is not the slopes of these curves and satisfies \(\|\alpha\|_{X_{1}}>\|\mu\|_{X_{1}}\) then \(\pi_{1}(M(\alpha))\) is not cyclic.
- \(Y\) consists of reducible representations
\[
\Rightarrow A_{Y}(L, M)=L-1 \quad \text { (mentioned in CCGLS). }
\]
- If \(K\) is small and \(\|\alpha\|_{X_{1}}>\|\mu\|_{X_{1}}\) for any \(\alpha \neq \mu\) then \(K\) has no non-trivial cyclic slope.

The list of \(r\)-curves (The torus knots are removed from the list)
\[
\begin{aligned}
8_{11} & : L+M^{6} \\
8_{21} & : L+M^{2} \\
9_{23} & : L+0_{139}: 1-L M^{20} \\
9_{37} & : L-M^{4} \\
9_{38}:(1-M)^{2}(1+M)^{2} & 10_{140}: 1-L \\
9_{41}: 1+L M^{2} & 10_{141}:\left(L-M_{143}: L-M^{4}\right)\left(1+L M^{2}\right) \\
9_{46}: 1+L M^{2} & 10_{144}: L-M^{12} \\
9_{48}: L-M^{4} & 10_{152}:\left(L+M^{11}\right)\left(L-M^{11}\right) \\
10_{61}: 1-L M^{12} & 10_{155}: L+M^{2}
\end{aligned}
\]

Remark. Among the RTЯ knots with torus knot factor, \(\mathbf{8}_{10}, \mathbf{8}_{\mathbf{1 1}}, \mathbf{1 0}_{\mathbf{2 1}}\), \(\mathbf{1 0}_{143}\) and \(10_{147}\) are calculated by Culler, though we could not find the \(r\)-curves in his calculation except \(8_{11}\).

\section*{Theorem (Boyer-Zhang, 1998)}

Suppose that an \(r\)-curve in \(X^{P S L}(M)\) contains the character of an irreducible representation and that \(r\) is not a boundary slope of an essential surface in \(M\). If \(\pi_{1}(M(\alpha))\) is cyclic then \(\Delta(r, \alpha) \leq 1\).

Here \(\Delta\left(p_{1} / q_{1}, p_{2} / q_{2}\right)=\left|p_{1} q_{2}-p_{2} q_{1}\right|\).

\section*{Corollary ( \(S_{\mathbf{2}}(\mathbb{C})\)-version of Boyer-Zhang, 1998)}

Let \(K\) be a knot in \(S^{3}\). Suppose that the meridian is not a boundary slope of an essential surface (for instance when \(K\) is small). If \(X\left(M_{K}\right)\) has an \(r\)-curve then \(r \in \mathbb{Z}\).

Proof. Let \(Y\) be an \(r\)-curve in \(X\left(M_{K}\right)\). If \(Y\) consists of the characters of reducible representations, then \(r=0 \in \mathbb{Z}\). Suppose that \(Y\) contains the character of an irreducible representation. There exists an \(r\)-curve in \(X^{P S L}\left(M_{K}\right)\) with the same \(r\). Since \(1 / 0\) is not a boundary slope, \(r \neq \infty\). Since \(M(1 / 0)=S^{3}, \alpha=1 / 0\) is a cyclic slope. Hence \(\Delta(p / q, 1 / 0) \leq 1\) only when \(q=1\).

The following result also follows from Boyer-Zhang.

\section*{Corollary}

Let \(K\) be a small knot in \(S^{3}\). Suppose that \(X\left(M_{K}\right)\) has an \(r_{1}\)-curve and \(r_{2}\)-curve with \(r_{i} \neq 0\) for \(i=1,2\) and \(\left|r_{1}-r_{2}\right|>2\). Then \(K\) has no cyclic slope.

Example. \(10_{141}=N(1 / 4+2 / 3+(-1 / 3))\) is small and have two \(r\)-curves \(\left(L-M^{4}\right)\left(1+L M^{2}\right)\), whose slopes are -4 and 2 . Hence \(10_{141}\) has no cyclic slope.

\section*{REFERECES}
- [Boyer-Zhang] A proof of the finite filling conjecture, J. Diff. Geom., 2001. On Culler-Shalen seminorms and Dehn filling, Ann. Math., 1998.
- [CGLS] Dehn surgery on knots, Ann. Math., 1987.
- [CCGLS] Plane curves associated to character varieties of 3-manifolds, Invent. Math., 1994.
- [González-Acuña - Ramírez] Two bridge knots with property Q, Quart. J. Math., 2001.

Epimorphisms of knot groups onto free products, Topology, 2003.
- [Hoste-Shanahan] Epimorphisms and boundary slopes of 2-bridge knots, Alge. \& Geom. Topology, 2010.
- [Kitano-Suzuki] A partial order in the knot table. II, Acta Math. Sin., 2008.
- [Mattman-Shimokawa-I.] Tangle sums and factorization of A-polynomials, arXiv:1107.2640, 2011.

\section*{Thank you for your attention!}```

