Lens space surgeries along certain 2-component links and Reidemeister-Turaev torsion

Yuichi YAMADA (Univ. of Electro-Comm.)
Teruhisa KADOKAMI (East China Normal Univ.)

2010 Sept. RIMS Seminor
Twisted topological invariants and topology of low-dim. manifolds

AKITA Shirakami, JAPAN
(1) Introduction, Main results
(2) Lens space surgery
(3) Reidemeister torsion

4 Cyclotomic fields, Polynomials
(5) Outline of the proof

§1. Introduction and Main results

Overview. Alexander polynomial of a link restricts the coefficients of lens space surgery along the link.

We focus a pair of certain two-component links $B_{p, q}$ and $A_{m, n}$, whose one component is the zero-framed unknot (thus a surgery from $S^{1} \times S^{2}$), and determine the coefficient of the other component to yield a lens space.

The link is related to a certain subfamily of lens space surgery of knots, and also to 4-dim. topology (the rational homology 4-ball, used in Rational blow-down).

In either link, K_{2} is an unknot. We assume its coefficient is 0 .
K_{1} is a torus knot:

- In $B_{p, q}$, the standard $T(p, q)$.
- In $A_{m, n}, K_{1}$ is $T(m, n)$, but not in the standard position.

Lemma (Y)

Under the correspondence between (p, q) and (m, n) by the Algorithm below,

$$
\left(A_{m, n} ; m n, 0\right) \cong\left(B_{p, q} ; p q-1,0\right) \cong L\left(p^{2}, p q-1\right)
$$

Algorithm A

For given pair (p, q) with $\operatorname{gcd}(p, q)=1$ and $p>q$,
starting with $(p-q, q)$, we get (m, n) as follows:
Ex. $(p, q)=(9,2) \Rightarrow(m, n)=(4,5)$

$$
\begin{aligned}
& (7,2) \rightarrow_{L}(5,2) \rightarrow_{L}(3,2) \rightarrow_{L}(1,2) \rightarrow_{R}(1,1) \\
& (1,1) \rightarrow_{L}(2,1) \rightarrow_{L}(3,1) \rightarrow_{L}(4,1) \rightarrow_{R}(4,5)
\end{aligned}
$$

Q. Does there exist another lens space surgery along $B_{p, q}$ or $A_{m, n}$?

Theorem (Main Theorem)

Assuming $r=\alpha / \beta \in \mathbb{Q}$.
(1) $\left(B_{p, q} ; \alpha / \beta, 0\right)$ is a lens space

$$
\Leftrightarrow|\alpha-\beta p q|=1 \quad\left(i e, r=p q \pm \frac{1}{\beta}\right)
$$

$-L\left(p^{2} \beta, \alpha\right)$
(2) $\left(A_{m, n} ; r, 0\right)$ is a lens space $\Leftrightarrow \cdot r=m n \quad$ (as Lemma) or $\quad-L\left((m+n)^{2}, m \bar{n}\right)$ $\cdot(m, n)=(2,3)$ and $r=7 \quad$ (Unexpected) $\quad-L(25,7)$ where $\bar{n} n \equiv 1 \bmod (m+n)^{2}$.

§2. Lens space surgery

Dehn surgery $=$ Cut and paste of a soliod torus.

$$
(K ; p):=\left(S^{3} \backslash \text { open } \operatorname{nbd} N(K)\right) \cup_{\partial} \text { Solid torus. }
$$

Coefficient (in \mathbb{Z}) "framing" $=$ a parallel curve $(\subset \partial N(K))$ of K, or the linking number.
Solid torus is reglued such as "the meridian comes to the parallel"

Lens space $L(p, q)$

$$
\frac{p}{q}=a_{1}-\frac{1}{a_{2}-\frac{1}{a_{3}-\ddots-\frac{1}{a_{n}}}} \quad\left(a_{i}>1\right)
$$

$L(18,5) \quad \frac{18}{5}=4-\frac{1}{\frac{5}{2}}=4-\frac{1}{3-\frac{1}{2}}$

For $n \in \mathbb{Z}, r \in \mathbb{Q}$
"Which $(K ; r)$ is a lens space?" K : a knot.
ex. 1 ['71 L. Moser] Torus knots.

$$
\begin{aligned}
& \begin{array}{l}
|\alpha-\beta p q|=1 \text { ie, } \\
\alpha / \beta=p q \pm \frac{1}{n}(n \in \mathbb{Z})
\end{array} \Rightarrow(T(p, q) ; \alpha / \beta) \cong L\left(\alpha,-\beta p^{2}\right) . \\
& K:=T(3,5) \text {, then }(K ; 16)=L(16,7) \text { and }(K ; 14)=L(14,5) .
\end{aligned}
$$

ex. 2 ['80 R. Fintushel, R. Stern] Hyperbolic knot!
$K:=P(-2,3,7)$, then $(K ; 19)=-L(19,7)$. $(K ; 18)=-L(18,7)$.

- Cyclic surgery theorem ([CGLS]'87), Berge's list ('90), Heegaard Floer theory(200x), ...

Seifert v.s. Hyperbolic

Roughly speaking,
Torus knot (Seifert) — periodic — Zero's are on the unit circle

$$
\Delta_{T(p, q)}(t) \doteq \frac{\left(t^{p q}-1\right)(t-1)}{\left(t^{p}-1\right)\left(t^{q}-1\right)}
$$

\Rightarrow A torus knot yields many lens spaces.
Hyperbolic knot - pseudo Anosov - out of the unit circle
$K=P(-2,3,7)$

$$
\Delta_{K}(t) \doteq t^{10}-t^{9}+t^{7}-t^{6}+t^{5}-t^{4}+t^{3}-t+1
$$

(is known to be "Lehmer's polynomial")
\Rightarrow A hyperbolic knot can yield lens space, but exceptionally.

$$
\begin{aligned}
& \text { Alexander ploynomial of } B_{p, q} \\
& \text { gcd }(p, q)=1 . \\
& \text { Ex. }(p, q)=(7,3) \\
& \Delta_{B_{7,3}}(t, x) \\
& =1+t^{3} x+t^{6} x^{2}+t^{9} x^{3}+t^{12} x^{4}+t^{15} x^{5}+t^{18} x^{6} \\
& \Delta_{B_{p, q}}(t, x)=\frac{\left(t^{q} x\right)^{p}-1}{t^{q} x-1}
\end{aligned}
$$

Alexander ploynomial of $A_{m, n}$ $\operatorname{gcd}(m, n)=1$.
Ex. $(m, n)=(3,7)$.
$\Delta_{A_{3,7}}(t, x)$
$=1+t^{3} x+t^{6} x^{2}+t^{7} x^{3}+t^{9} x^{4}+t^{12} x^{5}+t^{14} x^{6}+t^{15} x^{7}+t^{18} x^{8}+t^{21} x^{9}$ - "less periodic" \qquad

Degrees $\left(k_{i}\right)$ of t is "sorted sequence of multiples of m and n "

Lemma

$$
\Delta_{A_{m, n}}(t, x)=\sum_{i=0}^{m+n-1} t^{k_{i}} x^{i}
$$

$(m \mathbb{Z} \cup n \mathbb{Z}) \cap[0, m n]=\left\{0=k_{0}, k_{1}, k_{2}, \cdots, k_{m+n-1}=m n\right\}$.

§3. Reidemeister-Turaev torsion

[Kadokami's Method]

Let X be a finite CW complex.
$\pi: \tilde{X} \rightarrow X$ its maximal abelian covering.
Then \tilde{X} has a CW structure induced by that of X and π, the cell chain complex \mathbf{C}_{*} of \tilde{X} has a $\mathbb{Z}[H]$-module structure, where $H=H_{1}(X ; \mathbb{Z})$ is the first homology of X.

For an integral domain $R\left(\right.$ We use $\left.\mathbb{Q}\left(\zeta_{d}\right)\right)$ and
a ring homomorphism $\psi: \mathbb{Z}[H] \rightarrow R$, "the chain complex of \tilde{X} related with ψ ",

$$
\mathbf{C}_{*}^{\psi}:=\mathbf{C}_{*} \otimes_{\mathbb{Z}[H]} Q(R),
$$

where $Q(R)$ is the quotient field of R.

The Reidemeister torsion of X related with ψ is defined

$$
\mathbf{C}_{*}^{\psi} \text { acyclic } \Rightarrow \quad \tau^{\psi}(X) \in Q(R)
$$

up to multiplication of $\pm \psi(h)(h \in H)$.

$$
\tau^{\psi}(X):=" \prod_{q=0}^{\operatorname{dim}} \operatorname{det}\left[\mathbf{b}_{q}, \overline{\mathbf{b}_{q-1}} / \mathbf{c}_{q}\right]^{(-1)^{q+1}} "
$$

In the case $R=\mathbb{Z}[H]$ and $\psi=\mathrm{id}$, we omit ψ as $\tau(X)$.
History: Reidemeister torsion (Franz, de Rham, Reidemeister, Whitehead, ...) gave us classification of lens spaces $L(p, q)$.

Notations: We will use the usual ones.
E_{L}
m_{i}, l_{i}
[$\left.m_{i}\right],\left[l_{i}\right]$
$\Delta_{L}\left(t_{1}, \ldots, t_{\mu}\right)$ the complement of L.
a meridian and a longitude of the i-th component. their homology classes.
the Alexander polynomial of L, where t_{i} is represented by $\left[m_{i}\right]$.
$\left(L ; r_{1}, \ldots, r_{\mu}\right)$ the result of Dehn surgery along L, where $r_{i}=p_{i} / q_{i} \in \mathbb{Q} \cup\{\infty, \emptyset\}$ is the surgery coefficient of K_{i}.
V_{i}
$m_{i}^{\prime},\left[m_{i}^{\prime}\right]$
$l_{i}^{\prime},\left[l_{i}^{\prime}\right]$
the solid torus attached along K_{i} a meridian of V_{i}, and its homology class. an oriented core curve of V_{i}, its homology class.

Lemma 1. (Surgery formula I) [Turaev '70s]
Suppose that ∂E consists of μ tori.
For $M=E \cup V_{1} \cup V_{2} \cup \cdots \cup V_{\mu}$, if $\psi\left(\left[l_{i}^{\prime}\right]\right) \neq 1(i=1, \ldots, n)$, then

$$
\tau^{\psi}(M) \doteq \tau^{\psi^{\prime}}(E) \prod_{i=1}^{\mu}\left(\psi\left(\left[l_{i}^{\prime}\right]\right)-1\right)^{-1}
$$

where $\psi^{\prime}=\psi \circ \iota_{*},\left(\iota_{*}\right.$ is a ring homomorphism induced by the inclusion).

Each solid torus $\cup V_{i}$ contributes as $\left(\psi\left(\left[l_{i}^{\prime}\right]\right)-1\right)^{-1}$.

Reidemeister torsion is closely related to Alexander polynomial. - Link case is slightly different from Knot case.

Lemma 2. [Milnor '62]
Let $\Delta_{L}\left(t_{1}, \ldots, t_{\mu}\right)$ be the Alexander polynomial of a μ component link $L=K_{1} \cup \ldots \cup K_{\mu}$ in S^{3}, where $t_{i}=\left[m_{i}\right]$, the meridian of $K_{i}(i=1, \ldots, \mu)$. Then

$$
\tau\left(E_{L}\right) \doteq\left\{\begin{array}{cl}
\Delta_{L}\left(t_{1}\right)\left(t_{1}-1\right)^{-1} & (\mu=1) \\
\Delta_{L}\left(t_{1}, \ldots, t_{\mu}\right) & (\mu \geq 2)
\end{array}\right.
$$

Lemma 3. (Surgery formula II) [Sakai '84, Turaev '86]
(1) In the case $M=(K ; p / q)(|p| \geq 2)$,
we have $H=H_{1}(M) \cong\left\langle T \mid T^{p}=1\right\rangle \cong \mathbb{Z} /|p| \mathbb{Z}$, where
$T=[m]$.
For a divisor $d(\geq 2)$ of p, and $\psi_{d}: \mathbb{Z}[H] \rightarrow \mathbb{Q}\left(\zeta_{d}\right)$ by $\psi_{d}(T)=\zeta_{d}$, We have

$$
\tau_{d}^{\psi_{d}}(M) \doteq \Delta_{K}\left(\zeta_{d}\right)\left(\zeta_{d}-1\right)^{-1}\left(\zeta_{d}^{\bar{q}}-1\right)^{-1}
$$

where $q \bar{q} \equiv 1(\bmod p)$.

Since $L(p, q)$ is (unknot; $-p / q$), we have

$$
\tau^{\psi_{d}}(L(p, q)) \doteq\left(\zeta_{d}-1\right)^{-1}\left(\zeta_{d}^{\bar{q}}-1\right)^{-1}
$$

- Link case is slightly different from Knot case.
(2) In the case $M=\left(L ; p_{1} / q_{1}, \ldots, p_{\mu} / q_{\mu}\right)(\mu \geq 2)$.

We take integers r_{i} and s_{i} satisfying $p_{i} s_{i}-q_{i} r_{i}=-1$.
Let F be a field and $\psi: \mathbb{Z}\left[H_{1}(M)\right] \rightarrow F$ a ring homomorphism. If $\psi\left(\left[m_{i}\right]^{r_{i}}\left[I_{i}\right]^{s_{i}}\right) \neq 1(i=1, \ldots, \mu)$, then we have

$$
\tau^{\psi}(M) \doteq \Delta_{L}\left(\psi\left(\left[m_{1}\right]\right), \ldots, \psi\left(\left[m_{\mu}\right]\right)\right) \prod_{i=1}^{\mu}\left(\psi\left(\left[m_{i}\right]^{r_{i}}\left[l_{i}\right]^{s_{i}}\right)-1\right)^{-1}
$$

We use $\mathbb{Q}\left(\zeta_{d}\right)$ as the field F.

§4. Cyclotomic fields and Polynomials

Definition (the d-th cyclotomic field)

$$
\mathbb{Q}\left(\zeta_{d}\right):=\mathbb{Q}\left[\zeta_{d}\right] \quad \subset \mathbb{C} \quad \zeta_{d}{ }^{d}=1
$$

$$
\begin{array}{rcl}
\mathbb{Q}\left(\zeta_{3}\right) & =\mathbb{Q}\left\langle 1, \zeta_{3}\right\rangle & \cong \mathbb{Q}[t] /\left(t^{2}+t+1\right) \\
\mathbb{Q}\left(\zeta_{4}\right) & =\mathbb{Q}\left\langle 1, \zeta_{4}\right\rangle & \cong \mathbb{Q}[t] /\left(t^{2}+1\right) \\
\mathbb{Q}\left(\zeta_{12}\right)=\mathbb{Q}\left\langle 1, \zeta_{12}, \zeta_{12}^{2}, \zeta_{12}^{3}\right\rangle & \cong \mathbb{Q}[t] /\left(t^{4}-t^{2}+1\right) \\
\mathbb{Q}\left(\zeta_{d}\right) & & \cong \mathbb{Q}[t] /\left(\Phi_{d}(t)\right)
\end{array}
$$

where $\Phi_{d}(t)$ is "the d-th cyclotomic polynomial", whose degree is $\sharp(\mathbb{Z} / d \mathbb{Z})^{\times}=\sharp\{$ coprime integers to d in $\mathbb{Z} / d \mathbb{Z}\}$.

Its Galois group is

$$
\begin{array}{ccc}
(\mathbb{Z} / d \mathbb{Z})^{\times} & \cong \quad \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{d}\right) / \mathbb{Q}\right) \\
j & \mapsto & \left(\sigma_{j}: \zeta \mapsto \zeta^{j}\right)
\end{array}
$$

Definition (d-norm)

The d-norm of x in $\mathbb{Q}\left(\zeta_{d}\right)$ is defined as

$$
N_{d}(x)=\prod_{\sigma \in \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{d}\right) / \mathbb{Q}\right)} \sigma(x), \quad \in \mathbb{Q}
$$

Fact

- The map $N_{d}: \mathbb{Q}\left(\zeta_{d}\right) \backslash\{0\} \rightarrow \mathbb{Q} \backslash\{0\}$ is a group homomorphism.
- If $x \in \mathbb{Z}\left[\zeta_{d}\right]$, then $N_{d}(x) \in \mathbb{Z}$.
ex. $\cdot N_{d}\left(\pm \zeta_{d}\right)=\left\{\begin{array}{cl} \pm 1 & (d=2), \\ 1 & (d \geq 3) .\end{array}\right.$
- $N_{d}\left(1-\zeta_{d}\right)= \begin{cases}\ell & (d \text { is a power of a prime } \ell \geq 2), \\ 1 & \text { (otherwise). }\end{cases}$
- If $(j, d)=1$, then $N_{d}\left(1-\zeta_{d}^{j}\right)=N_{d}\left(\sigma_{j}\left(1-\zeta_{d}\right)\right)=N_{d}\left(1-\zeta_{d}\right)$.

Lemma (Norm and Lens space surgery [Kad])

If $(K ; p)$ is a lens space, for any divisor $d(\geq 2)$ of p,

$$
N_{d}\left(\Delta_{K}\left(\zeta_{d}\right)\right)= \pm 1
$$

ex. $1(T(p, q) ; p q \pm 1)=-L\left(p q \pm 1, p^{2}\right)$

$$
\left.\Delta_{T(p, q)}(\zeta)=\frac{\left(\zeta^{p q}-1\right)(\zeta-1)}{\left(\zeta^{p}-1\right)\left(\zeta^{q}-1\right)} \quad d \right\rvert\,(p q \pm 1)
$$

ex. $2([\mathrm{KY}])(P(-2,3,7) ; 19)=-L(19,7)=-L(19,11)$

$$
\Delta_{P(-2,3,7)}(t) \equiv \frac{\left(t^{7 \cdot 11}-1\right)(t-1)}{\left(t^{7}-1\right)\left(t^{11}-1\right)} \quad \bmod \left(t^{19}-1\right)
$$

Combinatorial Euler structure

For a homology lens space M with $H=H_{1}(M) \cong \mathbb{Z} / P \mathbb{Z}[T]$, we consider

$$
\tau^{\psi_{d}}(M) \in \mathbb{Q}\left(\zeta_{d}\right)
$$

w.r.t the homomorphism $\psi_{d}(T)=\zeta_{d}$,

$$
\text { for any divisors } d \text { of } P
$$

and every primitive d-th root ζ_{d} of unity, except 1 itself.
In the process, we fix Combinatorial Euler structure, the choice of the basis of the complex.
(Another reason is to fix the ambiguity $\pm \zeta^{m}$.)

Chinese Remainder theorem

$$
\begin{aligned}
& x \equiv 2 \quad \bmod 3 \\
& x \equiv 3 \quad \bmod 5 \\
& x \equiv 2 \quad \bmod 7
\end{aligned} \Rightarrow x \equiv{ }^{\exists!} 23 \quad \bmod 105(=3 \cdot 5 \cdot 7)
$$

We use it.
By $\mathbb{Q}\left(\zeta_{d}\right) \cong \mathbb{Q}[t] /\left(\Phi_{d}(t)\right)$ and $\prod_{d \mid N} \Phi_{d}(t)=\left(t^{N}-1\right)$,
we have

$$
\begin{aligned}
& \bigoplus_{d \mid N, d \geq 2} \mathbb{Q}\left(\zeta_{d}\right) \cong \mathbb{Q}\left[t, t^{-1}\right] /\left(t^{N-1}+\cdots+t^{2}+t+1\right) \\
& \quad\left\{\tau^{\psi_{d}}(M)\right\}_{d \geq 2, d \mid p}
\end{aligned}
$$

Lemma (Identity of symmetric Laurent polynomials)

If two symmetric Laurent polynomials

$$
F(t)=a_{0}+\sum_{i=1}^{\left[\frac{N}{2}\right]-1} a_{i}\left(t^{i}+t^{-i}\right), \quad G(t)=b_{0}+\sum_{i=1}^{\left[\frac{N}{2}\right]-1} b_{i}\left(t^{i}+t^{-i}\right),
$$

satistfy $\quad F\left(\zeta_{d}\right)=G\left(\zeta_{d}\right)$ for every divisor $d \geq 2$ of N, then, we have $\quad F(t)=G(t), i e, a_{i}=b_{i}(\forall i)$.

Because the range of the degrees is restricted:

$$
\operatorname{deg}-\operatorname{span}\left(t^{N-1}+\cdots+t^{2}+t+1\right)=N-1>2\left(\left[\frac{N}{2}\right]-1\right) .
$$

§5. Outline of the proof.

The 1st half : Calculus.
1-1. Calculate $\Delta_{A_{m, n}}(t, x)=\operatorname{det}(I-x M(m, n))$
By Brau-rep. of the braids. (Thanks to Prof. Morifuji)

$$
\begin{gathered}
M(3,5)=\left[\begin{array}{ccccccc}
0 & 0 & -t & 1 & 0 & 0 & 0 \\
0 & 0 & -t^{2} & 0 & 1 & 0 & 0 \\
0 & 0 & -t^{3} & 0 & 0 & 1 & 0 \\
0 & 0 & -t^{4} & 0 & 0 & 0 & 1 \\
0 & 0 & -t^{5} & 0 & 0 & 0 & 0 \\
t^{5} & 0 & -t^{5} & 0 & 0 & 0 & 0 \\
0 & t^{5} & -t^{5} & 0 & 0 & 0 & 0
\end{array}\right] \\
\Delta_{A_{m, n}}(t, x) \doteq \sum_{i=0}^{m+n-1} t^{k_{i} x^{i}}, \\
\left(\left\{0=k_{0}, k_{1}, k_{2}, \cdots, k_{m+n-1}=m n\right\}=(m \mathbb{Z} \cup n \mathbb{Z}) \cap[0, m n] .\right)
\end{gathered}
$$

1-2. Study the homology generators and relations, to use the surgery formula II (Link case)
$\tau^{\psi}(M) \doteq \Delta_{L}\left(\psi\left(\left[m_{1}\right]\right), \ldots, \psi\left(\left[m_{\mu}\right]\right)\right) \prod_{i=1}^{\mu}\left(\psi\left(\left[m_{i}\right]^{r_{i}}\left[l_{i}\right]^{s_{i}}\right)-1\right)^{-1}$.
$M=\left(K_{1} \cup K_{2} ; \alpha / \beta, 0\right)$
$H_{1}\left(E_{L} ; \mathbb{Z}\right)=\left\langle\left[m_{1}\right],\left[m_{2}\right]\right\rangle$
Under $H_{1}(M) \cong\left\langle T \mid T^{(m+n)^{2} \beta}=1\right\rangle \cong \mathbb{Z} /(m+n)^{2} \beta \mathbb{Z}$, we have

$$
\left[m_{1}\right]=T^{(m+n) \beta}, \quad\left[m_{2}\right]=T^{-\alpha}, \quad\left[{ }_{1}^{\prime}\right]=T^{m+n} .
$$

Thus, for $M_{1}=E_{L} \cup V_{1}=\left(K_{1} \cup K_{2} ; \alpha / \beta, \emptyset\right)$

$$
\begin{aligned}
\tau\left(M_{1}\right) & \doteq \Delta_{A_{m, n}}\left(T^{(m+n) \beta}, T^{-\alpha}\right)\left(T^{m+n}-1\right)^{-1} \\
& =\left(\sum_{i=0}^{m+n-1} T^{k_{i}(m+n) \beta-i \alpha}\right)\left(T^{m+n}-1\right)^{-1}
\end{aligned}
$$

It looks as if $\psi(T)=\zeta_{d}$ with a divisor d of $m+n$ is impossible...

But, deforming

$$
=T^{-i \alpha} \sum_{i=0}^{m+n-1} \frac{T^{k_{i}(m+n) \beta}-1}{T^{m+n}-1}+\frac{\sum_{i=0} T^{-i \alpha}}{T^{m+n}-1}
$$

and $\sum_{i=0}^{m+n-1} T^{-i \alpha}=\frac{T^{-(m+n) \alpha}-1}{T^{-\alpha}-1}$, we can take $\psi(T)=\zeta_{d}$.

A kind of l'Hopital's rule.

Lemma (R-T Torsion)

Finally, we get the Reidemeister-Turaev torsion of M

$$
\tau^{\psi_{d}}(M) \doteq \frac{\beta R(m, n)-\alpha}{(\zeta-1)^{2}}
$$

with "magic element" $R(m, n)=(\zeta-1) \sum_{i=0}^{m+n-1} k_{i} \zeta^{i}$

1-3. Calculus on $R(m, n)$ in $\mathbb{Q}\left(\zeta_{d}\right)$

Lemma (on the magic element $R(m, n)$)
(1) $R(m, n)$ is a real number.
(2) $R(m, n)=m n+\frac{1}{2} \sum_{i=1}^{m+n-1}\left(k_{i-1}-k_{i}\right)\left(\zeta^{i}+\zeta^{-i}\right)$.
(3) - Omitted (combinatorial)
(4) $R(m, n)=m(n+1)+\sum_{j=1}^{m-1}(m-j)\left(\xi^{j}+\xi^{-j}\right)$, and
(5) $R(m, n)=\left|\frac{\xi^{m}-1}{\xi-1}\right|^{2}+m n$, where $\xi=\zeta^{\bar{m}}\left(i e, \zeta=\xi^{m}\right)$ with $m \bar{m} \equiv 1 \bmod (m+n)$.
ex. $(3,7) 0 \times 14 \cdot 1$

The 2nd half : Estimate M to be a lens space.
If $M=\left(K_{1} \cup K_{2} ; \alpha / \beta, 0\right)$ is a lens space $L(p, q)($ for $\exists q), \ldots$

$$
\begin{aligned}
\tau^{\psi_{d}}(M) & \doteq \tau^{\phi_{d}}(L(p, q)) \\
\frac{\beta R(m, n)-\alpha}{\left(\xi^{m}-1\right)^{2}} & \doteq \frac{1}{\left(\xi^{i}-1\right)\left(\xi^{j}-1\right)} \quad(\text { for } \exists i, j)
\end{aligned}
$$

2-1. Norm condition

Lemma

$$
N_{d}(\beta R(m, n)-\alpha)= \pm 1
$$

$\beta R(m, n)-\alpha=\beta\left|\frac{\xi^{m}-1}{\xi-1}\right|^{2}-(\alpha-m n \beta) \quad \Rightarrow \alpha-m n \beta \geq 0$

2-2. To the identity of polynomials

$$
\frac{\beta R(m, n)-\alpha}{\left(\xi^{m}-1\right)^{2}} \doteq \frac{1}{\left(\xi^{i}-1\right)\left(\xi^{j}-1\right)} \in \mathbb{Q}\left(\zeta_{d}\right) \quad(\text { for } \exists i, j),
$$

for every primitive d-th root $\xi=\xi_{d}$ of unity,

$$
\text { for any divisors } d \text { of } m+n \text { Target is } L\left((m+n)^{2}, m \bar{n}\right)
$$

By Lemma 4 (Chinese Remainder Thm.), the equalities above lift to an identity of symmetric Laurent polynomials.
We regard it as an equation of i, j.
We can assume $1 \leq i+j \leq m+n-1$ and $i+j$ is even.

2-3. The final part is divided into 3 cases:
(1) $m=2$
(2) $n=m+1$
$(1)(2)$ includes $(m, n)=(2,3)$ and $\alpha / \beta=7$
(3) Otherwise. Only $\alpha / \beta=m n$.
(1) Case $m=2$ and $i+j<n+1 . \quad$ Set $\alpha^{\prime \prime}=\alpha-2(n+1) \beta$

The identity is

$$
t^{-\frac{i+j-2}{2}} \cdot\left\{\beta\left(t+t^{-1}\right)-\alpha^{\prime \prime}\right\} \frac{\left(t^{i}-1\right)\left(t^{j}-1\right)}{(t-1)^{2}}=t^{-1} \cdot \frac{\left(t^{2}-1\right)^{2}}{(t-1)^{2}} .
$$

Note. the degree $(i+j) / 2 \leq\left[\frac{m+n}{2}\right]-1$.
$\Rightarrow \beta\left(t+t^{-1}\right)-\alpha^{\prime \prime}=t+2+t^{-1} \quad \Rightarrow \beta=1, \alpha=2 n$.
(1') Case $m=2$ and $i+j=n+1$.
The identity is deformed to

$$
\text { Set } e:=\frac{j-i}{2}<\frac{n+1}{2}
$$

Set $\alpha^{\prime \prime}=\alpha-2(n+1) \beta$.

$$
\begin{aligned}
& \left(\beta-\alpha^{\prime \prime}\right)\left(t^{\frac{n+1}{2}}+t^{-\frac{n+1}{2}}\right)+\beta\left(t^{\frac{n-1}{2}}+t^{-\frac{n-1}{2}}\right) \\
& -\beta\left(t^{e+1}+t^{-(e+1)}\right)+\alpha^{\prime \prime}\left(t^{e}+t^{-e}\right)-\beta\left(t^{e-1}+t^{-(e-1)}\right) \\
= & \left(t^{2}+t^{-2}\right)-2 .
\end{aligned}
$$

Note. the degree $\frac{n+1}{2}=\left[\frac{m+n}{2}\right]-1$ and " $0=0$ " at $t=1$.
$\Rightarrow e=1, \beta=1, n=3$

$$
-\alpha^{\prime \prime}\left(t^{2}+t^{-2}\right)+\left(1+\alpha^{\prime \prime}\right)\left(t+t^{-1}\right)-2=\left(t^{2}+t^{-2}\right)-2
$$

$\Rightarrow \alpha^{\prime \prime}=-1 \Rightarrow \alpha=7$.
Case (2) is similar. (3) is very hard (7pages).

Proof of $\left(A_{2,3} ; 6,0\right) \cong L(25,9), \quad\left(A_{2,3} ; 7,0\right) \cong L(25,7)$

Remark. -1 (or +1) full-twist of K_{1} along K_{2} is directly related to knots of lens space surgery "Type" VII (or VIII). [Baker]

From $A_{m, n}$, we get

$$
\begin{array}{lll}
k^{+}(m, n) & m^{2}+m n+n^{2} \text {-surgey } & \text { VII } \\
k^{-}(m, m+n) & -m^{2}+m n+n^{2} \text {-surgey } & \text { VIII }
\end{array}
$$

Furthermore, $(m, n)=(2,3)$ induces the "famous examples"

From $\left(A_{2,3} ; 6\right),\left(A_{2,3} ; 7\right)$, we get
$k^{+}(2,3)=P(-2,3,7): 19$ - and 18 -surgeries are lens spaces.
$k^{-}(2,5): 31$ - and 32 -surgeries are lens spaces.

$$
(7-25=-18, \quad 7+25=32) .
$$

Thank you very much!

