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The Thurston norm of a 3-manifold

Let N be a 3-manifold and φ ∈ H1(N) ∼= H2(N, ∂N).
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Let N be a 3-manifold and φ ∈ H1(N) ∼= H2(N, ∂N). We can
represent φ by an embedded surface and we want to measure its
complexity.
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The Thurston norm of a 3-manifold

Let N be a 3-manifold and φ ∈ H1(N) ∼= H2(N, ∂N). We can
represent φ by an embedded surface and we want to measure its
complexity. Given a surface S with connected components
S1, . . . ,Sk we define its complexity to be

x(S) =
∑

Si 6=S2,D2
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Let N be a 3-manifold and φ ∈ H1(N) ∼= H2(N, ∂N). We can
represent φ by an embedded surface and we want to measure its
complexity. Given a surface S with connected components
S1, . . . ,Sk we define its complexity to be

x(S) =
∑

Si 6=S2,D2

−χ(Si ).

We define

x(φ) = min{x(S) |S ⊂ N represents φ}
the Thurston norm of φ.
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The Thurston norm of a 3-manifold

Let N be a 3-manifold and φ ∈ H1(N) ∼= H2(N, ∂N). We can
represent φ by an embedded surface and we want to measure its
complexity. Given a surface S with connected components
S1, . . . ,Sk we define its complexity to be

x(S) =
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Si 6=S2,D2

−χ(Si ).

We define

x(φ) = min{x(S) |S ⊂ N represents φ}
the Thurston norm of φ. Properties:
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The Thurston norm of a 3-manifold

Let N be a 3-manifold and φ ∈ H1(N) ∼= H2(N, ∂N). We can
represent φ by an embedded surface and we want to measure its
complexity. Given a surface S with connected components
S1, . . . ,Sk we define its complexity to be

x(S) =
∑

Si 6=S2,D2

−χ(Si ).

We define

x(φ) = min{x(S) |S ⊂ N represents φ}
the Thurston norm of φ. Properties:
(1) x(nφ) = |n| · x(φ) for x ∈ Z,
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The Thurston norm of a 3-manifold

Let N be a 3-manifold and φ ∈ H1(N) ∼= H2(N, ∂N). We can
represent φ by an embedded surface and we want to measure its
complexity. Given a surface S with connected components
S1, . . . ,Sk we define its complexity to be

x(S) =
∑

Si 6=S2,D2

−χ(Si ).

We define

x(φ) = min{x(S) |S ⊂ N represents φ}
the Thurston norm of φ. Properties:
(1) x(nφ) = |n| · x(φ) for x ∈ Z,
(2) x(φ1 + φ2) ≤ x(φ1) + x(φ2).
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The Thurston norm of a 3-manifold

Let N be a 3-manifold and φ ∈ H1(N) ∼= H2(N, ∂N). We can
represent φ by an embedded surface and we want to measure its
complexity. Given a surface S with connected components
S1, . . . ,Sk we define its complexity to be

x(S) =
∑

Si 6=S2,D2

−χ(Si ).

We define

x(φ) = min{x(S) |S ⊂ N represents φ}
the Thurston norm of φ. Properties:
(1) x(nφ) = |n| · x(φ) for x ∈ Z,
(2) x(φ1 + φ2) ≤ x(φ1) + x(φ2).
Property (1) implies that x extends to a seminorm on H1(N;Q).
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The Thurston norm of a 3-manifold

Let N be a 3-manifold and φ ∈ H1(N) ∼= H2(N, ∂N). We can
represent φ by an embedded surface and we want to measure its
complexity. Given a surface S with connected components
S1, . . . ,Sk we define its complexity to be

x(S) =
∑

Si 6=S2,D2

−χ(Si ).

We define

x(φ) = min{x(S) |S ⊂ N represents φ}
the Thurston norm of φ. Properties:
(1) x(nφ) = |n| · x(φ) for x ∈ Z,
(2) x(φ1 + φ2) ≤ x(φ1) + x(φ2).
Property (1) implies that x extends to a seminorm on H1(N;Q).
Properties (1) and (2) imply that x extends to a seminorm on
H1(N;R).
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The Thurston norm of a 3-manifold

Let N be a 3-manifold and φ ∈ H1(N) ∼= H2(N, ∂N). We define

x(φ) = min{x(S) |S ⊂ N represents φ}
the Thurston norm of φ. Properties:
(1) x(nφ) = |n| · x(φ) for x ∈ Z,
(2) x(φ1 + φ2) ≤ x(φ1) + x(φ2).
Properties (1) and (2) imply that x extends to a seminorm on
H1(N;R). The set

{φ ∈ H1(N;R) | x(φ) ≤ 1}
is called the Thurston norm ball of N.
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The Thurston norm of a 3-manifold

Let N be a 3-manifold and φ ∈ H1(N) ∼= H2(N, ∂N). We define

x(φ) = min{x(S) |S ⊂ N represents φ}
the Thurston norm of φ. Properties:
(1) x(nφ) = |n| · x(φ) for x ∈ Z,
(2) x(φ1 + φ2) ≤ x(φ1) + x(φ2).
Properties (1) and (2) imply that x extends to a seminorm on
H1(N;R). The set

{φ ∈ H1(N;R) | x(φ) ≤ 1}
is called the Thurston norm ball of N. Thurston showed that this
is a polytope and the vertices are rational.
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The Thurston norm of a 3-manifold

Let N be a 3-manifold and φ ∈ H1(N) ∼= H2(N, ∂N). We define

x(φ) = min{x(S) |S ⊂ N represents φ}
the Thurston norm of φ. Properties:
(1) x(nφ) = |n| · x(φ) for x ∈ Z,
(2) x(φ1 + φ2) ≤ x(φ1) + x(φ2).
Properties (1) and (2) imply that x extends to a seminorm on
H1(N;R). The set

{φ ∈ H1(N;R) | x(φ) ≤ 1}
is called the Thurston norm ball of N. Thurston showed that this
is a polytope and the vertices are rational. We say
φ ∈ H1(N;N) = Hom(π1(N),Z) is fibered if there exists a
fibration p : N → S1 such that φ = p∗ : π1(N)→ Z.
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The Thurston norm of a 3-manifold

Let N be a 3-manifold and φ ∈ H1(N) ∼= H2(N, ∂N). We define

x(φ) = min{x(S) |S ⊂ N represents φ}
the Thurston norm of φ. Properties:
(1) x(nφ) = |n| · x(φ) for x ∈ Z,
(2) x(φ1 + φ2) ≤ x(φ1) + x(φ2).
Properties (1) and (2) imply that x extends to a seminorm on
H1(N;R). The set

{φ ∈ H1(N;R) | x(φ) ≤ 1}
is called the Thurston norm ball of N. Thurston showed that this
is a polytope and the vertices are rational. We say
φ ∈ H1(N;N) = Hom(π1(N),Z) is fibered if there exists a fibration
p : N → S1 such that φ = p∗ : π1(N)→ Z. We say φ ∈ H1(N;Q)
is fibered if an integral multiple is fibered. We say φ ∈ H1(N;R) is
fibered if we can represent it by a non-degenerate closed 1-form.
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x(φ) = min{x(S) |S ⊂ N represents φ}
the Thurston norm of φ. Properties:
(1) x(nφ) = |n| · x(φ) for x ∈ Z,
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Properties (1) and (2) imply that x extends to a seminorm on
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{φ ∈ H1(N;R) | x(φ) ≤ 1}
is called the Thurston norm ball of N. We say φ ∈ H1(N;R) is
fibered if we can represent it by a non-degenerate closed 1-form.
Thurston showed that if φ is fibered, then φ sits on the cone of an
open top-dimensional face,
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Let N be a 3-manifold and φ ∈ H1(N) ∼= H2(N, ∂N). We define

x(φ) = min{x(S) |S ⊂ N represents φ}
the Thurston norm of φ. Properties:
(1) x(nφ) = |n| · x(φ) for x ∈ Z,
(2) x(φ1 + φ2) ≤ x(φ1) + x(φ2).
Properties (1) and (2) imply that x extends to a seminorm on
H1(N;R). The set

{φ ∈ H1(N;R) | x(φ) ≤ 1}
is called the Thurston norm ball of N. We say φ ∈ H1(N;R) is
fibered if we can represent it by a non-degenerate closed 1-form.
Thurston showed that if φ is fibered, then φ sits on the cone of an
open top-dimensional face, furthermore any other ψ in the same
cone is also fibered.
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The Thurston norm of a 3-manifold

Let N be a 3-manifold and φ ∈ H1(N) ∼= H2(N, ∂N). We define

x(φ) = min{x(S) |S ⊂ N represents φ}
the Thurston norm of φ. Properties:
(1) x(nφ) = |n| · x(φ) for x ∈ Z,
(2) x(φ1 + φ2) ≤ x(φ1) + x(φ2).
Properties (1) and (2) imply that x extends to a seminorm on
H1(N;R). The set

{φ ∈ H1(N;R) | x(φ) ≤ 1}
is called the Thurston norm ball of N. We say φ ∈ H1(N;R) is
fibered if we can represent it by a non-degenerate closed 1-form.
Thurston showed that if φ is fibered, then φ sits on the cone of an
open top-dimensional face, furthermore any other ψ in the same
cone is also fibered.
‘Either all classes in a cone are fibered, or none are.’
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Twisted Alexander polynomials

Let N be a 3-manifold, π := π1(N), α : π → GL(R, k) a
representation and φ ∈ H1(N;Z) non-trivial.
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Twisted Alexander polynomials

Let N be a 3-manifold, π := π1(N), α : π → GL(R, k) a
representation and φ ∈ H1(N;Z) non-trivial. Let Ñ be the
universal cover, then consider

C∗(Ñ)⊗Z[π] R[t±1]⊗ Rk ,
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Twisted Alexander polynomials

Let N be a 3-manifold, π := π1(N), α : π → GL(R, k) a
representation and φ ∈ H1(N;Z) non-trivial. Let Ñ be the
universal cover, then consider

C∗(Ñ)⊗Z[π] R[t±1]⊗ Rk ,

This is a chain complex over R[t±1] and we denote its homology
by Hα

1 (N; Rk [t±1]).
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Twisted Alexander polynomials

Let N be a 3-manifold, π := π1(N), α : π → GL(R, k) a
representation and φ ∈ H1(N;Z) non-trivial. Let Ñ be the
universal cover, then consider

C∗(Ñ)⊗Z[π] R[t±1]⊗ Rk ,

This is a chain complex over R[t±1] and we denote its homology
by Hα

1 (N; Rk [t±1]). We consider a free resolution:

R[t±1]r
D−→ R[t±1]s → Hα

1 (N; Rk [t±1])→ 0
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Twisted Alexander polynomials

Let N be a 3-manifold, π := π1(N), α : π → GL(R, k) a
representation and φ ∈ H1(N;Z) non-trivial. Let Ñ be the
universal cover, then consider

C∗(Ñ)⊗Z[π] R[t±1]⊗ Rk ,

This is a chain complex over R[t±1] and we denote its homology
by Hα

1 (N; Rk [t±1]). We consider a free resolution:

R[t±1]r
D−→ R[t±1]s → Hα

1 (N; Rk [t±1])→ 0

and we define

∆α
N,φ = gcd of s × s-minors of D.

The twisted Alexander polynomial (TAP) of (N, φ, α).
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TAP, fibered 3-manifolds and the Thurston norm

Let N be a 3-manifold and φ ∈ H1(N;Z).

Stefan Friedl (joint with Stefano Vidussi) Detecting the Thurston norm and fibered classes



TAP, fibered 3-manifolds and the Thurston norm

Let N be a 3-manifold and φ ∈ H1(N;Z).

Theorem 1. (F-Kim) If α : π1(N)→ GL(R, k) is a
representation, then

deg(∆α
N,φ) = kx(φ) + error term.
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TAP, fibered 3-manifolds and the Thurston norm

Let N be a 3-manifold and φ ∈ H1(N;Z).

Theorem 1. (F-Kim) If α : π1(N)→ GL(R, k) is a
representation, then

deg(∆α
N,φ) = kx(φ) + error term.

Theorem 2. (Cha, Goda-Kitano-Morifuji and F-Kim) If φ is a
fibered class and α : π1(N)→ GL(R, k) a representation, then
(1) ∆α

N,φ is monic,
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TAP, fibered 3-manifolds and the Thurston norm

Let N be a 3-manifold and φ ∈ H1(N;Z).

Theorem 1. (F-Kim) If α : π1(N)→ GL(R, k) is a
representation, then

deg(∆α
N,φ) = kx(φ) + error term.

Theorem 2. (Cha, Goda-Kitano-Morifuji and F-Kim) If φ is a
fibered class and α : π1(N)→ GL(R, k) a representation, then
(1) ∆α

N,φ is monic, (2) deg(∆α
N,φ) = kx(φ) + error term.

Theorem 3. (F-Vidussi) If for any representation
α : π1(N)→ GL(R, k) we have
(1) ∆α

N,φ is monic, (2) deg(∆α
N,φ) = kx(φ) + error term.
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then φ is a fibered class.
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TAP, fibered 3-manifolds and the Thurston norm

Let N be a 3-manifold and φ ∈ H1(N;Z).

Theorem 1. (F-Kim) If α : π1(N)→ GL(R, k) is a
representation, then

deg(∆α
N,φ) = kx(φ) + error term.

Theorem 2. (Cha, Goda-Kitano-Morifuji and F-Kim) If φ is a
fibered class and α : π1(N)→ GL(R, k) a representation, then
(1) ∆α

N,φ is monic, (2) deg(∆α
N,φ) = kx(φ) + error term.

Theorem 3. (F-Vidussi) If for any representation
α : π1(N)→ GL(R, k) we have
(1) ∆α

N,φ is monic, (2) deg(∆α
N,φ) = kx(φ) + error term.

then φ is a fibered class.

So twisted Alexander polynomials detect fibered 3-manifolds.
Instead of proving Theorem 3 I will now show that results
announced by Dani Wise give a stronger version of Theorem 3 and
a converse to Theorem 1.
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The theorem/claim of Dani Wise.

Let G be a graph. We obtain a group as follows:
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The theorem/claim of Dani Wise.

Let G be a graph. We obtain a group as follows:
To each vertex of G we associate a generator,
and to each edge we associate the relation that the two
corresponding generators commute.
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The theorem/claim of Dani Wise.

Let G be a graph. We obtain a group as follows:
To each vertex of G we associate a generator,
and to each edge we associate the relation that the two
corresponding generators commute.
Such a group is called a right angled Artin group (RAAG).
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The theorem/claim of Dani Wise.

Let G be a graph. We obtain a group as follows:
To each vertex of G we associate a generator,
and to each edge we associate the relation that the two
corresponding generators commute.
Such a group is called a right angled Artin group (RAAG).

Example:
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The theorem/claim of Dani Wise.

Let G be a graph. We obtain a group as follows:
To each vertex of G we associate a generator,
and to each edge we associate the relation that the two
corresponding generators commute.
Such a group is called a right angled Artin group (RAAG).

Example: (1) If G has no edges we obtain a free group.
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Let G be a graph. We obtain a group as follows:
To each vertex of G we associate a generator,
and to each edge we associate the relation that the two
corresponding generators commute.
Such a group is called a right angled Artin group (RAAG).
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The theorem/claim of Dani Wise.

Let G be a graph. We obtain a group as follows:
To each vertex of G we associate a generator,
and to each edge we associate the relation that the two
corresponding generators commute.
Such a group is called a right angled Artin group (RAAG).

Example: (1) If G has no edges we obtain a free group.
(2) If G is a complete graph (i.e. any two vertices are connected
by an edge) then we obtain a free abelian group.
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The theorem/claim of Dani Wise.

Let G be a graph. We obtain a group as follows:
To each vertex of G we associate a generator,
and to each edge we associate the relation that the two
corresponding generators commute.
Such a group is called a right angled Artin group (RAAG).

Example: (1) If G has no edges we obtain a free group.
(2) If G is a complete graph (i.e. any two vertices are connected
by an edge) then we obtain a free abelian group.
So RAAG lie between free groups and free abelian groups.
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The theorem/claim of Dani Wise.

Let G be a graph. We obtain a group as follows:
To each vertex of G we associate a generator,
and to each edge we associate the relation that the two
corresponding generators commute.
Such a group is called a right angled Artin group (RAAG).

Example: (1) If G has no edges we obtain a free group.
(2) If G is a complete graph (i.e. any two vertices are connected
by an edge) then we obtain a free abelian group.
So RAAG lie between free groups and free abelian groups.

We now say G is a SRAAG if G is a subgroup of a RAAG.
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The theorem/claim of Dani Wise.

Let G be a graph. We obtain a group as follows:
To each vertex of G we associate a generator,
and to each edge we associate the relation that the two
corresponding generators commute.
Such a group is called a right angled Artin group (RAAG).

We now say G is a SRAAG if G is a subgroup of a RAAG.

Theorem (Wise) Let N be a hyperbolic 3-manifold with
b1(N) ≥ 2 (or b1(N) = 1 and N is not fibered), then π admits a
finite index subgroup π′ which is a SRAAG.
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The theorem/claim of Dani Wise.
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The theorem/claim of Dani Wise.

Let G be a graph. We obtain a group as follows:
To each vertex of G we associate a generator,
and to each edge we associate the relation that the two
corresponding generators commute.
Such a group is called a right angled Artin group (RAAG).

We now say G is a SRAAG if G is a subgroup of a RAAG.

Theorem (Wise) Let N be a hyperbolic 3-manifold with
b1(N) ≥ 2 (or b1(N) = 1 and N is not fibered), then π admits a
finite index subgroup π′ which is a SRAAG.

This is a fantastic theorem (as I will explain) but the proof has not
been verified yet.
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Let G be a graph. We obtain a group as follows:
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and to each edge we associate the relation that the two
corresponding generators commute.
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We now say G is a SRAAG if G is a subgroup of a RAAG.

Theorem (Wise) Let N be a hyperbolic 3-manifold with
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Corollaries (for N as in the theorem):
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The theorem/claim of Dani Wise.

Let G be a graph. We obtain a group as follows:
To each vertex of G we associate a generator,
and to each edge we associate the relation that the two
corresponding generators commute.
Such a group is called a right angled Artin group (RAAG).

We now say G is a SRAAG if G is a subgroup of a RAAG.

Theorem (Wise) Let N be a hyperbolic 3-manifold with
b1(N) ≥ 2 (or b1(N) = 1 and N is not fibered), then π admits a
finite index subgroup π′ which is a SRAAG.

Corollaries (for N as in the theorem):
(1) π = π1(N) is subgroup separable (LERF)
i.e. for any finitely generated subgroup A ⊂ π and any g 6∈ A
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The theorem/claim of Dani Wise.

Let G be a graph. We obtain a group as follows:
To each vertex of G we associate a generator,
and to each edge we associate the relation that the two
corresponding generators commute.
Such a group is called a right angled Artin group (RAAG).

We now say G is a SRAAG if G is a subgroup of a RAAG.

Theorem (Wise) Let N be a hyperbolic 3-manifold with
b1(N) ≥ 2 (or b1(N) = 1 and N is not fibered), then π admits a
finite index subgroup π′ which is a SRAAG.

Corollaries (for N as in the theorem):
(1) π = π1(N) is subgroup separable (LERF)
i.e. for any finitely generated subgroup A ⊂ π and any g 6∈ A there
exists a homomorphism α : π → G to a finite group G such that
α(g) 6∈ α(A).
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The theorem/claim of Dani Wise.

Let G be a graph. We obtain a group as follows:
To each vertex of G we associate a generator,
and to each edge we associate the relation that the two
corresponding generators commute.
Such a group is called a right angled Artin group (RAAG).

We now say G is a SRAAG if G is a subgroup of a RAAG.

Theorem (Wise) Let N be a hyperbolic 3-manifold with
b1(N) ≥ 2 (or b1(N) = 1 and N is not fibered), then π admits a
finite index subgroup π′ which is a SRAAG.

Corollaries (for N as in the theorem):
(1) π = π1(N) is subgroup separable (LERF)
i.e. for any finitely generated subgroup A ⊂ π and any g 6∈ A there
exists a homomorphism α : π → G to a finite group G such that
α(g) 6∈ α(A).
‘We can tell that g 6∈ A in a finite quotient’
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The theorem/claim of Dani Wise.

Let G be a graph. We obtain a group as follows:
To each vertex of G we associate a generator,
and to each edge we associate the relation that the two
corresponding generators commute.
Such a group is called a right angled Artin group (RAAG).

We now say G is a SRAAG if G is a subgroup of a RAAG.

Theorem (Wise) Let N be a hyperbolic 3-manifold with
b1(N) ≥ 2 (or b1(N) = 1 and N is not fibered), then π admits a
finite index subgroup π′ which is a SRAAG.

Corollaries (for N as in the theorem):
(1) π = π1(N) is subgroup separable (LERF)
(2) π is virtually residually torsion-free nilpotent.
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The theorem/claim of Dani Wise.

Let G be a graph. We obtain a group as follows:
To each vertex of G we associate a generator,
and to each edge we associate the relation that the two
corresponding generators commute.
Such a group is called a right angled Artin group (RAAG).

We now say G is a SRAAG if G is a subgroup of a RAAG.

Theorem (Wise) Let N be a hyperbolic 3-manifold with
b1(N) ≥ 2 (or b1(N) = 1 and N is not fibered), then π admits a
finite index subgroup π′ which is a SRAAG.

Corollaries (for N as in the theorem):
(1) π = π1(N) is subgroup separable (LERF)
(2) π is virtually residually torsion-free nilpotent.
(i.e. there exists a finite index subgroup π′ such that for any
non-trivial g ∈ π′ there exists a homomorphism α : π′ → G to a
torsion-free nilpotent group such that α(g) is non-trivial.)
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The theorem/claim of Dani Wise.

Let G be a graph. We obtain a group as follows:
To each vertex of G we associate a generator,
and to each edge we associate the relation that the two
corresponding generators commute.
Such a group is called a right angled Artin group (RAAG).

We now say G is a SRAAG if G is a subgroup of a RAAG.

Theorem (Wise) Let N be a hyperbolic 3-manifold with
b1(N) ≥ 2 (or b1(N) = 1 and N is not fibered), then π admits a
finite index subgroup π′ which is a SRAAG.

Corollaries (for N as in the theorem):
(1) π = π1(N) is subgroup separable (LERF)
(2) π is virtually residually torsion-free nilpotent.
(3) π is linear over Z
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The theorem/claim of Dani Wise.

Let G be a graph. We obtain a group as follows:
To each vertex of G we associate a generator,
and to each edge we associate the relation that the two
corresponding generators commute.
Such a group is called a right angled Artin group (RAAG).

We now say G is a SRAAG if G is a subgroup of a RAAG.

Theorem (Wise) Let N be a hyperbolic 3-manifold with
b1(N) ≥ 2 (or b1(N) = 1 and N is not fibered), then π admits a
finite index subgroup π′ which is a SRAAG.

Corollaries (for N as in the theorem):
(1) π = π1(N) is subgroup separable (LERF)
(2) π is virtually residually torsion-free nilpotent.
(3) π is linear over Z
i.e. π is a subgroup of GL(n,Z) for some n.
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The theorem/claim of Dani Wise.

Let G be a graph. We obtain a group as follows:
To each vertex of G we associate a generator,
and to each edge we associate the relation that the two
corresponding generators commute.
Such a group is called a right angled Artin group (RAAG).

We now say G is a SRAAG if G is a subgroup of a RAAG.

Theorem (Wise) Let N be a hyperbolic 3-manifold with
b1(N) ≥ 2 (or b1(N) = 1 and N is not fibered), then π admits a
finite index subgroup π′ which is a SRAAG.

Corollaries (for N as in the theorem):
(1) π = π1(N) is subgroup separable (LERF)
(2) π is virtually residually torsion-free nilpotent.
(3) π is linear over Z
(4) for any k there exists a finite cover N ′ with b1(N ′) ≥ k
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Twisted Alexander polynomials and fibered 3-manifolds

Recall: π is LERF if for any f.g. A ⊂ π and g 6∈ A there is a map
α : π → G to a finite group G s.t. α(g) 6∈ α(A).

= |Im(π1(Σ)→ π1(N \ Σ)→ G )| < |Im(π1(N \ Σ)→ G )|
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Twisted Alexander polynomials and fibered 3-manifolds

Recall: π is LERF if for any f.g. A ⊂ π and g 6∈ A there is a map
α : π → G to a finite group G s.t. α(g) 6∈ α(A).

Theorem. Let N a 3-mfd and φ ∈ H1(N). Suppose that for any
α : π → G we have ∆α

N,φ is non-zero and π1(N ′) is LERF for any
hyperbolic JSJ component N ′ then φ is a fibered class.

This was proved by F-Vidussi in 2006.
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Recall: π is LERF if for any f.g. A ⊂ π and g 6∈ A there is a map
α : π → G to a finite group G s.t. α(g) 6∈ α(A).

Theorem. Let N a 3-mfd and φ ∈ H1(N). Suppose that for any
α : π → G we have ∆α

N,φ is non-zero and π1(N ′) is LERF for any
hyperbolic JSJ component N ′ then φ is a fibered class.

This was proved by F-Vidussi in 2006. We have the following
immediate corollary:

= |Im(π1(Σ)→ π1(N \ Σ)→ G )| < |Im(π1(N \ Σ)→ G )|

Stefan Friedl (joint with Stefano Vidussi) Detecting the Thurston norm and fibered classes



Twisted Alexander polynomials and fibered 3-manifolds

Recall: π is LERF if for any f.g. A ⊂ π and g 6∈ A there is a map
α : π → G to a finite group G s.t. α(g) 6∈ α(A).

Theorem. Let N a 3-mfd and φ ∈ H1(N). Suppose that for any
α : π → G we have ∆α

N,φ is non-zero and π1(N ′) is LERF for any
hyperbolic JSJ component N ′ then φ is a fibered class.

This was proved by F-Vidussi in 2006. We have the following
immediate corollary:
Corollary (if Wise’s theorem is correct) Let N be any
3-manifold and φ ∈ H1(N;Z) non-fibered, then there exists
α : π → G with ∆α

N,φ = 0.
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Twisted Alexander polynomials and fibered 3-manifolds

Recall: π is LERF if for any f.g. A ⊂ π and g 6∈ A there is a map
α : π → G to a finite group G s.t. α(g) 6∈ α(A).

Theorem. Let N a 3-mfd and φ ∈ H1(N). Suppose that for any
α : π → G we have ∆α

N,φ is non-zero and π1(N ′) is LERF for any
hyperbolic JSJ component N ′ then φ is a fibered class.

This was proved by F-Vidussi in 2006. We have the following
immediate corollary:
Corollary (if Wise’s theorem is correct) Let N be any
3-manifold and φ ∈ H1(N;Z) non-fibered, then there exists
α : π → G with ∆α

N,φ = 0.
We now turn to the proof of the theorem.

= |Im(π1(Σ)→ π1(N \ Σ)→ G )| < |Im(π1(N \ Σ)→ G )|
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α : π → G we have ∆α

N,φ is non-zero and π1(N ′) is LERF for any
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Proof (if π1(N) is LERF): Let Σ surface dual to φ.
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Recall: π is LERF if for any f.g. A ⊂ π and g 6∈ A there is a map
α : π → G to a finite group G s.t. α(g) 6∈ α(A).
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α : π → G we have ∆α

N,φ is non-zero and π1(N ′) is LERF for any
hyperbolic JSJ component N ′ then φ is a fibered class.

Proof (if π1(N) is LERF): Let Σ surface dual to φ. Take
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Twisted Alexander polynomials and fibered 3-manifolds

Recall: π is LERF if for any f.g. A ⊂ π and g 6∈ A there is a map
α : π → G to a finite group G s.t. α(g) 6∈ α(A).

Theorem. Let N a 3-mfd and φ ∈ H1(N). Suppose that for any
α : π → G we have ∆α

N,φ is non-zero and π1(N ′) is LERF for any
hyperbolic JSJ component N ′ then φ is a fibered class.

So we proved, given α : π1(N)→ G , if ∆α
N,φ 6= 0, then
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Now assume Σ is not a fiber, i.e. π1(Σ) 6⊆ π1(N \ Σ). Pick
g ∈ π1(N \ Σ) \ π1(Σ). Since π1(N) is LERF we can find
π1(N)→ G such that α(g) 6∈ α(π1(Σ)). Hence

|Im(π1(Σ)→ G )| = |Im(π1(Σ)→ π1(N \ Σ)→ G )|
< |Im(π1(N \ Σ)→ G )|
But this contradicts (*)!
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Corollaries

Theorem (if Wise’s theorem is correct) Let N be any
3-manifold and φ ∈ H1(N;Z) non-fibered, then there exists
α : π → G with ∆α

N,φ = 0.
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α : π → G with ∆α
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Corollary (Silver-Williams) Let N be any 3-manifold and
φ ∈ H1(N;Z) = Hom(π1(N),Z). If φ is non-fibered, then
Ker(φ) ∈ π1(N) admits uncountably many finite covers.
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Theorem (if Wise’s theorem is correct) Let N be any
3-manifold and φ ∈ H1(N;Z) non-fibered, then there exists
α : π → G with ∆α

N,φ = 0.

Corollary (Silver-Williams) Let N be any 3-manifold and
φ ∈ H1(N;Z) = Hom(π1(N),Z). If φ is non-fibered, then
Ker(φ) ∈ π1(N) admits uncountably many finite covers.

Corollary (F-Vidussi) Let M be an S1-bundle over a closed
3-manifold N. If M is symplectic, then N fibers over S1.

Given a knot K ⊂ S3 denote by MN(K ) the Morse-Novikov
number (i.e. the minimal number of critical points of an S1-valued
Morse function).
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α : π → G with ∆α

N,φ = 0.

Corollary (Silver-Williams) Let N be any 3-manifold and
φ ∈ H1(N;Z) = Hom(π1(N),Z). If φ is non-fibered, then
Ker(φ) ∈ π1(N) admits uncountably many finite covers.

Corollary (F-Vidussi) Let M be an S1-bundle over a closed
3-manifold N. If M is symplectic, then N fibers over S1.

Given a knot K ⊂ S3 denote by MN(K ) the Morse-Novikov
number (i.e. the minimal number of critical points of an S1-valued
Morse function). For example, K is fibered if and only if
MN(K ) = 0.
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Corollaries

Theorem (if Wise’s theorem is correct) Let N be any
3-manifold and φ ∈ H1(N;Z) non-fibered, then there exists
α : π → G with ∆α

N,φ = 0.

Corollary (Silver-Williams) Let N be any 3-manifold and
φ ∈ H1(N;Z) = Hom(π1(N),Z). If φ is non-fibered, then
Ker(φ) ∈ π1(N) admits uncountably many finite covers.

Corollary (F-Vidussi) Let M be an S1-bundle over a closed
3-manifold N. If M is symplectic, then N fibers over S1.

Given a knot K ⊂ S3 denote by MN(K ) the Morse-Novikov
number (i.e. the minimal number of critical points of an S1-valued
Morse function). For example, K is fibered if and only if
MN(K ) = 0.

Corollary (?). Let K be a non-fibered knot. Then there exists
λ > 0 such that MN(nK ) > λn.
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Agol’s theorem

Recall that a SRAAG is a subgroup of a RAAG, which in turn is
defined from a graph.
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Recall that a SRAAG is a subgroup of a RAAG, which in turn is
defined from a graph.
Theorem. (Agol 2006) If N is a 3-manifold such that π1(N) is
virtually a SRAAG
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Recall that a SRAAG is a subgroup of a RAAG, which in turn is
defined from a graph.
Theorem. (Agol 2006) If N is a 3-manifold such that π1(N) is
virtually a SRAAG (i.e. a finite index subgroup of π1(N) is a
SRAAG) then for any non-fibered φ ∈ H1(N;Z) there exists a
finite cover p : N ′ → N such that p∗(φ) ∈ H1(N ′;Z)
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defined from a graph.
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virtually a SRAAG (i.e. a finite index subgroup of π1(N) is a
SRAAG) then for any non-fibered φ ∈ H1(N;Z) there exists a
finite cover p : N ′ → N such that p∗(φ) ∈ H1(N ′;Z) sits on the
boundary of a fibered cone.
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Theorem. (Agol 2006) If N is a 3-manifold such that π1(N) is
virtually a SRAAG (i.e. a finite index subgroup of π1(N) is a
SRAAG) then for any non-fibered φ ∈ H1(N;Z) there exists a
finite cover p : N ′ → N such that p∗(φ) ∈ H1(N ′;Z) sits on the
boundary of a fibered cone.

(In particular if π1(N) is virtually a SRAAG, the 3-manifold is
virtually fibered.)
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Recall that a SRAAG is a subgroup of a RAAG, which in turn is
defined from a graph.
Theorem. (Agol 2006) If N is a 3-manifold such that π1(N) is
virtually a SRAAG (i.e. a finite index subgroup of π1(N) is a
SRAAG) then for any non-fibered φ ∈ H1(N;Z) there exists a
finite cover p : N ′ → N such that p∗(φ) ∈ H1(N ′;Z) sits on the
boundary of a fibered cone.

(In particular if π1(N) is virtually a SRAAG, the 3-manifold is
virtually fibered.)

The combination of Wise’s theorem (unverified) and Agol’s
theorem (verified) implies that if N is a Haken hyperbolic
3-manifold, then a finite cover of N fibers over S1.
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Recall that a SRAAG is a subgroup of a RAAG, which in turn is
defined from a graph.
Theorem. (Agol 2006) If N is a 3-manifold such that π1(N) is
virtually a SRAAG (i.e. a finite index subgroup of π1(N) is a
SRAAG) then for any non-fibered φ ∈ H1(N;Z) there exists a
finite cover p : N ′ → N such that p∗(φ) ∈ H1(N ′;Z) sits on the
boundary of a fibered cone.

(In particular if π1(N) is virtually a SRAAG, the 3-manifold is
virtually fibered.)

The combination of Wise’s theorem (unverified) and Agol’s
theorem (verified) implies that if N is a Haken hyperbolic
3-manifold, then a finite cover of N fibers over S1. This a most
stunning result.
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Agol’s theorem

Recall that a SRAAG is a subgroup of a RAAG, which in turn is
defined from a graph.
Theorem. (Agol 2006) If N is a 3-manifold such that π1(N) is
virtually a SRAAG (i.e. a finite index subgroup of π1(N) is a
SRAAG) then for any non-fibered φ ∈ H1(N;Z) there exists a
finite cover p : N ′ → N such that p∗(φ) ∈ H1(N ′;Z) sits on the
boundary of a fibered cone.

Theorem (F-Vidussi 2010) Let N be a hyperbolic 3-manifold and
φ ∈ H1(N;Z). Then there exists α : π1(N)→ U(k) such that

deg(∆α
N,φ) = kx(φ) + error term.
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SRAAG) then for any non-fibered φ ∈ H1(N;Z) there exists a
finite cover p : N ′ → N such that p∗(φ) ∈ H1(N ′;Z) sits on the
boundary of a fibered cone.

Theorem (F-Vidussi 2010) Let N be a hyperbolic 3-manifold and
φ ∈ H1(N;Z). Then there exists α : π1(N)→ U(k) such that

deg(∆α
N,φ) = kx(φ) + error term.

(In particular TAP detect the knot genus for hyperbolic knots.)
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N,φ) = kx(φ) + error term.

Proof.
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Agol’s theorem

Theorem. If π1(N) is virtually a SRAAG then for a non-fibered
φ ∈ H1(N) there is p : N ′ → N such that p∗(φ) ∈ H1(N ′;Z) sits
on the bdy of a fibered cone.

Theorem (F-Vidussi 2010) Let N be a hyperbolic 3-manifold and
φ ∈ H1(N;Z). Then there exists α : π1(N)→ U(k) such that

deg(∆α
N,φ) = kx(φ) + error term.

Proof. Let φ ∈ H1(N;Z) non-fibered.
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Proof. Let φ ∈ H1(N;Z) non-fibered. By Wise and Agol we can
find k-fold cover p : N ′ → N s.t. φ′ = p∗(φ) ∈ H1(N ′;Z) sits on
the boundary of a fibered cone of N ′.
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N′,φ′) = x(φ′) + ... for some α′ : π1(N ′)→ U(1).
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