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Twisted Alexander polynomial
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G : a finitely presentable group

α : G � Zl : a surjective homomorphism of G

ρ : G −→ GL(n; R) : a representation of G R : UFD

=⇒ ∆G,ρ =
∆N

G,ρ

∆D
G,ρ

: twisted Alexander polynomial
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Theorem. (Kitano-S.-Wada)
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G,G′ : finitely presentable groups
α : G � Zl, α′ : G′ � Zl : surjective homomorphisms
∃φ : G � G′ s.t. α = α′ ◦ φ,
=⇒ ∆N

G,ρ can be divided by ∆N
G′,ρ′ and ∆D

G,ρ = ∆D
G′,ρ′

for any representation ρ′ : G′ −→ GL(n; R), where ρ = ρ′ ◦ φ.

G
φ // //

α �� ��?
??

??
??

? G′

α′����~~
~~

~~
~~

G
φ // //

ρ $$III
III

III
I G′

ρ′zzuuuuuuuuu

Zl GL(n; R)
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Example

G = ⟨x1, . . . , xu | r1, . . . , rv⟩ , α : G � Zl , ρ : G → GL(n,R)

G′ = ⟨x1, . . . , xu | r1, . . . , rv, s⟩
π : G � G′ : the projection
Suppose that s ∈ kerα, s ∈ ker ρ

G
φ // //

α �� ��?
??

??
??

? G′

∃α′����~~
~~

~~
~~

G
φ // //

ρ $$III
III

III
I G′

∃ρ′zzuuuuuuuuu

Zl GL(n; R)

=⇒ ∆N
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G′,ρ′
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G : a finitely presentable group
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ρ : G −→ GL(n; R) : a representation of G R : UFD
=⇒ ∆G,ρ : twisted Alexander polynomial
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Twisted Alexander polynomial for knots
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G(K) : the knot group of a knot K
α : G(K) � Z : the abelianization
ρ : G(K) −→ SL(2; Z/pZ) : a representation p : prime
=⇒ ∆K,ρ : twisted Alexander polynomial for the knot K
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K : a knot, ρ : G(K) −→ SL(2; Z/pZ)
∆K,ρ : the twisted Alexander polynomial of K
∆N

K,ρ : the numerator of ∆K,ρ

∆D
K,ρ : the denominator of ∆K,ρ

.

Corollary.

.

.

.

. ..

. .

If there exists a representation ρ′ : G(K ′) → SL(2; Z/pZ) such that
for any representation ρ : G(K) → SL(2; Z/pZ),

∆N
K,ρ can not be divided by ∆N

K′,ρ′ or ∆D
K,ρ ̸= ∆D

K′,ρ′ ,

=⇒ there exists no epimorphism G(K) � G(K ′).
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Corollary.
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If there exists a representation ρ′ : G(K ′) → SL(2; Z/pZ) such that
for any representation ρ : G(K) → SL(2; Z/pZ),

∆N
K,ρ can not be divided by ∆N

K′,ρ′ or ∆D
K,ρ ̸= ∆D

K′,ρ′ ,

=⇒ there exists no epimorphism G(K) � G(K ′).

K : a knot, ∆K : the Alexander polynomial of K

.

Fact.

.

.

.

. ..

.

.

K, K ′ : two knots
If ∆K can not be divided by ∆K′ ,
=⇒ there exists no epimorphism G(K) � G(K ′).
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K : a prime knot in S3

G(K) : the knot group of K i.e. G(K) = π1(S3 − K)

.

Definition.

.

.

.

. ..

.

.

K ≥ K ′ ⇐⇒ ∃φ : G(K) � G(K ′)

.

Fact.

.

.

.

. ..

.

.

The relation “≥” is a partial order on the set of prime knots.
• K ≥ K
• K ≥ K ′, K ′ ≥ K =⇒ K = K ′

• K ≥ K ′, K ′ ≥ K ′′ =⇒ K ≥ K ′′
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Theorem (Horie-Kitano-Matsumoto-S.)

.

.

.

. ..

.

.

The partial order “≥” on the set of prime knots
with up to 11 crossings is given by

85, 810, 815, 818, 819, 820, 821, 91, 96, 916, 923, 924, 928, 940,
105, 109, 1032, 1040, 1061, 1062, 1063, 1064, 1065, 1066, 1076,
1077, 1078, 1082, 1084, 1085, 1087, 1098, 1099, 10103, 10106,
10112, 10114, 10139, 10140, 10141, 10142, 10143, 10144,
10159, 10164,
11a43, 11a44, 11a46, 11a47, 11a57, 11a58, 11a71, 11a72, 11a73,
11a100, 11a106, 11a107, 11a108, 11a109, 11a117, 11a134, 11a139,
11a157, 11a165, 11a171, 11a175, 11a176, 11a194, 11a196, 11a203,
11a212, 11a216, 11a223, 11a231, 11a232, 11a236, 11a244, 11a245,
11a261, 11a263, 11a264, 11a286, 11a305, 11a306, 11a318, 11a332,
11a338, 11a340, 11a351, 11a352, 11a355, 11n71, 11n72, 11n73,
11n74, 11n75, 11n76, 11n77, 11n78, 11n81, 11n85, 11n86, 11n87,
11n94, 11n104, 11n105, 11n106, 11n107, 11n136, 11n164, 11n183,
11n184, 11n185



≥ 31
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818, 937, 940,
1058, 1059, 1060, 10122, 10136, 10137, 10138,
11a5, 11a6, 11a51, 11a132, 11a239, 11a297, 11a348, 11a349,
11n100, 11n148, 11n157, 11n165

 ≥ 41

11n78, 11n148 ≥ 51

1074, 10120, 10122, 11n71, 11n185 ≥ 52

11a352 ≥ 61

11a351 ≥ 62

11a47, 11a239 ≥ 63
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To determine the partial order on the set of prime knots

For each pair of two prime knots K, K ′,
determine whether there exists an epimorphism

φ : G(K) � G(K ′)

The number of prime knots with up to 11 crossings is 801.

Then the number of cases to consider is 801P2 = 640,800.

The number of prime knots with up to 12 crossings is 2,977.

Then the number of cases to consider is 2977P2 = 4,429,776.
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To prove the existence of an epimorphism

.

.

.

. ..

.

.

Constructing an epimorphism explicitly

Example. 818 ≥ 31 ? i.e. ?∃φ : G(818) � G(31)

818 = , 31 =

G(818) =

⟨
x1, x2, x3,
x4, x5, x6,
x7, x8

∣∣∣∣∣ x4x1x̄4x̄2, x5x3x̄5x̄2, x6x3x̄6x̄4,
x7x5x̄7x̄4, x8x5x̄8x̄6, x1x7x̄1x̄6,
x2x7x̄2x̄8

⟩
G(31) = ⟨y1, y2, y3 | y3y1ȳ3ȳ2, y1y2ȳ1ȳ3⟩

φ(x1) = y1, φ(x2) = y2, φ(x3) = y1, φ(x4) = y3,
φ(x5) = y3, φ(x6) = y1y3ȳ1, φ(x7) = y3, φ(x8) = y1

818 ≥ 31
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To prove the non-existence of any epimorphism

.

.

.

. ..

.

.

(1) By the (classical) Alexander polynomial

K : a knot
∆K : the Alexander polynomial of K

.

Fact.

.

.

.

. ..

.

.

K, K ′ : two knots
If ∆K can not be divided by ∆K′ ,
=⇒ there exists no epimorphism G(K) � G(K ′).
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Example. 41 ≥ 821 ? i.e. ?∃φ : G(41) � G(821)

41 = , 821 =

∆41 = t2 − 3t + 1, ∆821 = t4 − 4t3 + 5t2 − 4t + 1

∆41

∆821

=
t2 − 3t + 1

t4 − 4t3 + 5t2 − 4t + 1

∆821 can not divide ∆41

41 � 821
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To prove the non-existence of any epimorphism

.

.
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.

(1) By the (classical) Alexander polynomial
(2) By the twisted Alexander polynomial

∆K,ρ : the twisted Alexander polynomial of K
∆N

K,ρ , ∆D
K,ρ : the numerator and denominator of ∆K,ρ

.

Theorem. (Kitano-S.-Wada)

.

.

.

. ..

.

.

If there exists a representation ρ′ : G(K ′) → SL(2; Z/pZ) such that
for any representation ρ : G(K) → SL(2; Z/pZ),

∆N
K,ρ can not be divided by ∆N

K′,ρ′ or ∆D
K,ρ ̸= ∆D

K′,ρ′ ,

=⇒ there exists no epimorphism G(K) � G(K ′).
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For a certain representation ρ′ : G(41) −→ SL(2; Z/3Z),

∆N
41,ρ′ = t4 + t2 + 1, ∆D

41,ρ′ = t2 + t + 1

Table of the twisted Alexander polynomials of G(821)
for all representations ρ : G(821) −→ SL(2; Z/3Z)

∆N
821,ρi

∆D
821,ρi

ρ1 t8 + t4 + 1 t2 + 1
ρ2 t8 + t7 + 2t6 + 2t4 + 2t2 + t + 1 t2 + t + 1
ρ3 t8 + t7 + 2t6 + 2t4 + 2t2 + t + 1 t2 + 2t + 1
ρ4 t8 + 2t7 + 2t6 + 2t4 + 2t2 + 2t + 1 t2 + t + 1
ρ5 t8 + 2t7 + 2t6 + 2t4 + 2t2 + 2t + 1 t2 + 2t + 1

821 � 41
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To determine the partial order on the set of prime knots

For each pair of two prime knots K, K ′,
determine whether there exists an epimorphism

φ : G(K) � G(K ′)

The number of prime knots with up to 11 crossings is 801.

Then the number of cases to consider is 801P2 = 640,800.

146 cases: existence of an epimorphism
637,501 cases : non-existence by the Alexander polynomial
3,153 cases : non-existence by the twisted Alexander poly.
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Theorem (Horie-Kitano-Matsumoto-S.)

.

.

.
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.

.
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
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.

Definition

.

.

.

. ..

.

.

K : a knot
D : a regular diagram of K
v⃗(D) : the minimal number of local maximal points of D

br(K) = min
D

v⃗(D)

Example. 2-bridge knot 74

6

-
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Example. 2-bridge knot 74

=

[3, 1, 3]

=⇒ [3, 1, 3] =
1

3 + 1
1+ 1

3

=
4
15

[a1, a2, . . . , a2k+1] =
1

a1 + 1
a2+ 1

...+ 1
a2k+1

= r ∈ Q

2-bridge knot =⇒ q

p
∈ Q
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q

p
∈ Q ⇐⇒ 2-bridge knot K(q/p)

.

Theorem (Schubert)

.

.

.

. ..

. .

2-bridge knots K(q/p) and K(q′/p′) are equivalent,
if and only if the following conditions hold.
(1) p = p′.
(2) Either q ≡ q′ (mod p) or qq′ ≡ ±1 (mod p).
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.

Theorem (Kitano-S.)

.

.

.

. ..

.

.

The partial order “≥” on the set of 2-bridge knots
with up to 12 crossings is given by

91, 96, 923,
105, 109, 1032, 1040,
11a117, 11a175, 11a176, 11a203,
11a236, 11a306, 11a355
12a302, 12a528, 12a579, 12a580,
12a718, 12a736, 12a1136, 12a1276


≥ 31,

12a259, 12a471, 12a506 ≥ 41

.

Remark

.

.

.

. ..

.

.

There exist 361 2-bridge knots with up to 12 crossings.

Macky Epimorphisms between knot groups



. . . . . .

For r = [m1,m2, . . . , mk] ∈ Q and ϵ ∈ {+,−}, put

a = (m1,m2, . . . , mk), ϵa = (ϵm1, ϵm2, . . . , ϵmk)
a−1 = (mk,mk−1, . . . , m1), ϵa−1 = (ϵmk, ϵmk−1, . . . , ϵm1)

.

Theorem (Ohtsuki-Riley-Sakuma)

.

.

.

. ..

. .

If a rational number r̃ has a continued fraction expansion

r̃ = 2c + [ϵ1a, 2c1, ϵ2a
−1, 2c2, . . . , 2cn−1, ϵna(−1)n−1

]

where ϵi ∈ {+,−} and c, ci ∈ Z, then there exists an (upper-
meridian-pair-preserving) epimorphism G(K(r̃)) � G(K(r)).
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Case 1. Onto 31 = K(1/3) 1
3 = [3],

.

Theorem (Ohtsuki-Riley-Sakuma)

.

.

.

. ..

.

.

If a 2-bridge knot K(r̃) admits a continued fraction expansion

r̃ = [±3, 2a1, ±3, 2a2, ±3, . . . , ±3, 2an, ±3], ai ∈ Z,

then there exists an epimorphism G(K(r̃)) � G(31).

Example. 109 = K(7/39),

109 = 31 =

7
39

= [3, 0, 3, −2, −3] =⇒ G(109) � G(31)
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Case 1. Onto 31 = K(1/3) 1
3 = [3],

.

Theorem (Ohtsuki-Riley-Sakuma)

.

.

.

. ..

.

.

If a 2-bridge knot K(r̃) admits a continued fraction expansion

r̃ = [±3, 2a1, ±3, 2a2, ±3, . . . , ±3, 2an, ±3], ai ∈ Z,

then there exists an epimorphism G(K(r̃)) � G(31).

Example. 109 = K(7/39),

109 = 31 =

7
39

= [3, 0, 3, −2, −3] =⇒ G(109) � G(31)
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Case 2. Onto 41 = K(2/5) 2
5 = [2, 2],

.

Theorem (Ohtsuki-Riley-Sakuma)

.

.

.

. ..

.

.

If a 2-bridge knot K(r̃) admits a continued fraction expansion

r̃ = [±2, ±2, 2a1, ±2, ±2, 2a2, . . . , ±2, ±2, 2an, ±2, ±2],

then there exists an epimorphism G(K(r̃)) � G(41).

Example. 12a259 = K(52/115),

12a259 = 41 =

52
115

= [2, 2, 0, 2, 2, −2, 2, 2] =⇒ G(12a259) � G(41)
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Case 2. Onto 41 = K(2/5) 2
5 = [2, 2],

.

Theorem (Ohtsuki-Riley-Sakuma)

.

.

.

. ..

.

.

If a 2-bridge knot K(r̃) admits a continued fraction expansion

r̃ = [±2, ±2, 2a1, ±2, ±2, 2a2, . . . , ±2, ±2, 2an, ±2, ±2],

then there exists an epimorphism G(K(r̃)) � G(41).

Example. 12a259 = K(52/115),

12a259 = 41 =

52
115

= [2, 2, 0, 2, 2, −2, 2, 2] =⇒ G(12a259) � G(41)
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.

Theorem (Ohtsuki-Riley-Sakuma)

.

.

.

. ..

.

.

If a rational number r̃ has a continued fraction expansion

r̃ = 2c + [ϵ1a, 2c1, ϵ2a
−1, 2c2, . . . , 2cn−1, ϵna(−1)n−1

]

where ϵi ∈ {+,−} and c, ci ∈ Z, then there exists an (upper-
meridian-pair-preserving) epimorphism G(K(r̃)) � G(K(r)).

.

Problem

.

.

.

. ..

.

.

Is every pair of 2-bridge knots (K(r̃),K(r)) with G(K(r̃)) �
G(K(r)) given by the Ohtsuki-Riley-Sakuma construction?
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.

Theorem (Ohtsuki-Riley-Sakuma)

.

.

.

. ..

.

.

If a rational number r̃ has a continued fraction expansion

r̃ = 2c + [ϵ1a, 2c1, ϵ2a
−1, 2c2, . . . , 2cn−1, ϵna(−1)n−1

]

where ϵi ∈ {+,−} and c, ci ∈ Z, then there exists an (upper-
meridian-pair-preserving) epimorphism G(K(r̃)) � G(K(r)).

.

Theorem (Lee-Sakuma)

.

.

.

. ..

.

.

If there exists an upper-meridian-pair-preserving epimorphism
G(K(r̃)) � G(K(r)), then a rational number r̃ has a continued
fraction expansion

r̃ = 2c + [ϵ1a, 2c1, ϵ2a
−1, 2c2, . . . , 2cn−1, ϵna(−1)n−1

]
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.

Theorem (Lee-Sakuma)

.

.

.

. ..

.

.

If there exists an upper-meridian-pair-preserving epimorphism
G(K(r̃)) � G(K(r)), then a rational number r̃ has a continued
fraction expansion

r̃ = 2c + [ϵ1a, 2c1, ϵ2a
−1, 2c2, . . . , 2cn−1, ϵna(−1)n−1

]

.

Problem

.

.

.

. ..

.

.

How about non-upper-meridian-pair-preserving epimorphism?
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.

Problem

.

.

.

. ..

.

.

Does there eixst a 2-bridge knot which surjects onto G(31) and onto
G(41)?

c.f. 3-bridge knot 818

≥ , ≥

818 ≥ 31, 818 ≥ 41

c.f. 2-bridge link 11
30

11
30

= [3, −4, 3] = [2, 2, −2, 2, 2]
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.

Problem

.

.

.

. ..

.

.

Does there eixst a 2-bridge knot which surjects onto G(31) and onto
G(41)?

c.f. 3-bridge knot 818

≥ , ≥

818 ≥ 31, 818 ≥ 41

c.f. 2-bridge link 11
30

11
30

= [3, −4, 3] = [2, 2, −2, 2, 2]
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.

Problem

.

.

.

. ..

.

.

Does there eixst a 2-bridge knot which surjects onto G(31) and onto
G(41)?

c.f. 3-bridge knot 818

≥ , ≥

818 ≥ 31, 818 ≥ 41

c.f. 2-bridge link 11
30

11
30

= [3, −4, 3] = [2, 2, −2, 2, 2]
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.

Problem

.

.

.

. ..

.

.

Does there eixst a 2-bridge knot which surjects onto G(31) and onto
G(41)?

.

Problem

.

.

.

. ..

.

.

For given two rational numbers r, r′, determine whether there eixst
a 2-bridge knot K(r̃) such that K(r̃) ≥ K(r) and K(r̃) ≥ K(r′).

Example. r = 1/3, r′ = 2/5

?∃r̃ ∈ Q s.t.
K(r̃) ≥ K(1/3) = 31

K(r̃) ≥ K(2/5) = 41
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.

Problem

.

.

.

. ..

.

.

For given two rational numbers r, r′, determine whether there eixst
a 2-bridge knot K(r̃) such that K(r̃) ≥ K(r) and K(r̃) ≥ K(r′).

.

Theorem. (Hoste-Shanahan)

.

.

.

. ..

. .

We can determine it for the ORS construction.

Example.
There does not eixst a 2-bridge knot which surjects onto G(31)
and onto G(41) with respect to the ORS construction.
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