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Abstract

The heuristic ideas behind the definition of the twisted Alexander polynomial are
explained. We then propose several problems about the twisted Alexander polynomial.

1 Ideas behind the definition

We first would like to explain the heuristic ideas behind the definition of the twisted Alexan-
der polynomial. For a formal treatment of the subject, the reader is refered to [3].

1.1 Represented knot diagram

Let Γ = π1(S
3 − K) be a knot group, and ρ : Γ → GL(n,R) a representation of Γ over a

field R.
Suppose that a specific diagram D of the knot K is given, and let

Γ = 〈 x1, . . . , xs | r1, . . . , rs−1 〉

be the Wirtinger presentation of Γ. Recall that we associate to each overpass of D a generator
xi, and to each crossing of D a relation of the form:

xixj = xjxk

A representation ρ can then be thought of as a way of associating to each overpass of D a
matrix Xi = ρ(xi) so that the equation

XiXj = XjXk

holds at each crossing of D. We call a knot diagram with associated matrices Xi satisfying
the Wirtinger relations a represented knot diagram.

1.2 Affine deformations

Now, let us ask if the given representation extends to an affine representation, or, equiv-
alently, if the represented knot diagram extends to an affine represented knot diagram by
matrices of the form: (

Xi dXi

0 1

)
(i = 1, . . . , s) (1)

Note that the Wirtinger relation(
Xi dXi

0 1

) (
Xj dXj

0 1

)
=

(
Xj dXj

0 1

) (
Xk dXk

0 1

)

is equivalent to the condition

dXi + (Xi − 1)dXj − XjdXk = 0.
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This may remind the reader that the free differential of the Wirtinger relator

r = xixj − xjxk

is given by

dr =
∂r

∂xi

dxi +
∂r

∂xj

dxj +
∂r

∂xk

dxk

= dxi + (xi − 1)dxj − xjdxk.

In fact, the matrices (1) define an affine representation if and only if the set of vectors
dX1, . . . , dXs satisfy the following equation.

. . . 1 . . . (Xi − 1) . . . −Xj . . .

. . . . . .

. . . ρ̃
(

∂ri

∂xj

)
. . .

. . . . . .




dX1
...

dXs

 = 0 (2)

Let us denote by M the matrix on the left hand side, and the affine deformations correspond
to the kernel of M .

One obtains certain solutions of (2) by translating the origin of the linear representation.
Namely, the matrices(

Xi dXi

0 1

)
=

(
1 v
0 1

) (
Xi 0
0 1

) (
1 −v
0 1

)
=

(
Xi (1 − Xi)v
0 1

)

define an affine representation for each vector v ∈ Rn. But these are non-interesting ones.
The real question is if there exists an affine representation that is not a mere translation of
the linear one. For simplicity of the argument, let us assume that 1 − Xs is non-singular.
Then, the question is equivalent to ask if there is a non-zero solution of (2) such that dXs = 0.
Let Ms denote the square matrix obtained from M by removing the s-th “column”. Then,
there is an interesting affine deformation if and only if the kernel of Ms is non-trivial, that
is, if and only if det Ms = 0.

1.3 Parameterized representations

Now, let α : Γ → R× be a one-dimensional representation of Γ. Since R× is commutative, α
factors through the abelianization Γ → H1(S

3 − K) = 〈t〉, and is determined by the image
of the meridian t, which we denote by t again. Thus, we have α(xi) = t ∈ R× (i = 1, . . . , s).

By taking the tensor product of ρ and α, we obtain a one-parameter family of represen-
tations ρt = ρ ⊗ α : Γ → GL(n,R). From the viewpoint of represented knot diagram, this
amounts to considering matrices of the form:(

tXi dXi

0 1

)

If we replace ρ by ρt and repeat the argument of the previous section, we obtain the following:

Claim 1 There exists an interesting affine deformation of ρt if and only if det Ms(t) = 0.

This argument does not show that det Ms(t) is independent of the choice of the knot
diagram, but at least its roots are.

Proof of the invariance of det Ms(t) and its generalization to link groups and more general
groups require some labor, and the reader finds the result of our endeavor in [3].
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2 Problems

2.1 Surjective homomorphism

Let ϕ : Γ → Γ′ be a surjective homomorphism. Then, every representation ρ′ : Γ′ →
GL(n,R) induces a representation ρ = ρ′ ◦ ϕ : Γ → GL(n,R). We raised the question in
around 2004 about the relationship between the twisted Alexander polynomial of Γ associated
to ρ and that of Γ′ associated to ρ′, and soon obtained the following ([1]).

Theorem 2 The twisted Alexander polynomial of Γ associated to ρ is divisible by the twisted
Alexander polynomial of Γ′ associated to ρ′.

2.2 Tensor product

Suppose that we have a second representation ρ′ : Γ → GL(m,R) of Γ. It is easy to show
the following.

Theorem 3 The twisted Alexander polynomial of Γ associated to ρ ⊕ ρ′ is the product of
those associated to ρ and to ρ′.

However, we know nothing about the twisted Alexander polynomial of the tensor product
representation.

Problem 1 Can we say anything about the twisted Alexander polynomial of Γ associated to
ρ ⊗ ρ′ in terms of those associated to ρ and to ρ′?

In particular:

Problem 2 Does the twisted Alexander polynomial of Γ associated to ρ⊗k contain more
information about the representation than that associated to ρ?

2.3 Generalized derivation and relative Alexander polynomial

Let us write Xi = ρ(xi) ∈ GL(n,R) and X ′
i = ρ′(xi) ∈ GL(m,R), and consider represented

knot diagrams with matrices of the form(
tXi dXi

0 X ′
i

)
,

where dXi ∈ M(n, m; R) are n × m matrices.
We may introduce a generalized derivation by the property

d(uv) = duρ′(v) + ρ(u)dv (u, v ∈ Γ),

and extend the definition of the Alexander matrix M(t) accordingly. Then, we foresee that
an interesting deformation exists if and only if det Ms(t) = 0.

Problem 3 Formalize the above argument, and define a relative twisted Alexander polyno-
mial of Γ associated to ρ and ρ′.
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2.4 twisted Alexander polynomial associated to the holonomy rep-
resentation of hyperbolic knot

Let K be a hyperbolic knot. Then, the complement of K admits a unique complete hyper-
bolic metric of finite volume, and we have a holonomy representation

µ : Γ → Isom+(H3) = PSL(2,C).

It is known that this representation lifts to

µ̃ : Γ → SL(2,C),

and the twisted Alexander polynomial of Γ associated to µ̃ becomes an invariant of the
hyperbolic knot K. We once studied this invariant, but could not find its geometric meaning.
The difficulty lies in the fact that the holonomy representation is not linear by nature. It
may be more natural to consider µ as an SO(3, 1)-representation.

Let us review how PSL(2,C) is related to SO(3, 1) according to [2]. First, recall that
the group PSL(2,C) acts on the hyperboic 3-space

H3 = { z = z0 + z1i + z2j ∈ H | z2 > 0 }

by Möbius transformations. Here, H denotes the quaternions. For a matrix

g =

(
a b
c d

)
∈ SL(2,C),

we denote the corresponding Möbius transformation by the same symbol:

g(z) = (az + b)(cz + d)−1

Now, consider the transformation

φ =
1√
2

(
1 −j
−j 1

)
: z 7→ (z − j)(−jz + 1)−1

which maps H3 onto

B3 = { z = z0 + z1i + z2j ∈ H | z2
0 + z2

1 + z2
2 < 1 }.

The composition

φgφ−1 =
1

2

(
1 −j
−j 1

) (
a b
c d

) (
1 j
j 1

)

=
1

2

(
(a + d̄) + (b − c̄)j (b + c̄) + (a − d̄)j
(b̄ + c) − (ā − c̄)j (ā + d) − (b̄ − c)j

)

=
1

2

(
e f
f̄ ē

)

defines a transformation of B3.
Next, we consider the transformation

ψ =
1√
2

(
1 `
−` 1

)
: z 7→ (z + `)(−`z + 1)−1.

Here, the symbol ` is assumed to satisfy `2 = 1 and anti-commutes with i and j. This ψ
maps B3 onto a sheet of hyperboloid

Q3
+ = { z0 + z1i + z2j + z3` | z2

0 + z2
1 + z2

2 − z2
3 = −1, z3 > 0 }.
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The composition given by the matrix

ψφgφ−1ψ−1 =
1

2

(
1 `
−` 1

) (
e f
f̄ ē

) (
1 −`
` 1

)

=

(
e + f` 0

0 ē − f̄ `

)

maps z to (e + f`)z(ē− f̄ `)−1. This not only defines a transformation of Q3
+, but also gives

a global transformation of R3,1 preserving the Minkowski form z2
0 + z2

1 + z2
2 − z2

3 . Thus, it
defines an element of SO(3, 1). See [2] for the detail.

Problem 4 Let µ : Γ → SO(3, 1) be the holonomy representation defined by the hyperbolic
structure of the complement of K. Study the twisted Alexander polynomial of Γ associated
to µ, and find its geometric meaning.

References

[1] T. Kitano, M. Suzuki and M. Wada, Twisted Alexander polynomials and surjectivity of
a group homomorphism, Algebraic & Geometric Topology, 5 (2005), 1315–1324.
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