Twisted Alexander polynomials and CHARACTER VARIETIES FOR 2-BRIDGE KNOTS

Taehee Kim (Konkuk University) Joint with Takayuki Morifuji

Twisted Alexander invariants and topology of low-dimensional manifolds
September 14, 2010

- K: knot in S^{3}
- $E(K)=S^{3}-N(K)$
- $G(K)=\pi_{1}(E(K))$
- A knot K is fibered if $E(K)$ is fibered over S^{1}.

Theorem If a knot K is fibered, then $\Delta_{K}(t)$ is monic and $\operatorname{deg}\left(\Delta_{K}(t)\right)=2 \operatorname{genus}(K)$.

The converse of the above theorem does not hold.

Question Do the twisted Alexander polynomials for K detect if K is fibered?

Theorem (Friedl-Vidussi) The twisted Alexander polynomials for K associated to all finite representations determine if K is fibered.

Question Do the twisted Alexander polynomials for K associated to $S L(2, \mathbb{C})$-representations detect if K is fibered? Do they detect the genus of K ?

Twisted Alexander polynomials

- $G(K)=\left\langle x_{1}, x_{2}, \ldots, x_{n} \mid r_{1}, r_{2}, \ldots, r_{n-1}\right\rangle$ Wirtinger presentation
- $\alpha: G(K) \rightarrow \mathbb{Z}=\langle t\rangle$
- $\rho: G(K) \rightarrow S L(2, \mathbb{C})$
- $\tilde{\rho} \otimes \tilde{\alpha}: \mathbb{Z}[G(K)] \rightarrow M\left(2, \mathbb{C}\left[t^{ \pm 1}\right]\right)$
- $\Phi: \mathbb{Z}\left[F_{n}\right] \rightarrow \mathbb{Z}[G(K)] \rightarrow M\left(2, \mathbb{C}\left[t^{ \pm 1}\right]\right)$
- $M=\left(m_{i j}\right)$ is an $(n-1) \times n$ matrix where

$$
m_{i j}=\Phi\left(\frac{\partial r_{i}}{\partial x_{j}}\right) \in M\left(2, \mathbb{C}\left[t^{ \pm 1}\right]\right)
$$

- M_{j} is the $(n-1) \times(n-1)$ matrix obtained from M by deleting the j th column.
- $M_{j} \in M\left(2(n-1) \times 2(n-1), \mathbb{C}\left[t^{ \pm 1}\right]\right)$

Definition (Wada) The twisted Alexander polynomial of K associated to ρ is

$$
\Delta_{K, \rho}(t)=\frac{\operatorname{det} M_{j}}{\operatorname{det} \Phi\left(1-x_{j}\right)} \in \mathbb{C}(t)
$$

and it is well-defined up to multiplication by $t^{2 k}(k \in \mathbb{Z})$.

- If ρ is conjugate to ρ^{\prime}, then $\Delta_{K, \rho}(t)=\Delta_{K, \rho^{\prime}}(t)$
- For a ring R and a finitely presented group G, the twisted Alexander polynomial of G associated to a $G L(n, R)$-representation is similarly defined.
- There are other versions of the twisted Alexander polynomial: X. S. Lin, Jiang-Wang, Kirk-Livingston, and so on.

Let $\rho: G(K) \rightarrow S L(2, \mathbb{C})$ be a nonabelian representation and g the genus of K.

Theorem (Kitano-Morifuji) $\Delta_{K, \rho}(t)$ is a (Laurent) polynomial, i.e., $\Delta_{K, \rho}(t) \in \mathbb{C}\left[t^{ \pm 1}\right]$.

Definition $\Delta_{K, \rho}(t)$ is monic if the leading coefficient is 1.

Theorem (Friedl-K.) $\operatorname{deg}\left(\Delta_{K, \rho}(t)\right) \leq 4 g-2$
Theorem (Goda-Kitano-Morifuji, Kitano-Morifuji) If K is fibered, then $\Delta_{K, \rho}(t)$ is monic and $\operatorname{deg}\left(\Delta_{K, \rho}(t)\right)=4 g-2$.

Character Varieties

- $R(K)=\operatorname{Hom}(G(K), S L(2, \mathbb{C})): S L(2, \mathbb{C})$-representation variety of K
- For $\rho \in R$, the character $\chi_{\rho}: G(K) \rightarrow \mathbb{C}$ is defined by

$$
\chi_{\rho}(x)=\operatorname{tr} \rho(x)
$$

- $X(K)=\left\{\chi_{\rho} \mid \rho \in R(K)\right\}: S L(2, \mathbb{C})$-character variety of K
- $R^{\text {nab }}(K)=\{\rho \in R(K) \mid \rho$ is nonabelian $\}$
- $X^{n a b}(K)=\left\{\chi_{\rho} \mid \rho \in R^{n a b}(K)\right\}$
- For $\rho, \rho^{\prime} \in G(K)$, if $\chi_{\rho}=\chi_{\rho^{\prime}}$ and ρ is irreducible, then ρ is conjugate to ρ^{\prime}.

- In this case, $\Delta_{K, \rho}(t)=\Delta_{K, \rho^{\prime}}(t)$.

Lemma If $\chi_{\rho}=\chi_{\rho^{\prime}}$, then $\Delta_{K, \rho}(t)=\Delta_{K, \rho^{\prime}}(t)$.
Proof If ρ is reducible, then we may write $\rho\left(x_{i}\right)=\left(\begin{array}{cc}\lambda & \nu_{i} \\ 0 & \lambda^{-1}\end{array}\right)$, and hence

$$
\Delta_{K, \rho}(t)=\frac{\Delta_{K}(\lambda t) \Delta_{K}\left(\lambda^{-1} t\right)}{(t-\lambda)\left(t-\lambda^{-1}\right)}
$$

Definition The twisted Alexander polynomial of K associated with $\chi_{\rho} \in X(K)$ is defined to be $\Delta_{K, \rho}(t)$ and denoted by $\Delta_{K, \chi_{\rho}}(t)$.

2-bridge knots

- 2-bridge knots are parameterized by a pair of relatively prime integers α and β such that α is odd and $-\alpha<\beta<\alpha$.
- 2-bridge knots $K(\alpha, \beta)$ and $K\left(\alpha^{\prime}, \beta^{\prime}\right)$ have the same type iff $\alpha=\alpha^{\prime}$ and $\beta=\beta^{\prime}$ or $\beta \beta^{\prime} \equiv 1 \bmod \alpha$.
- A 2-bridge knot is fibered if and only if $\Delta_{K}(t)$ is monic.
- For a 2-bridge knot K of genus g, $\operatorname{deg}\left(\Delta_{K}(t)\right)=2 g$.
- $G(K(\alpha, \beta))=\langle a, b \mid w a=b w\rangle, \quad w=a^{\epsilon_{1}} b^{\epsilon_{2}} \cdots a^{\epsilon_{\alpha-2}} b^{\epsilon_{\alpha-1}}$
- Up to conjugacy, for $\rho \in R^{n a b}(K)$, we can take

$$
\rho(a)=\left(\begin{array}{cc}
s & 1 \\
0 & s^{-1}
\end{array}\right) \text { and } \rho(b)=\left(\begin{array}{cc}
s & 0 \\
2-y & s^{-1}
\end{array}\right)
$$

where $(s, y) \in \mathbb{C}^{2}$ is a solution of the Riley polynomial $\phi(s, y) \in \mathbb{Z}\left[s^{ \pm 1}, y\right]$.

- $\chi_{\rho}(a)=s+s^{-1}$ and $\chi_{\rho}\left(a b^{-1}\right)=y$

Lemma (Culler-Shalen) $\chi_{\rho} \in X^{n a b}(K)$ is uniquely determined by $\chi_{\rho}(a)$ and $\chi_{\rho}\left(a b^{-1}\right)$.

- $\phi(s, y)=\phi\left(s^{-1}, y\right) \Rightarrow$ we use the Riley polynomial $\phi(x, y) \in \mathbb{Z}[x, y]$ where $x=s+s^{-1}$.
- We identify

$$
X^{n a b}(K)=\left\{(x, y) \in \mathbb{C}^{2} \mid \phi(x, y)=0\right\}
$$

and write

$$
\Delta_{K, \chi_{\rho}}(t)=\sum_{i=n}^{m} \psi_{i}(x, y) t^{i}
$$

for some $\psi_{i}(x, y) \in \mathbb{C}[x, y]$.

Main Results

Theorem (K.-Morifuji) A 2-bridge knot K is fibered if and only if $\Delta_{K, \rho}(t)$ is monic for any nonabelian representation $\rho: G(K) \rightarrow S L(2, \mathbb{C})$.

Lemma (Burde, De Rham) Let $\eta_{0}: G(K) \rightarrow S L(2, \mathbb{C})$ be an abelian representation of a knot K given by $\eta_{0}(\mu)=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right)$, where μ is the meridian of K and $\lambda \neq 0 \in \mathbb{C}$. Then there is a reducible nonabelian representation $\rho: G(K) \rightarrow S L(2, \mathbb{C})$ such that $\chi_{\rho}=\chi_{\eta_{0}}$ if and only if $\Delta_{K}\left(\lambda^{2}\right)=0$.

Corollary For a 2-bridge knot $K, R^{n a b}(K)$ has a reducible representation.
Proof of Theorem For a reducible representation $\rho \in R^{n a b}(K)$,

$$
\Delta_{K, \rho}(t)=\frac{\Delta_{K}(\lambda t) \Delta_{K}\left(\lambda^{-1} t\right)}{(t-\lambda)\left(t-\lambda^{-1}\right)}
$$

which is nonmonic for a nonfibered K.

Theorem (K.-Morifuji) For a nonfibered 2-bridge knot K, there exists an irreducible curve component in $X^{\mathrm{nab}}(K)$ which contains only a finite number of monic characters.

Proof

- $\Delta_{K, \chi}(t)=$ $\psi_{4 g-2}(x, y) t^{4 g-2}+\psi_{4 g-3}(x, y) t^{4 g-3}+\cdots+\psi_{1}(x, y) t+\psi_{0}(x, y)$
- $\phi_{1}(x, y)=0$: irreducible component containing a reducible character
- $\left\{(x, y) \in \mathbb{C}^{2} \mid \phi_{1}(x, y)=0\right.$ and $\left.\psi_{4 g-2}(x, y)=1\right\} \cup$ $\left\{(x, y) \in \mathbb{C}^{2} \mid \phi_{1}(x, y)=0\right.$ and $\left.\psi_{4 g-2}(x, y)=0\right\}$ is finite.

Theorem (K.-Morifuji) For a 2-bridge knot K of genus g, there exists an irreducible curve component X_{1} in $X^{\text {nab }}(K)$ such that $\operatorname{deg}\left(\Delta_{K, \chi}(t)\right)=4 g-2$ for all but finitely many $\chi \in X_{1}$.

Proof $\left\{(x, y) \in \mathbb{C}^{2} \mid \phi_{1}(x, y)=0\right\} \cap\left\{(x, y) \in \mathbb{C}^{2} \mid \psi_{4 g-2}(x, y)=0\right\}$ is finite.

Theorem (K.-Morifuji) Let $K=K(\alpha, \beta)$ be a nonfibered 2-bridge knot and $c \in \mathbb{Z}$ the leading coefficient of $\Delta_{K}(t)$. Suppose that for any odd prime divisor p of $\alpha, c \not \equiv 0$ and $c^{2} \not \equiv \pm 1 \bmod p$. Then the number of monic characters in $X^{\mathrm{nab}}(K)$ is finite.

Theorem (K.-Morifuji) Let $K=K(\alpha, \beta)$ be a 2-bridge knot of genus g and $c \in \mathbb{Z}$ the leading coefficient of $\Delta_{K}(t)$. Suppose that for any odd prime divisor p of $\alpha, c \not \equiv 0 \bmod p$. Then $\operatorname{deg}\left(\Delta_{K, \chi}(t)\right)=4 g-2$ for all but finitely many $\chi \in X^{\mathrm{nab}}(K)$.

Example $K=K(7,3)=5_{2} . \Delta_{K}(t)=2 t^{2}-3 t+2$ and $\operatorname{genus}(K)=1$.
Take $p=7, c=2$. Then $c \not \equiv 0$ and $c^{2} \not \equiv \pm 1 \bmod p$. Therefore

- The number of monic characters is finite.
- For all but finitely many characters, $\operatorname{deg}\left(\Delta_{K, \chi}(t)\right)=4 \cdot 1-2=2$.

Example $K=(15,11)=7_{4} . \Delta_{K}(t)=4 t^{2}-7 t+4$ and $\operatorname{genus}(K)=1$.

- $X^{n a b}(K)$ has two components and one of them has no reducible representations.
- Take $p=3,5, c=4$. Then $c \not \equiv 0 \bmod p$. So for all but finitely many characters, $\operatorname{deg}\left(\Delta_{K, \chi}(t)\right)=4 \cdot 1-2=2$.

Example: $J(k, \ell)$

- $J(k, \ell)$ is a $k n o t \Leftrightarrow k \ell$ is even
- $J(k, \ell)=K(\alpha, \beta)$ where $\frac{\beta}{\alpha}=\frac{\ell}{1-k \ell}$
- $J(k, \ell)$ is the mirror image of $J(-k,-\ell)$
- $J(K, \ell)=J(\ell, k)$
- $J(2,2 q)$ is a twist knot

From now on, we consider $J(k, 2 q)$ with $k>0$.
Theorem (Morifuji, '2008) Let $K=J(2,2 q)$ and $|q|>1$. Then $X^{\text {nab }}(K)$ has at most $2|q|-4$ monic characters if q is odd and $2|q|-2$ monic characters if q is even.

Theorem (Macasieb-Petersen-Van Luijk) For $K=J(k, 2 q)$, if $k \neq 2 q$ and $k \geq 2$, then $X^{n a b}(K)$ is irreducible. If $k=2 q, X^{n a b}(K)$ has two components.

Theorem (K.-Morifuji) Let $K=J(k, 2 q)$ be a nonfibered knot where $k \neq 2 q$. Then the number of monic characters is bounded above by

$$
2(k+1)^{2} q^{2}-(k+1)(k+4)|q|
$$

if k is even or

$$
(k+1)(k-1)|q|
$$

if k is odd.

Future work

- A 2-bridge knot is a torus knot or a hyperbolic knot \Rightarrow A nonfibered 2-bridge knot is a hyperbolic knot
- For a hyperbolic knot $K, X^{n a b}(K)$ has the canonical component $X_{0}^{n a b}(K)$ containing the character of $\rho_{0}: G(K) \rightarrow S L(2, \mathbb{C})$ which is a lift of the discrete faithful representation to $\operatorname{PSL}(2, \mathbb{C})$.

Conjecture (Dunfield-Friedl-Jackson) For a hyperbolic knot $K, \Delta_{K, \chi_{\rho_{0}}}(t)$ detects if K is fibered.

- Dunfield-Friedl-Jackson proved the conjecture for all knots with at most 15 crossings.
- They also showed that for a knot K of genus g the set of monic characters in $X(K)$ is Zariski closed and $\left\{\chi \in X(K) \mid \operatorname{deg}\left(\Delta_{K, \chi}(t)\right)=4 g-2\right\}$ is Zariski open.
- For a hyperbolic knot K, it is known that the canonical component $X_{0}^{n a b}(K)$ is a curve.

Conjecture (K.-Morifuji) For a nonfibered knot K, there exists a curve component $X_{1}(K)$ in $X^{n a b}(K)$ so that $\left\{\chi \in X_{1}(K) \mid \Delta_{K, \chi}(t)\right.$ is monic $\}$ is a finite set.

