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Twisted Alexander polynomial

G : a finitely presentable group

a:G — 7! : a surjective homomorphism of G
p: G — GL(n;R) : a representation of G R : UFD

N
AG,p
D
AG,p

— Ag,p = . twisted Alexander polynomial
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Theorem. (Kitano-S.-Wada)

G, G’ : finitely presentable groups

a:G -7 oG — 7' surjective homomorphisms
3p:G > G st a=d oy,

= Agp can be divided by Ag,’p, and Agp = Agﬁp’

for any representation p’ : G’ — GL(n; R), where p = p/ o .

—q « - el

NN A

71 GL(n; R)

G
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Example
G={r1,....,0q | 71,...,7%), a:G—=»7Z', p:G— GL(n,R)
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Example

G=(x1,...,04 | T1,...,7), a:G—=7Z, p:G— GL(n,R)
G =(x1,...,2y | 71, ., 70, S)

7w : G — G’ : the projection
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Example

G=(x1,...,04 | T1,...,7), a:G—=7Z, p:G— GL(n,R)
G =(x1,...,2y | 71, ., 70, S)

7w : G — G’ : the projection

Suppose that s € ker a, s € ker p

P ’ ® G’

G
x A/ \ Hp/

7l GL(n; R)

= Agp can be divided by Agﬁp/ and Ag,p = Agﬁp’

Macky Epimorphisms between knot groups



Twisted Alexander polynomial

G : a finitely presentable group

a:G — 7! : a surjective homomorphism

p: G — GL(n;R) : a representation of G R : UFD
— Ag,, : twisted Alexander polynomial
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Twisted Alexander polynomial

G : a finitely presentable group

a:G — 7! : a surjective homomorphism

p: G — GL(n;R) : a representation of G R : UFD
— Ag,, : twisted Alexander polynomial

Twisted Alexander polynomial for knots

G(K) : the knot group of a knot K

a: G(K) — Z : the abelianization

p:G(K) — SL(2;Z/pZ) : a representation p : prime
— Ak, : twisted Alexander polynomial for the knot K
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K : a knot, p:G(K)— SL(2;Z/pZ)
Ak, 1 the twisted Alexander polynomial of K
A%’p : the numerator of Ay ,

A%p : the denominator of Ag ,

Corollary.

If there exists a representation p' : G(K') — SL(2;Z/pZ) such that
for any representation p : G(K) — SL(2;Z/pZ),

Afé’p can not be divided by A%’w’ or Af(’p =L AD,,ﬂp/.

—> there exists no epimorphism G(K) — G(K’).
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Corollary.

If there exists a representation p’' : G(K') — SL(2;Z/pZ) such that
for any representation p : G(K) — SL(2;Z/pZ),

A],\;p can not be divided by Afg,_ﬂ, or Agp £ A?{,J),,

— there exists no epimorphism G(K) - G(K').

K : a knot, Ak : the Alexander polynomial of K

K, K’ : two knots
If Ax can not be divided by Ak,
— there exists no epimorphism G(K) - G(K').
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K : a prime knot in S3
G(K) : the knot group of K i.e. G(K) = m(S% — K)

Definition.

K>K «— 3:GK)— GK")
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K : a prime knot in S3
G(K) : the knot group of K i.e. G(K) = m(S% — K)

Definition.

K>K «— 3:GK)— GK")

The relation “>" is a partial order on the set of prime knots.
e K > K

e K >K' K'>K — K=K’

e K >K' K >K'" — K>K"
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Theorem (Horie-Kitano-Matsumoto-S.)

The partial order “>" on the set of prime knots
with up to 11 crossings is given by

85, 810, 815, 818, 819, 820, 821, 91, 96, 916, 923, 924, 928, 940,

105, 109, 1032, 1049, 1061, 1062, 1063, 1064, 10g5, 1066, 1076,
1077, 1078, 1082, 1084, 1085, 1087, 1098, 1099, 10103, 10106,
10112, 10114, 10139, 10140, 10141, 10142, 10143, 10144,

10159, 10164,

11lays, 11agq, 11aygg, 11ayg7, 11as7, 11ass, 11a71, 11ars, 11azs,
11ai00, 11aioe, 11asor, 11aios, 11a109, 11a117, 11ais4, 11a;3g,
11ais7, 11aies, 11aizi, 11asrs, 11aize, 11aigs, 11aige, 11azos,
11a212, 11az16, 11ages, 11agsy, 11az3z, 11azse, 11ag44, 11agys,
1Tage1, 11ages, 11ages, 11asse, 11ases, 11ases, 11asis, 11assz,
11@3387 11(1340, 11a351, 11&352, 11(1355, 117’L71, 111’L72, 117173,
117’L74, 117”[,75, 11”767 111@77, 1177,78, 11”817 11TL85, 11n86, 1177,87,
117194, 1]_TL104, 1171105, 11”1067 1171107, 11n136, 11”1647 11n183,
117’L184, 117’L185
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818, 937, 940,

1058, 1059, 1060, 10122, 10136, 10137, 10138,

11&5, 11(16, 11@51, 11@132, 11a239, 11&297, 11&348, 11a349,
1171100, 11n148, 11n157, 11n165

>4

11n7g, 11n148 > 51

1074, 10120, 10192, 11071, 110185 > 52

1lasso > 61
1lass1 > 62

11lay7, 11azsg > 63

Macky Epimorphisms between knot groups



To determine the partial order on the set of prime knots

For each pair of two prime knots K, K’,
determine whether there exists an epimorphism

p: G(K) > G(K)
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To determine the partial order on the set of prime knots

For each pair of two prime knots K, K’,
determine whether there exists an epimorphism

p: G(K) > G(K)

The number of prime knots with up to 11 crossings is 801.
Then the number of cases to consider is gg1 Py = 640, 800.
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To determine the partial order on the set of prime knots

For each pair of two prime knots K, K’,
determine whether there exists an epimorphism

p: G(K) > G(K)

The number of prime knots with up to 11 crossings is 801.
Then the number of cases to consider is gg1 Py = 640, 800.

The number of prime knots with up to 12 crossings is 2,977.
Then the number of cases to consider is 9977Po = 4,429,776.
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existence
Constructing an epimorphism explicitly J
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existence

Constructing an epimorphism explicitly

Example. 8;3>3; 7 e Jp:G(81z) - G(31)

T1, X2, T3, | T4T1T4T2, T5TIT5T2, TETITEL4,
G(818) = { 4,25,%6, | T7L5T7L4, T3T5T8T6, L127T1T6,
T7, T8 TT7T2Ts

G(31) = (Y1, y2, Y3 | Y3y193Y2, Y1y29173)
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existence

Constructing an epimorphism explicitly

Example. 8;3>3; 7 e Jp:G(81z) - G(31)

T1, X2, T3, | T4T1T4T2, T5TIT5T2, TETITEL4,

G(818) = { 4,25,%6, | T7L5T7L4, T3T5T8T6, L127T1T6,
7, T8 TX7T2T8

G(31) = (y1,y2, Y3 | ysy19302, Y1y20173)

(1) =y, @lx2) =y2,  @as) =y, @(rs) =ys,
o(xs) =y3, ©(x6) =11y301, @(x7) =y3, @(x8) =11
818 > 31
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non-existence

(1) By the (classical) Alexander polynomial

K : a knot
Ag : the Alexander polynomial of K

K, K’ : two knots
If Ag can not be divided by Ay,
— there exists no epimorphism G(K) - G(K').
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Example. 4; >85 7 e Pp:G(41) - G(821)

) @

—t2—3t+1 Ag,, =t 4t3+5t2 4t 41
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Example. 4; >85 7 e Pp:G(41) - G(821)

) @

—t2—3t+1 Ag,, =t 4t3+5t2 4t 41

Ay 2 —3t+1
Ag,, th—4at3 +5t2 4t +1

Ag,, can not divide Ay,

41 # 8
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Example. 8y >4; 7 e Pp:G(8y) - G(41)

Ag,, =t —4t3 4+ 512 —4t +1, Ay, =t —3t+1
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Example. 8y >4; 7 e Pp:G(8y) - G(41)

S ©
Ag,, =t —4t3 4+ 512 —4t +1, Ay, =t —3t+1

A tt— 4¢3 2 _4t+1
821 _ AL S S
A41 t2—3t—|—1

Ay, can divide Ag,, !

We cannot determine the existence of an epimorphism
from G(821) onto G(41) by the Alexander polynomial.
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non-existence

(1) By the (classical) Alexander polynomial
(2) By the twisted Alexander polynomial

Ak, : the twisted Alexander polynomial of K
A%’p,Agp : the numerator and denominator of Ag ,

Theorem. (Kitano-S.-Wada)

If there exists a representation p’' : G(K') — SL(2;Z/pZ) such that
for any representation p : G(K) — SL(2;Z/pZ),

Aﬁ can not be divided by A,// , or AKp =L AK, r

—> there exists no epimorphism G(K) — G(K’).
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Example. 8y >4; 7 e Pp:G(8y) - G(41)

X
Agy,, =t —4t3 4+ 512 —4t +1, Ay, =t —3t+1

A 4 — 4¢3 2 _4t41
A41 t2—3t—|—1

A41 divides Agm!

We cannot determine the existence of an epimorphism
from G(821) onto G(41) by the Alexander polynomial.
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For a certain representation p' : G(41) — SL(2;Z/37Z),

AY =ttt 41, AP = +t+1
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For a certain representation p' : G(41) — SL(2;Z/37Z),

AY =ttt 41, AP = +t+1

Table of the twisted Alexander polynomials of G(821)
for all representations p : G(821) — SL(2;Z/37Z)

N D
A821 P A8217Pi
p1 | B+t 4+1 241

po |8 HtT 20 2t 1202 4t + 1 2 +t4+1
p3 | B+ tT 2 L2t p 22t 41 |22t 41
pa | B +20T 4260 42t 202 2t +1 [ 2+t + 1
ps | 18 +2t7 425 42 22 2+ 1 | 2+ 2t + 1
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For a certain representation p' : G(41) — SL(2;Z/37Z),

AY =ttt 41, AP = +t+1

Table of the twisted Alexander polynomials of G(821)
for all representations p : G(821) — SL(2;Z/37Z)

N D
A821 P A8217Pi
p1 | B+t 4+1 241

po | tB+tT 25 2t 22 1 2 +t4+1
p3 |8 +tT+ 25 p2tt 22 e+ 1 |22t 41
py | 18 F2T 425 12 122 1241 | 2+t 41
ps | 18 4+2t7 425 42 22 2+ 1 | 2+ 2t + 1

81 7 4
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To determine the partial order on the set of prime knots

For each pair of two prime knots K, K,
determine whether there exists an epimorphism

¢: G(K) - G(K')
The number of prime knots with up to 11 crossings is 801.
Then the number of cases to consider is gg1 P2 = 640, 800.

146 cases: existence of an epimorphism
637,501 cases : non-existence by the Alexander polynomial
3,153 cases : non-existence by the twisted Alexander poly.
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Theorem (Horie-Kitano-Matsumoto-S.)

The partial order “>" on the set of prime knots
with up to 11 crossings is given by

85, 810, 815, 818, 819, 820, 821, 91, 96, 916, 923, 924, 928, 940,

105, 109, 1032, 1049, 1061, 1062, 1063, 1064, 10g5, 1066, 1076,
1077, 1078, 1082, 1084, 1085, 1087, 1098, 1099, 10103, 10106,
10112, 10114, 10139, 10140, 10141, 10142, 10143, 10144,

10159, 10164,

11lays, 11agq, 11aygg, 11ayg7, 11as7, 11ass, 11a71, 11ars, 11azs,
11ai00, 11aioe, 11asor, 11aios, 11a109, 11a117, 11ais4, 11a;3g,
11ais7, 11aies, 11aizi, 11asrs, 11aize, 11aigs, 11aige, 11azos,
11a212, 11az16, 11ages, 11agsy, 11az3z, 11azse, 11ag44, 11agys,
1Tage1, 11ages, 11ages, 11asse, 11ases, 11ases, 11asis, 11assz,
11@3387 11(1340, 11a351, 11&352, 11(1355, 117’L71, 111’L72, 117173,
117’L74, 117”[,75, 11”767 111@77, 1177,78, 11”817 11TL85, 11n86, 1177,87,
117194, 1]_TL104, 1171105, 11”1067 1171107, 11n136, 11”1647 11n183,
117’L184, 117’L185
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818, 937, 940,

1058, 1059, 1060, 10122, 10136, 10137, 10138,

11&5, 11(16, 11@51, 11@132, 11a239, 11&297, 11&348, 11a349,
1171100, 11n148, 11n157, 11n165

>4

11n7g, 11n148 > 51

1074, 10120, 10192, 11071, 110185 > 52

1lasso > 61
1lass1 > 62

11lay7, 11azsg > 63
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Definition
K : a knot
D : a regular diagram of K

—

U(D) : the minimal number of local maximal points of D

br(K) = mDin U(D)

Example. 2-bridge knot 74
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2-bridge knot 74
L4
15

Example.
m_((/\//\/—\// /\/) )] = [3,1,3]:3+
[3,1,3] s

1
la, ag, ..., agrq1] = T =r €Q
a1+ az+ L
.-+a2k1+1
- 4 €eQ
p

2-bridge knot
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q €Q <= 2-bridge knot K(q/p)
p

Theorem (Schubert)

2-bridge knots K (¢/p) and K(q'/p’) are equivalent,
if and only if the following conditions hold.
(Dp=p"

(2) Either ¢ = ¢/ (mod p) or g¢' = £1 (mod p).
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Theorem (Kitano-S.)

The partial order “>" on the set of 2-bridge knots
with up to 12 crossings is given by

91,96, 923,

105, 109, 1032, 1040,
11a117,11a175,11a176, 112203,
116236, 11a306, 11a355

12a302, 12a528, 124579, 12a580,
12a718,12a736,12a1136, 1241276

> 31,

124259, 124471, 124506 > 44

There exist 361 2-bridge knots with up to 12 crossings.
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For r = [m1,ma,...,mi] € Q and € € {+, -}, put

a=(my,ma,...,mg), ea = (emy, ema, ..., emy)
ail = (mkamk—b s ,ml), eafl = (emk,emk_l, .. .,eml)

Theorem (Ohtsuki-Riley-Sakuma)

If a rational number 7 has a continued fraction expansion

~ —1 —1 n—1
7 =2c+ [e1a, 2¢1, €2a” 7, 2¢2, ..., 2¢p—1, enal™V ]

where ¢; € {+,—} and ¢,¢; € Z, then there exists an (upper-
meridian-pair-preserving) epimorphism G (K (7)) — G(K(r)).
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Case 1. Onto3;=K(1/3) %=[3],
Theorem (Ohtsuki-Riley-Sakuma)

If a 2-bridge knot K (7) admits a continued fraction expansion
7 = [£3, 2a1, £3, 2a9, £3, ..., £3, 2a,, £3], a; € 7,

then there exists an epimorphism G(K (7)) - G(31).
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Case 1. Onto3;=K(1/3) %=[3],
Theorem (Ohtsuki-Riley-Sakuma)

If a 2-bridge knot K (7) admits a continued fraction expansion
7 = [£3, 2a1, £3, 2a9, £3, ..., £3, 2a,, £3], a; € 7,

then there exists an epimorphism G(K (7)) - G(31).

Example. 109 = K(7/39),

% =[3,0,3, =2, 3] — G(109) » G(31)
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Case 2. Onto4; =K(2/5) 2=1[2,2],
Theorem (Ohtsuki-Riley-Sakuma)

If a 2-bridge knot K (7) admits a continued fraction expansion
7 =[£2, £2, 2a;, £2, £2, 2a9, ..., £2, £2, 2a,, £2, £2],

then there exists an epimorphism G(K (7)) - G(41).
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Case 2. Onto4; =K(2/5) 2=1[2,2],
Theorem (Ohtsuki-Riley-Sakuma)

If a 2-bridge knot K (7) admits a continued fraction expansion
7 =[£2, £2, 2a;, £2, £2, 2a9, ..., £2, £2, 2a,, £2, £2],

then there exists an epimorphism G(K (7)) - G(41).

Example. 124259 = (52 115),

52
=12,2,0,2,2, -2, 2 2] = G(12a259) 47)

115
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Theorem (Ohtsuki-Riley-Sakuma)

If a rational number 7 has a continued fraction expansion

~ —1 —1 n—1
7 =2c+ [e1a, 2¢1, €2a” ", 2¢9, ..., 2¢p—1, enal™b ]

where ¢; € {+,—} and ¢,¢; € Z, then there exists an (upper-
meridian-pair-preserving) epimorphism G (K (7)) — G(K(r)).

v

Problem

Is every pair of 2-bridge knots (K (7),K(r)) with G(K(F)) —
G(K(r)) given by the Ohtsuki-Riley-Sakuma construction?
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Theorem (Ohtsuki-Riley-Sakuma)

If a rational number 7 has a continued fraction expansion

~ =1l —1 n—1
7 =2c+ [e1a, 2¢1, €2a” ", 2¢9, ..., 21, enal™V ]

where ¢; € {+,—} and ¢,¢; € Z, then there exists an (upper-
meridian-pair-preserving) epimorphism G (K (7)) — G(K(r)).

Theorem (Lee-Sakuma)

If there exists an upper-meridian-pair-preserving epimorphism
G(K(7)) — G(K(r)), then a rational number 7 has a continued
fraction expansion

~ =1l —1 n—1
7 =2c+ [e1a, 2¢1, €2a” ", 2¢2, ..., 21, enal™V ]
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Theorem (Lee-Sakuma)

If there exists an upper-meridian-pair-preserving epimorphism
G(K(7)) — G(K(r)), then a rational number 7 has a continued
fraction expansion

~ —1 —1 n—1
7 =2c+ [e1a, 2¢1, €e2a” 7, 2¢2, ..., 201, enal™V ]

Problem

How about non-upper-meridian-pair-preserving epimorphism?

Macky Epimorphisms between knot groups



Problem

Does there eixst a 2-bridge knot which surjects onto G(3;) and onto
G(4)?
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Problem

Does there eixst a 2-bridge knot which surjects onto G(3;) and onto
G(4)?

c.f. 3-bridge knot 813

818 = 31, 818 > 41
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Problem

Does there eixst a 2-bridge knot which surjects onto G(3;) and onto
G(4)?

c.f. 3-bridge knot 813

818 = 31, 818 > 41

c.f.  2-bridge link £

11
— =03, -4,3]=[22 -2,2,2
30 [’ 7] [’7 77]
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Does there eixst a 2-bridge knot which surjects onto G(3;) and onto
G(41)?

Problem

| A\

For given two rational numbers r, 7/, determine whether there eixst
a 2-bridge knot K () such that K(7) > K(r) and K(7) > K(r').

Example. r=1/3, " =2/5

- K(7) > K(1/3) = 3
TEQ st i) S REm — 4
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Problem

For given two rational numbers r, 7/, determine whether there eixst
a 2-bridge knot K (7) such that K(7) > K(r) and K(7) > K(r').

Theorem. (Hoste-Shanahan)

We can determine it for the ORS construction.

Example.
There does not eixst a 2-bridge knot which surjects onto G(31)
and onto G(4;) with respect to the ORS construction.
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