Detecting the Thurston norm and fibered classes

Stefan Friedl (joint with Stefano Vidussi)

September 2010

Stefan Friedl (joint with Stefano Vidussi) Detecting the Thurston norm and fibered classes

向下 イヨト イヨト

Let N be a 3-manifold and $\phi \in H^1(N) \cong H_2(N, \partial N)$.

Let *N* be a 3-manifold and $\phi \in H^1(N) \cong H_2(N, \partial N)$. We can represent ϕ by an embedded surface and we want to measure its complexity.

高 とう ヨン うまと

Let *N* be a 3-manifold and $\phi \in H^1(N) \cong H_2(N, \partial N)$. We can represent ϕ by an embedded surface and we want to measure its complexity. Given a surface *S* with connected components S_1, \ldots, S_k we define its *complexity* to be

$$x(S) = \sum_{S_i \neq S^2, D^2} -\chi(S_i).$$

伺い イヨト イヨト ニヨ

Let *N* be a 3-manifold and $\phi \in H^1(N) \cong H_2(N, \partial N)$. We can represent ϕ by an embedded surface and we want to measure its complexity. Given a surface *S* with connected components S_1, \ldots, S_k we define its *complexity* to be

$$x(S) = \sum_{S_i \neq S^2, D^2} -\chi(S_i).$$

We define

$$x(\phi) = \min\{x(S) \mid S \subset N \text{ represents } \phi\}$$

the *Thurston norm* of ϕ .

伺下 イヨト イヨト

Let *N* be a 3-manifold and $\phi \in H^1(N) \cong H_2(N, \partial N)$. We can represent ϕ by an embedded surface and we want to measure its complexity. Given a surface *S* with connected components S_1, \ldots, S_k we define its *complexity* to be

$$x(S) = \sum_{S_i \neq S^2, D^2} -\chi(S_i).$$

We define

$$x(\phi) = \min\{x(S) \mid S \subset N \text{ represents } \phi\}$$

the *Thurston norm* of ϕ . Properties:

伺下 イヨト イヨト

Let *N* be a 3-manifold and $\phi \in H^1(N) \cong H_2(N, \partial N)$. We can represent ϕ by an embedded surface and we want to measure its complexity. Given a surface *S* with connected components S_1, \ldots, S_k we define its *complexity* to be

$$x(S) = \sum_{S_i \neq S^2, D^2} -\chi(S_i).$$

We define

$$x(\phi) = \min\{x(S) \mid S \subset N \text{ represents } \phi\}$$

the *Thurston norm* of ϕ . Properties: (1) $x(n\phi) = |n| \cdot x(\phi)$ for $x \in \mathbb{Z}$,

向下 イヨト イヨト

Let *N* be a 3-manifold and $\phi \in H^1(N) \cong H_2(N, \partial N)$. We can represent ϕ by an embedded surface and we want to measure its complexity. Given a surface *S* with connected components S_1, \ldots, S_k we define its *complexity* to be

$$x(S) = \sum_{S_i \neq S^2, D^2} -\chi(S_i).$$

We define

$$x(\phi) = \min\{x(S) \mid S \subset N \text{ represents } \phi\}$$

the Thurston norm of ϕ . Properties: (1) $x(n\phi) = |n| \cdot x(\phi)$ for $x \in \mathbb{Z}$, (2) $x(\phi_1 + \phi_2) \le x(\phi_1) + x(\phi_2)$.

通 とう ほう とう マン・

Let *N* be a 3-manifold and $\phi \in H^1(N) \cong H_2(N, \partial N)$. We can represent ϕ by an embedded surface and we want to measure its complexity. Given a surface *S* with connected components S_1, \ldots, S_k we define its *complexity* to be

$$x(S) = \sum_{S_i \neq S^2, D^2} -\chi(S_i).$$

We define

$$x(\phi) = \min\{x(S) \mid S \subset N \text{ represents } \phi\}$$

the Thurston norm of ϕ . Properties: (1) $x(n\phi) = |n| \cdot x(\phi)$ for $x \in \mathbb{Z}$, (2) $x(\phi_1 + \phi_2) \le x(\phi_1) + x(\phi_2)$. Property (1) implies that x extends to a seminorm on $H^1(N; \mathbb{Q})$.

向下 イヨト イヨト

Let *N* be a 3-manifold and $\phi \in H^1(N) \cong H_2(N, \partial N)$. We can represent ϕ by an embedded surface and we want to measure its complexity. Given a surface *S* with connected components S_1, \ldots, S_k we define its *complexity* to be

$$x(S) = \sum_{S_i \neq S^2, D^2} -\chi(S_i).$$

We define

$$x(\phi) = \min\{x(S) \mid S \subset N \text{ represents } \phi\}$$

the Thurston norm of ϕ . Properties: (1) $x(n\phi) = |n| \cdot x(\phi)$ for $x \in \mathbb{Z}$, (2) $x(\phi_1 + \phi_2) \le x(\phi_1) + x(\phi_2)$. Property (1) implies that x extends to a seminorm on $H^1(N; \mathbb{Q})$. Properties (1) and (2) imply that x extends to a seminorm on $H^1(N; \mathbb{R})$.

Let N be a 3-manifold and $\phi \in H^1(N) \cong H_2(N, \partial N)$. We define $x(\phi) = \min\{x(S) \mid S \subset N \text{ represents } \phi\}$

the *Thurston norm* of ϕ . Properties: (1) $x(n\phi) = |n| \cdot x(\phi)$ for $x \in \mathbb{Z}$, (2) $x(\phi_1 + \phi_2) \le x(\phi_1) + x(\phi_2)$. Properties (1) and (2) imply that x extends to a seminorm on $H^1(N; \mathbb{R})$.

Let N be a 3-manifold and $\phi \in H^1(N) \cong H_2(N, \partial N)$. We define $x(\phi) = \min\{x(S) \mid S \subset N \text{ represents } \phi\}$

the *Thurston norm* of ϕ . Properties:

(1) $x(n\phi) = |n| \cdot x(\phi)$ for $x \in \mathbb{Z}$, (2) $x(\phi_1 + \phi_2) \le x(\phi_1) + x(\phi_2)$.

Properties (1) and (2) imply that x extends to a seminorm on $H^1(N; \mathbb{R})$. The set

 $\{\phi \in H^1(N; \mathbb{R}) \,|\, x(\phi) \leq 1\}$

is called the *Thurston norm ball* of *N*.

Let N be a 3-manifold and $\phi \in H^1(N) \cong H_2(N, \partial N)$. We define $x(\phi) = \min\{x(S) \mid S \subset N \text{ represents } \phi\}$

the *Thurston norm* of ϕ . Properties:

(1) $x(n\phi) = |n| \cdot x(\phi)$ for $x \in \mathbb{Z}$, (2) $x(\phi_1 + \phi_2) \le x(\phi_1) + x(\phi_2)$.

Properties (1) and (2) imply that x extends to a seminorm on $H^1(N; \mathbb{R})$. The set

 $\{\phi \in H^1(N;\mathbb{R}) \,|\, x(\phi) \leq 1\}$

is called the *Thurston norm ball* of N. Thurston showed that this is a polytope and the vertices are rational.

Let N be a 3-manifold and $\phi \in H^1(N) \cong H_2(N, \partial N)$. We define $x(\phi) = \min\{x(S) \mid S \subset N \text{ represents } \phi\}$

the *Thurston norm* of ϕ . Properties:

(1) $x(n\phi) = |n| \cdot x(\phi)$ for $x \in \mathbb{Z}$, (2) $x(\phi_1 + \phi_2) \le x(\phi_1) + x(\phi_2)$.

Properties (1) and (2) imply that x extends to a seminorm on $H^1(N; \mathbb{R})$. The set

$$\{\phi \in H^1(N; \mathbb{R}) \,|\, x(\phi) \leq 1\}$$

is called the *Thurston norm ball* of *N*. Thurston showed that this is a polytope and the vertices are rational. We say $\phi \in H^1(N; \mathbb{N}) = \text{Hom}(\pi_1(N), \mathbb{Z})$ is *fibered* if there exists a fibration $p: N \to S^1$ such that $\phi = p_* : \pi_1(N) \to \mathbb{Z}$.

・吊り ・ヨン ・ヨン ・ヨ

Let N be a 3-manifold and $\phi \in H^1(N) \cong H_2(N, \partial N)$. We define $x(\phi) = \min\{x(S) \mid S \subset N \text{ represents } \phi\}$

the *Thurston norm* of ϕ . Properties:

(1) $x(n\phi) = |n| \cdot x(\phi)$ for $x \in \mathbb{Z}$, (2) $x(\phi_1 + \phi_2) \le x(\phi_1) + x(\phi_2)$.

Properties (1) and (2) imply that x extends to a seminorm on $H^1(N; \mathbb{R})$. The set

$$\{\phi \in H^1(N;\mathbb{R}) \,|\, x(\phi) \leq 1\}$$

is called the *Thurston norm ball* of *N*. Thurston showed that this is a polytope and the vertices are rational. We say $\phi \in H^1(N; \mathbb{N}) = \text{Hom}(\pi_1(N), \mathbb{Z})$ is *fibered* if there exists a fibration $p: N \to S^1$ such that $\phi = p_* : \pi_1(N) \to \mathbb{Z}$. We say $\phi \in H^1(N; \mathbb{Q})$ is fibered if an integral multiple is fibered.

(4月) (3日) (3日) 日

Let N be a 3-manifold and $\phi \in H^1(N) \cong H_2(N, \partial N)$. We define $x(\phi) = \min\{x(S) \mid S \subset N \text{ represents } \phi\}$

the *Thurston norm* of ϕ . Properties:

(1) $x(n\phi) = |n| \cdot x(\phi)$ for $x \in \mathbb{Z}$, (2) $x(\phi_1 + \phi_2) \le x(\phi_1) + x(\phi_2)$.

Properties (1) and (2) imply that x extends to a seminorm on $H^1(N; \mathbb{R})$. The set

 $\{\phi \in H^1(N;\mathbb{R}) \,|\, x(\phi) \leq 1\}$

is called the *Thurston norm ball* of *N*. Thurston showed that this is a polytope and the vertices are rational. We say $\phi \in H^1(N; \mathbb{N}) = \text{Hom}(\pi_1(N), \mathbb{Z})$ is *fibered* if there exists a fibration $p: N \to S^1$ such that $\phi = p_* : \pi_1(N) \to \mathbb{Z}$. We say $\phi \in H^1(N; \mathbb{Q})$ is fibered if an integral multiple is fibered. We say $\phi \in H^1(N; \mathbb{R})$ is fibered if we can represent it by a non-degenerate closed 1-form.

- 4 周 ト 4 日 ト 4 日 ト - 日

Let N be a 3-manifold and $\phi \in H^1(N) \cong H_2(N, \partial N)$. We define $x(\phi) = \min\{x(S) \mid S \subset N \text{ represents } \phi\}$

the *Thurston norm* of ϕ . Properties:

(1) $x(n\phi) = |n| \cdot x(\phi)$ for $x \in \mathbb{Z}$, (2) $x(\phi_1 + \phi_2) \le x(\phi_1) + x(\phi_2)$.

Properties (1) and (2) imply that x extends to a seminorm on $H^1(N; \mathbb{R})$. The set

$$\{\phi \in H^1(N;\mathbb{R}) \,|\, x(\phi) \leq 1\}$$

is called the *Thurston norm ball* of *N*. We say $\phi \in H^1(N; \mathbb{R})$ is fibered if we can represent it by a non-degenerate closed 1-form.

Let N be a 3-manifold and $\phi \in H^1(N) \cong H_2(N, \partial N)$. We define $x(\phi) = \min\{x(S) \mid S \subset N \text{ represents } \phi\}$

the *Thurston norm* of ϕ . Properties:

(1) $x(n\phi) = |n| \cdot x(\phi)$ for $x \in \mathbb{Z}$, (2) $x(\phi_1 + \phi_2) \le x(\phi_1) + x(\phi_2)$.

Properties (1) and (2) imply that x extends to a seminorm on $H^1(N; \mathbb{R})$. The set

$$\{\phi \in H^1(N;\mathbb{R}) \,|\, x(\phi) \leq 1\}$$

is called the *Thurston norm ball* of *N*. We say $\phi \in H^1(N; \mathbb{R})$ is fibered if we can represent it by a non-degenerate closed 1-form. Thurston showed that if ϕ is fibered, then ϕ sits on the cone of an open top-dimensional face,

・吊り ・ヨン ・ヨン ・ヨ

Let N be a 3-manifold and $\phi \in H^1(N) \cong H_2(N, \partial N)$. We define $x(\phi) = \min\{x(S) \mid S \subset N \text{ represents } \phi\}$

the *Thurston norm* of ϕ . Properties:

(1) $x(n\phi) = |n| \cdot x(\phi)$ for $x \in \mathbb{Z}$, (2) $x(\phi_1 + \phi_2) \le x(\phi_1) + x(\phi_2)$.

Properties (1) and (2) imply that x extends to a seminorm on $H^1(N; \mathbb{R})$. The set

$$\{\phi \in H^1(N;\mathbb{R}) \,|\, x(\phi) \leq 1\}$$

is called the *Thurston norm ball* of *N*. We say $\phi \in H^1(N; \mathbb{R})$ is fibered if we can represent it by a non-degenerate closed 1-form. Thurston showed that if ϕ is fibered, then ϕ sits on the cone of an open top-dimensional face, furthermore any other ψ in the same cone is also fibered.

マボン イラン イラン 一日

Let N be a 3-manifold and $\phi \in H^1(N) \cong H_2(N, \partial N)$. We define $x(\phi) = \min\{x(S) \mid S \subset N \text{ represents } \phi\}$

the *Thurston norm* of ϕ . Properties:

(1) $x(n\phi) = |n| \cdot x(\phi)$ for $x \in \mathbb{Z}$, (2) $x(\phi_1 + \phi_2) \le x(\phi_1) + x(\phi_2)$.

Properties (1) and (2) imply that x extends to a seminorm on $H^1(N; \mathbb{R})$. The set

$$\{\phi \in H^1(N;\mathbb{R}) \,|\, x(\phi) \leq 1\}$$

is called the *Thurston norm ball* of *N*. We say $\phi \in H^1(N; \mathbb{R})$ is fibered if we can represent it by a non-degenerate closed 1-form. Thurston showed that if ϕ is fibered, then ϕ sits on the cone of an open top-dimensional face, furthermore any other ψ in the same cone is also fibered.

'Either all classes in a cone are fibered, or none are.'

- 本部 ト イヨ ト - - ヨ

Let N be a 3-manifold, $\pi := \pi_1(N)$, $\alpha : \pi \to GL(R, k)$ a representation and $\phi \in H^1(N; \mathbb{Z})$ non-trivial.

ヨット イヨット イヨッ

3

Let N be a 3-manifold, $\pi := \pi_1(N)$, $\alpha : \pi \to GL(R, k)$ a representation and $\phi \in H^1(N; \mathbb{Z})$ non-trivial. Let \tilde{N} be the universal cover, then consider

 $C_*(\tilde{N})\otimes_{\mathbb{Z}[\pi]} R[t^{\pm 1}]\otimes R^k,$

通 とう ほう とう マン・

3

Let N be a 3-manifold, $\pi := \pi_1(N)$, $\alpha : \pi \to GL(R, k)$ a representation and $\phi \in H^1(N; \mathbb{Z})$ non-trivial. Let \tilde{N} be the universal cover, then consider

$$C_*(\tilde{N})\otimes_{\mathbb{Z}[\pi]} R[t^{\pm 1}]\otimes R^k,$$

This is a chain complex over $R[t^{\pm 1}]$ and we denote its homology by $H_1^{\alpha}(N; R^k[t^{\pm 1}])$.

伺下 イヨト イヨト

Let N be a 3-manifold, $\pi := \pi_1(N)$, $\alpha : \pi \to GL(R, k)$ a representation and $\phi \in H^1(N; \mathbb{Z})$ non-trivial. Let \tilde{N} be the universal cover, then consider

$$C_*(\tilde{N})\otimes_{\mathbb{Z}[\pi]} R[t^{\pm 1}]\otimes R^k,$$

This is a chain complex over $R[t^{\pm 1}]$ and we denote its homology by $H_1^{\alpha}(N; R^k[t^{\pm 1}])$. We consider a free resolution:

$$R[t^{\pm 1}]^r \xrightarrow{D} R[t^{\pm 1}]^s o H^lpha_1(N; R^k[t^{\pm 1}]) o 0$$

Let N be a 3-manifold, $\pi := \pi_1(N)$, $\alpha : \pi \to GL(R, k)$ a representation and $\phi \in H^1(N; \mathbb{Z})$ non-trivial. Let \tilde{N} be the universal cover, then consider

$$C_*(\tilde{N})\otimes_{\mathbb{Z}[\pi]} R[t^{\pm 1}]\otimes R^k,$$

This is a chain complex over $R[t^{\pm 1}]$ and we denote its homology by $H_1^{\alpha}(N; R^k[t^{\pm 1}])$. We consider a free resolution:

$$R[t^{\pm 1}]^r \xrightarrow{D} R[t^{\pm 1}]^s o H^{lpha}_1(N; R^k[t^{\pm 1}]) o 0$$

and we define

$$\Delta^{lpha}_{N,\phi} = \mathsf{gcd} ext{ of } s imes s ext{-minors of } D.$$

The twisted Alexander polynomial (TAP) of (N, ϕ, α) .

医下颌 医下颌

Let *N* be a 3-manifold and $\phi \in H^1(N; \mathbb{Z})$.

Stefan Friedl (joint with Stefano Vidussi) Detecting the Thurston norm and fibered classes

(四) (日) (日)

3

Let *N* be a 3-manifold and $\phi \in H^1(N; \mathbb{Z})$. **Theorem 1. (F-Kim)** If $\alpha : \pi_1(N) \to GL(R, k)$ is a representation, then

 $\deg(\Delta^{\alpha}_{N,\phi}) = kx(\phi) + \text{error term.}$

・吊り ・ヨト ・ヨト ・ヨ

Let *N* be a 3-manifold and $\phi \in H^1(N; \mathbb{Z})$. **Theorem 1. (F-Kim)** If $\alpha : \pi_1(N) \to GL(R, k)$ is a representation, then

 $\deg(\Delta^{\alpha}_{N,\phi}) = kx(\phi) + \text{error term.}$

Theorem 2. (Cha, Goda-Kitano-Morifuji and F-Kim) If ϕ is a fibered class and $\alpha : \pi_1(N) \to GL(R, k)$ a representation, then (1) $\Delta^{\alpha}_{N,\phi}$ is monic,

・ 同 ト ・ ヨ ト ・ ヨ ト ……

Let *N* be a 3-manifold and $\phi \in H^1(N; \mathbb{Z})$. **Theorem 1. (F-Kim)** If $\alpha : \pi_1(N) \to GL(R, k)$ is a representation, then

 $\deg(\Delta^{\alpha}_{N,\phi}) = kx(\phi) + \text{error term.}$

Theorem 2. (Cha, Goda-Kitano-Morifuji and F-Kim) If ϕ is a fibered class and $\alpha : \pi_1(N) \to GL(R, k)$ a representation, then (1) $\Delta^{\alpha}_{N,\phi}$ is monic, (2) $\deg(\Delta^{\alpha}_{N,\phi}) = kx(\phi) + \text{error term.}$

・吊り ・ヨン ・ヨン ・ヨ

Let *N* be a 3-manifold and $\phi \in H^1(N; \mathbb{Z})$. **Theorem 1. (F-Kim)** If $\alpha : \pi_1(N) \to GL(R, k)$ is a representation, then

 $\deg(\Delta^{\alpha}_{N,\phi}) = kx(\phi) + \text{error term.}$

Theorem 2. (Cha, Goda-Kitano-Morifuji and F-Kim) If ϕ is a fibered class and $\alpha : \pi_1(N) \to GL(R, k)$ a representation, then (1) $\Delta_{N,\phi}^{\alpha}$ is monic, (2) $\deg(\Delta_{N,\phi}^{\alpha}) = kx(\phi) + \text{error term.}$ **Theorem 3.** (F-Vidussi) If for any representation $\alpha : \pi_1(N) \to GL(R, k)$ we have (1) $\Delta_{N,\phi}^{\alpha}$ is monic, (2) $\deg(\Delta_{N,\phi}^{\alpha}) = kx(\phi) + \text{error term.}$

- 本部 ト イヨ ト - - ヨ

Let *N* be a 3-manifold and $\phi \in H^1(N; \mathbb{Z})$. **Theorem 1. (F-Kim)** If $\alpha : \pi_1(N) \to GL(R, k)$ is a

representation, then

 $\deg(\Delta^{\alpha}_{N,\phi}) = kx(\phi) + \text{error term.}$

Theorem 2. (Cha, Goda-Kitano-Morifuji and F-Kim) If ϕ is a fibered class and $\alpha : \pi_1(N) \to GL(R, k)$ a representation, then (1) $\Delta_{N,\phi}^{\alpha}$ is monic, (2) $\deg(\Delta_{N,\phi}^{\alpha}) = kx(\phi) + \text{error term.}$ **Theorem 3.** (F-Vidussi) If for any representation $\alpha : \pi_1(N) \to GL(R, k)$ we have (1) $\Delta_{N,\phi}^{\alpha}$ is monic, (2) $\deg(\Delta_{N,\phi}^{\alpha}) = kx(\phi) + \text{error term.}$ then ϕ is a fibered class.

(4月) (4日) (4日) 日

Let N be a 3-manifold and $\phi \in H^1(N; \mathbb{Z})$.

Theorem 1. (F-Kim) If $\alpha : \pi_1(N) \to GL(R, k)$ is a representation, then

 $\deg(\Delta^{\alpha}_{N,\phi}) = kx(\phi) + \text{error term.}$

Theorem 2. (Cha, Goda-Kitano-Morifuji and F-Kim) If ϕ is a fibered class and $\alpha : \pi_1(N) \to GL(R, k)$ a representation, then (1) $\Delta^{\alpha}_{N,\phi}$ is monic, (2) $\deg(\Delta^{\alpha}_{N,\phi}) = kx(\phi) + \text{error term.}$ **Theorem 3.** (F-Vidussi) If for any representation $\alpha : \pi_1(N) \to GL(R, k)$ we have (1) $\Delta^{\alpha}_{N,\phi}$ is monic, (2) $\deg(\Delta^{\alpha}_{N,\phi}) = kx(\phi) + \text{error term.}$ then ϕ is a fibered class.

So twisted Alexander polynomials detect fibered 3-manifolds.

Let N be a 3-manifold and $\phi \in H^1(N; \mathbb{Z})$.

Theorem 1. (F-Kim) If $\alpha : \pi_1(N) \to GL(R, k)$ is a representation, then

$$\deg(\Delta^{\alpha}_{N,\phi}) = kx(\phi) + \text{error term.}$$

Theorem 2. (Cha, Goda-Kitano-Morifuji and F-Kim) If ϕ is a fibered class and $\alpha : \pi_1(N) \to GL(R, k)$ a representation, then (1) $\Delta_{N,\phi}^{\alpha}$ is monic, (2) $\deg(\Delta_{N,\phi}^{\alpha}) = kx(\phi) + \text{error term.}$ **Theorem 3.** (F-Vidussi) If for any representation $\alpha : \pi_1(N) \to GL(R, k)$ we have (1) $\Delta_{N,\phi}^{\alpha}$ is monic, (2) $\deg(\Delta_{N,\phi}^{\alpha}) = kx(\phi) + \text{error term.}$ then ϕ is a fibered class.

So twisted Alexander polynomials detect fibered 3-manifolds. Instead of proving Theorem 3 I will now show that results announced by Dani Wise give a stronger version of Theorem 3 and a converse to Theorem 1.

The theorem/claim of Dani Wise.

Let G be a graph. We obtain a group as follows:

向下 イヨト イヨト

The theorem/claim of Dani Wise.

Let G be a graph. We obtain a group as follows: To each vertex of G we associate a generator,

3 × 4 3 ×

The theorem/claim of Dani Wise.

Let G be a graph. We obtain a group as follows: To each vertex of G we associate a generator, and to each edge we associate the relation that the two corresponding generators commute.

ヨット イヨット イヨッ
Let G be a graph. We obtain a group as follows: To each vertex of G we associate a generator, and to each edge we associate the relation that the two corresponding generators commute. Such a group is called a *right angled Artin group* (RAAG).

Let G be a graph. We obtain a group as follows: To each vertex of G we associate a generator, and to each edge we associate the relation that the two corresponding generators commute. Such a group is called a *right angled Artin group* (RAAG). Example:

Let G be a graph. We obtain a group as follows: To each vertex of G we associate a generator, and to each edge we associate the relation that the two corresponding generators commute. Such a group is called a *right angled Artin group* (RAAG). Example: (1) If G has no edges we obtain a free group.

Let G be a graph. We obtain a group as follows: To each vertex of G we associate a generator, and to each edge we associate the relation that the two corresponding generators commute. Such a group is called a *right angled Artin group* (RAAG). Example: (1) If G has no edges we obtain a free group. (2) If G is a complete graph (i.e. any two vertices are connected by an edge)

Let G be a graph. We obtain a group as follows: To each vertex of G we associate a generator, and to each edge we associate the relation that the two corresponding generators commute. Such a group is called a *right angled Artin group* (RAAG). Example: (1) If G has no edges we obtain a free group. (2) If G is a complete graph (i.e. any two vertices are connected by an edge) then we obtain a free abelian group.

Let *G* be a graph. We obtain a group as follows: To each vertex of *G* we associate a generator, and to each edge we associate the relation that the two corresponding generators commute. Such a group is called a *right angled Artin group* (RAAG). Example: (1) If *G* has no edges we obtain a free group. (2) If *G* is a complete graph (i.e. any two vertices are connected by an edge) then we obtain a free abelian group. So RAAG lie between free groups and free abelian groups.

Let G be a graph. We obtain a group as follows: To each vertex of G we associate a generator, and to each edge we associate the relation that the two corresponding generators commute. Such a group is called a *right angled Artin group* (RAAG). Example: (1) If G has no edges we obtain a free group. (2) If G is a complete graph (i.e. any two vertices are connected by an edge) then we obtain a free abelian group. So RAAG lie between free groups and free abelian groups. We now say G is a SRAAG if G is a subgroup of a RAAG.

Let G be a graph. We obtain a group as follows: To each vertex of G we associate a generator, and to each edge we associate the relation that the two corresponding generators commute. Such a group is called a *right angled Artin group* (RAAG). We now say G is a SRAAG if G is a subgroup of a RAAG.

Theorem (Wise) Let N be a hyperbolic 3-manifold with $b_1(N) \ge 2$ (or $b_1(N) = 1$ and N is not fibered), then π admits a finite index subgroup π' which is a SRAAG.

Let G be a graph. We obtain a group as follows: To each vertex of G we associate a generator, and to each edge we associate the relation that the two corresponding generators commute. Such a group is called a *right angled Artin group* (RAAG). We now say G is a SRAAG if G is a subgroup of a RAAG.

Theorem (Wise) Let N be a hyperbolic 3-manifold with $b_1(N) \ge 2$ (or $b_1(N) = 1$ and N is not fibered), then π admits a finite index subgroup π' which is a SRAAG.

Let G be a graph. We obtain a group as follows: To each vertex of G we associate a generator, and to each edge we associate the relation that the two corresponding generators commute. Such a group is called a *right angled Artin group* (RAAG). We now say G is a SRAAG if G is a subgroup of a RAAG.

Theorem (Wise) Let N be a hyperbolic 3-manifold with $b_1(N) \ge 2$ (or $b_1(N) = 1$ and N is not fibered), then π admits a finite index subgroup π' which is a SRAAG.

This is a fantastic theorem (as I will explain) but the proof has not been verified yet.

Let G be a graph. We obtain a group as follows: To each vertex of G we associate a generator, and to each edge we associate the relation that the two corresponding generators commute. Such a group is called a *right angled Artin group* (RAAG). We now say G is a SRAAG if G is a subgroup of a RAAG.

Theorem (Wise) Let N be a hyperbolic 3-manifold with $b_1(N) \ge 2$ (or $b_1(N) = 1$ and N is not fibered), then π admits a finite index subgroup π' which is a SRAAG.

Corollaries (for N as in the theorem):

Let G be a graph. We obtain a group as follows: To each vertex of G we associate a generator, and to each edge we associate the relation that the two corresponding generators commute. Such a group is called a *right angled Artin group* (RAAG). We now say G is a SRAAG if G is a subgroup of a RAAG.

Theorem (Wise) Let N be a hyperbolic 3-manifold with $b_1(N) \ge 2$ (or $b_1(N) = 1$ and N is not fibered), then π admits a finite index subgroup π' which is a SRAAG.

Corollaries (for *N* as in the theorem): (1) $\pi = \pi_1(N)$ is subgroup separable (LERF)

・ 同 ト ・ ヨ ト ・ ヨ ト

Let G be a graph. We obtain a group as follows: To each vertex of G we associate a generator, and to each edge we associate the relation that the two corresponding generators commute. Such a group is called a *right angled Artin group* (RAAG). We now say G is a SRAAG if G is a subgroup of a RAAG.

Theorem (Wise) Let N be a hyperbolic 3-manifold with $b_1(N) \ge 2$ (or $b_1(N) = 1$ and N is not fibered), then π admits a finite index subgroup π' which is a SRAAG.

Corollaries (for N as in the theorem): (1) $\pi = \pi_1(N)$ is subgroup separable (LERF) i.e. for any finitely generated subgroup $A \subset \pi$ and any $g \notin A$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Let G be a graph. We obtain a group as follows: To each vertex of G we associate a generator, and to each edge we associate the relation that the two corresponding generators commute. Such a group is called a *right angled Artin group* (RAAG). We now say G is a SRAAG if G is a subgroup of a RAAG.

Theorem (Wise) Let N be a hyperbolic 3-manifold with $b_1(N) \ge 2$ (or $b_1(N) = 1$ and N is not fibered), then π admits a finite index subgroup π' which is a SRAAG.

Corollaries (for N as in the theorem): (1) $\pi = \pi_1(N)$ is subgroup separable (LERF) i.e. for any finitely generated subgroup $A \subset \pi$ and any $g \notin A$ there exists a homomorphism $\alpha : \pi \to G$ to a *finite* group G such that $\alpha(g) \notin \alpha(A)$.

(日本) (日本) (日本)

Let G be a graph. We obtain a group as follows: To each vertex of G we associate a generator, and to each edge we associate the relation that the two corresponding generators commute. Such a group is called a *right angled Artin group* (RAAG). We now say G is a SRAAG if G is a subgroup of a RAAG.

Theorem (Wise) Let N be a hyperbolic 3-manifold with $b_1(N) \ge 2$ (or $b_1(N) = 1$ and N is not fibered), then π admits a finite index subgroup π' which is a SRAAG.

Corollaries (for N as in the theorem): (1) $\pi = \pi_1(N)$ is subgroup separable (LERF) i.e. for any finitely generated subgroup $A \subset \pi$ and any $g \notin A$ there exists a homomorphism $\alpha : \pi \to G$ to a *finite* group G such that $\alpha(g) \notin \alpha(A)$. 'We can tell that $g \notin A$ in a finite quotient'

- 4 同 6 4 日 6 4 日 6

Let G be a graph. We obtain a group as follows: To each vertex of G we associate a generator, and to each edge we associate the relation that the two corresponding generators commute. Such a group is called a *right angled Artin group* (RAAG). We now say G is a SRAAG if G is a subgroup of a RAAG.

Theorem (Wise) Let N be a hyperbolic 3-manifold with $b_1(N) \ge 2$ (or $b_1(N) = 1$ and N is not fibered), then π admits a finite index subgroup π' which is a SRAAG.

Corollaries (for N as in the theorem): (1) $\pi = \pi_1(N)$ is subgroup separable (LERF) (2) π is virtually residually torsion-free nilpotent.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let G be a graph. We obtain a group as follows: To each vertex of G we associate a generator, and to each edge we associate the relation that the two corresponding generators commute. Such a group is called a *right angled Artin group* (RAAG). We now say G is a SRAAG if G is a subgroup of a RAAG.

Theorem (Wise) Let N be a hyperbolic 3-manifold with $b_1(N) \ge 2$ (or $b_1(N) = 1$ and N is not fibered), then π admits a finite index subgroup π' which is a SRAAG.

Corollaries (for N as in the theorem): (1) $\pi = \pi_1(N)$ is subgroup separable (LERF) (2) π is virtually residually torsion-free nilpotent. (i.e. there exists a finite index subgroup π' such that for any non-trivial $g \in \pi'$ there exists a homomorphism $\alpha : \pi' \to G$ to a torsion-free nilpotent group such that $\alpha(g)$ is non-trivial.)

→ 米屋→ 米屋→ 一屋

Let G be a graph. We obtain a group as follows: To each vertex of G we associate a generator, and to each edge we associate the relation that the two corresponding generators commute. Such a group is called a *right angled Artin group* (RAAG). We now say G is a SRAAG if G is a subgroup of a RAAG.

Theorem (Wise) Let N be a hyperbolic 3-manifold with $b_1(N) \ge 2$ (or $b_1(N) = 1$ and N is not fibered), then π admits a finite index subgroup π' which is a SRAAG.

Corollaries (for N as in the theorem): (1) $\pi = \pi_1(N)$ is subgroup separable (LERF) (2) π is virtually residually torsion-free nilpotent. (3) π is linear over \mathbb{Z}

・ 同 ト ・ ヨ ト ・ ヨ ト

Let G be a graph. We obtain a group as follows: To each vertex of G we associate a generator, and to each edge we associate the relation that the two corresponding generators commute. Such a group is called a *right angled Artin group* (RAAG). We now say G is a SRAAG if G is a subgroup of a RAAG.

Theorem (Wise) Let N be a hyperbolic 3-manifold with $b_1(N) \ge 2$ (or $b_1(N) = 1$ and N is not fibered), then π admits a finite index subgroup π' which is a SRAAG.

Corollaries (for *N* as in the theorem): (1) $\pi = \pi_1(N)$ is subgroup separable (LERF) (2) π is virtually residually torsion-free nilpotent. (3) π is linear over \mathbb{Z} i.e. π is a subgroup of $GL(n,\mathbb{Z})$ for some *n*.

Let G be a graph. We obtain a group as follows: To each vertex of G we associate a generator, and to each edge we associate the relation that the two corresponding generators commute. Such a group is called a *right angled Artin group* (RAAG). We now say G is a SRAAG if G is a subgroup of a RAAG.

Theorem (Wise) Let N be a hyperbolic 3-manifold with $b_1(N) \ge 2$ (or $b_1(N) = 1$ and N is not fibered), then π admits a finite index subgroup π' which is a SRAAG.

Corollaries (for N as in the theorem): (1) $\pi = \pi_1(N)$ is subgroup separable (LERF) (2) π is virtually residually torsion-free nilpotent. (3) π is linear over \mathbb{Z} (4) for any k there exists a finite cover N' with $b_1(N') \ge k$

・ 同 ト ・ ヨ ト ・ ヨ ト

Recall: π is LERF if for any f.g. $A \subset \pi$ and $g \notin A$ there is a map $\alpha : \pi \to G$ to a *finite* group G s.t. $\alpha(g) \notin \alpha(A)$.

ヨット イヨット イヨッ

Recall: π is LERF if for any f.g. $A \subset \pi$ and $g \notin A$ there is a map $\alpha : \pi \to G$ to a *finite* group G s.t. $\alpha(g) \notin \alpha(A)$.

Theorem. Let *N* a 3-mfd and $\phi \in H^1(N)$. Suppose that for any $\alpha : \pi \to G$ we have $\Delta^{\alpha}_{N,\phi}$ is non-zero

Recall: π is LERF if for any f.g. $A \subset \pi$ and $g \notin A$ there is a map $\alpha : \pi \to G$ to a *finite* group G s.t. $\alpha(g) \notin \alpha(A)$.

Theorem. Let N a 3-mfd and $\phi \in H^1(N)$. Suppose that for any $\alpha : \pi \to G$ we have $\Delta_{N,\phi}^{\alpha}$ is non-zero and $\pi_1(N')$ is LERF for any hyperbolic JSJ component N'

Recall: π is LERF if for any f.g. $A \subset \pi$ and $g \notin A$ there is a map $\alpha : \pi \to G$ to a *finite* group G s.t. $\alpha(g) \notin \alpha(A)$.

Theorem. Let N a 3-mfd and $\phi \in H^1(N)$. Suppose that for any $\alpha : \pi \to G$ we have $\Delta_{N,\phi}^{\alpha}$ is non-zero and $\pi_1(N')$ is LERF for any hyperbolic JSJ component N' then ϕ is a fibered class.

Recall: π is LERF if for any f.g. $A \subset \pi$ and $g \notin A$ there is a map $\alpha : \pi \to G$ to a *finite* group G s.t. $\alpha(g) \notin \alpha(A)$.

Theorem. Let *N* a 3-mfd and $\phi \in H^1(N)$. Suppose that for any $\alpha : \pi \to G$ we have $\Delta_{N,\phi}^{\alpha}$ is non-zero and $\pi_1(N')$ is LERF for any hyperbolic JSJ component *N'* then ϕ is a fibered class.

This was proved by F-Vidussi in 2006.

Recall: π is LERF if for any f.g. $A \subset \pi$ and $g \notin A$ there is a map $\alpha : \pi \to G$ to a *finite* group G s.t. $\alpha(g) \notin \alpha(A)$.

Theorem. Let *N* a 3-mfd and $\phi \in H^1(N)$. Suppose that for any $\alpha : \pi \to G$ we have $\Delta_{N,\phi}^{\alpha}$ is non-zero and $\pi_1(N')$ is LERF for any hyperbolic JSJ component *N'* then ϕ is a fibered class.

This was proved by F-Vidussi in 2006. We have the following immediate corollary:

Recall: π is LERF if for any f.g. $A \subset \pi$ and $g \notin A$ there is a map $\alpha : \pi \to G$ to a *finite* group G s.t. $\alpha(g) \notin \alpha(A)$.

Theorem. Let *N* a 3-mfd and $\phi \in H^1(N)$. Suppose that for any $\alpha : \pi \to G$ we have $\Delta^{\alpha}_{N,\phi}$ is non-zero and $\pi_1(N')$ is LERF for any hyperbolic JSJ component *N'* then ϕ is a fibered class.

This was proved by F-Vidussi in 2006. We have the following immediate corollary:

Corollary (if Wise's theorem is correct) Let N be any 3-manifold and $\phi \in H^1(N; \mathbb{Z})$ non-fibered, then there exists $\alpha : \pi \to G$ with $\Delta_{N,\phi}^{\alpha} = 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Recall: π is LERF if for any f.g. $A \subset \pi$ and $g \notin A$ there is a map $\alpha : \pi \to G$ to a *finite* group G s.t. $\alpha(g) \notin \alpha(A)$.

Theorem. Let *N* a 3-mfd and $\phi \in H^1(N)$. Suppose that for any $\alpha : \pi \to G$ we have $\Delta^{\alpha}_{N,\phi}$ is non-zero and $\pi_1(N')$ is LERF for any hyperbolic JSJ component *N'* then ϕ is a fibered class.

This was proved by F-Vidussi in 2006. We have the following immediate corollary:

Corollary (if Wise's theorem is correct) Let N be any 3-manifold and $\phi \in H^1(N; \mathbb{Z})$ non-fibered, then there exists $\alpha : \pi \to G$ with $\Delta_{N,\phi}^{\alpha} = 0$.

We now turn to the proof of the theorem.

・ 同 ト ・ ヨ ト ・ ヨ ト

Recall: π is LERF if for any f.g. $A \subset \pi$ and $g \notin A$ there is a map $\alpha : \pi \to G$ to a *finite* group G s.t. $\alpha(g) \notin \alpha(A)$.

Theorem. Let N a 3-mfd and $\phi \in H^1(N)$. Suppose that for any $\alpha : \pi \to G$ we have $\Delta^{\alpha}_{N,\phi}$ is non-zero and $\pi_1(N')$ is LERF for any hyperbolic JSJ component N' then ϕ is a fibered class.

Proof (if $\pi_1(N)$ is LERF): Let Σ surface dual to ϕ .

Recall: π is LERF if for any f.g. $A \subset \pi$ and $g \notin A$ there is a map $\alpha : \pi \to G$ to a *finite* group G s.t. $\alpha(g) \notin \alpha(A)$.

Theorem. Let N a 3-mfd and $\phi \in H^1(N)$. Suppose that for any $\alpha : \pi \to G$ we have $\Delta^{\alpha}_{N,\phi}$ is non-zero and $\pi_1(N')$ is LERF for any hyperbolic JSJ component N' then ϕ is a fibered class.

Proof (if $\pi_1(N)$ is LERF): Let Σ surface dual to ϕ . Take $\alpha : \pi_1(N) \to G$ with $\Delta^{\alpha}_{N,\phi} \neq 0$.

Recall: π is LERF if for any f.g. $A \subset \pi$ and $g \notin A$ there is a map $\alpha : \pi \to G$ to a *finite* group G s.t. $\alpha(g) \notin \alpha(A)$.

Theorem. Let N a 3-mfd and $\phi \in H^1(N)$. Suppose that for any $\alpha : \pi \to G$ we have $\Delta^{\alpha}_{N,\phi}$ is non-zero and $\pi_1(N')$ is LERF for any hyperbolic JSJ component N' then ϕ is a fibered class.

Proof (if $\pi_1(N)$ is LERF): Let Σ surface dual to ϕ . Take $\alpha : \pi_1(N) \to G$ with $\Delta_{N,\phi}^{\alpha} \neq 0$. We get $H_1(N; \mathbb{Z}[G][t^{\pm 1}])$ $\to H_0(\Sigma; \mathbb{Z}[G][t^{\pm 1}]) \to H_0(N \setminus \Sigma; \mathbb{Z}[G][t^{\pm 1}]) \to H_0(N; \mathbb{Z}[G][t^{\pm 1}])$

伺下 イヨト イヨト

Recall: π is LERF if for any f.g. $A \subset \pi$ and $g \notin A$ there is a map $\alpha : \pi \to G$ to a *finite* group G s.t. $\alpha(g) \notin \alpha(A)$.

Theorem. Let N a 3-mfd and $\phi \in H^1(N)$. Suppose that for any $\alpha : \pi \to G$ we have $\Delta^{\alpha}_{N,\phi}$ is non-zero and $\pi_1(N')$ is LERF for any hyperbolic JSJ component N' then ϕ is a fibered class.

Proof (if $\pi_1(N)$ is LERF): Let Σ surface dual to ϕ . Take $\alpha : \pi_1(N) \to G$ with $\Delta_{N,\phi}^{\alpha} \neq 0$. We get $H_1(N; \mathbb{Z}[G][t^{\pm 1}])$ $\to H_0(\Sigma; \mathbb{Z}[G][t^{\pm 1}]) \to H_0(N \setminus \Sigma; \mathbb{Z}[G][t^{\pm 1}]) \to H_0(N; \mathbb{Z}[G][t^{\pm 1}])$

 $H_1(N; \mathbb{Z}[G][t^{\pm 1}])$ is $\mathbb{Z}[t^{\pm 1}]$ -torsion (since $\Delta_{N,\phi}^{\alpha} \neq 0!$)

- 本部 とくき とくき とうき

Recall: π is LERF if for any f.g. $A \subset \pi$ and $g \notin A$ there is a map $\alpha : \pi \to G$ to a *finite* group G s.t. $\alpha(g) \notin \alpha(A)$.

Theorem. Let N a 3-mfd and $\phi \in H^1(N)$. Suppose that for any $\alpha : \pi \to G$ we have $\Delta^{\alpha}_{N,\phi}$ is non-zero and $\pi_1(N')$ is LERF for any hyperbolic JSJ component N' then ϕ is a fibered class.

Proof (if $\pi_1(N)$ is LERF): Let Σ surface dual to ϕ . Take $\alpha : \pi_1(N) \to G$ with $\Delta_{N,\phi}^{\alpha} \neq 0$. We get $H_1(N; \mathbb{Z}[G][t^{\pm 1}])$ $\to H_0(\Sigma; \mathbb{Z}[G][t^{\pm 1}]) \to H_0(N \setminus \Sigma; \mathbb{Z}[G][t^{\pm 1}]) \to H_0(N; \mathbb{Z}[G][t^{\pm 1}])$

 $H_1(N; \mathbb{Z}[G][t^{\pm 1}])$ is $\mathbb{Z}[t^{\pm 1}]$ -torsion (since $\Delta_{N,\phi}^{\alpha} \neq 0$!) and $H_0(N; \mathbb{Z}[G][t^{\pm 1}])$ is $\mathbb{Z}[t^{\pm 1}]$ -torsion (calculation).

・ 同 ト ・ ヨ ト ・ ヨ ト

Recall: π is LERF if for any f.g. $A \subset \pi$ and $g \notin A$ there is a map $\alpha : \pi \to G$ to a *finite* group G s.t. $\alpha(g) \notin \alpha(A)$.

Theorem. Let N a 3-mfd and $\phi \in H^1(N)$. Suppose that for any $\alpha : \pi \to G$ we have $\Delta_{N,\phi}^{\alpha}$ is non-zero and $\pi_1(N')$ is LERF for any hyperbolic JSJ component N' then ϕ is a fibered class.

Proof (if $\pi_1(N)$ is LERF): Let Σ surface dual to ϕ . Take $\alpha : \pi_1(N) \to G$ with $\Delta_{N,\phi}^{\alpha} \neq 0$. We get $H_1(N; \mathbb{Z}[G][t^{\pm 1}])$ $\to H_0(\Sigma; \mathbb{Z}[G][t^{\pm 1}]) \to H_0(N \setminus \Sigma; \mathbb{Z}[G][t^{\pm 1}]) \to H_0(N; \mathbb{Z}[G][t^{\pm 1}])$

 $H_1(N; \mathbb{Z}[G][t^{\pm 1}])$ is $\mathbb{Z}[t^{\pm 1}]$ -torsion (since $\Delta_{N,\phi}^{\alpha} \neq 0$!) and $H_0(N; \mathbb{Z}[G][t^{\pm 1}])$ is $\mathbb{Z}[t^{\pm 1}]$ -torsion (calculation). We conclude that $\operatorname{rank}_{\mathbb{Z}[t^{\pm 1}]}(H_0(\Sigma; \mathbb{Z}[G][t^{\pm 1}])) = \operatorname{rank}_{\mathbb{Z}[t^{\pm 1}]}(H_0(N \setminus \Sigma; \mathbb{Z}[G][t^{\pm 1}])).$

イロト イポト イラト イラト 一日

Recall: π is LERF if for any f.g. $A \subset \pi$ and $g \notin A$ there is a map $\alpha : \pi \to G$ to a *finite* group G s.t. $\alpha(g) \notin \alpha(A)$.

Theorem. Let N a 3-mfd and $\phi \in H^1(N)$. Suppose that for any $\alpha : \pi \to G$ we have $\Delta^{\alpha}_{N,\phi}$ is non-zero and $\pi_1(N')$ is LERF for any hyperbolic JSJ component N' then ϕ is a fibered class.

Proof (if $\pi_1(N)$ is LERF): Let Σ surface dual to ϕ . Take $\alpha : \pi_1(N) \to G$ with $\Delta_{N,\phi}^{\alpha} \neq 0$. We get $H_1(N; \mathbb{Z}[G][t^{\pm 1}])$ $\to H_0(\Sigma; \mathbb{Z}[G][t^{\pm 1}]) \to H_0(N \setminus \Sigma; \mathbb{Z}[G][t^{\pm 1}]) \to H_0(N; \mathbb{Z}[G][t^{\pm 1}])$

 $\begin{array}{l} H_1(N;\mathbb{Z}[G][t^{\pm 1}]) \text{ is } \mathbb{Z}[t^{\pm 1}]\text{-torsion (since } \Delta_{N,\phi}^{\alpha} \neq 0!) \text{ and} \\ H_0(N;\mathbb{Z}[G][t^{\pm 1}]) \text{ is } \mathbb{Z}[t^{\pm 1}]\text{-torsion (calculation). We conclude that} \\ \operatorname{rank}_{\mathbb{Z}[t^{\pm 1}]}(H_0(\Sigma;\mathbb{Z}[G][t^{\pm 1}])) = \operatorname{rank}_{\mathbb{Z}[t^{\pm 1}]}(H_0(N \setminus \Sigma;\mathbb{Z}[G][t^{\pm 1}])). \\ \text{Summarizing we proved, if } \Delta_{N,\phi}^{\alpha} \neq 0, \text{ then} \\ \operatorname{rank}_{\mathbb{Z}[t^{\pm 1}]}(H_0(\Sigma;\mathbb{Z}[G][t^{\pm 1}])) = \operatorname{rank}_{\mathbb{Z}[t^{\pm 1}]}(H_0(N \setminus \Sigma;\mathbb{Z}[G][t^{\pm 1}])). \end{array}$

イロト イポト イラト イラト 一日

Recall: π is LERF if for any f.g. $A \subset \pi$ and $g \notin A$ there is a map $\alpha : \pi \to G$ to a *finite* group G s.t. $\alpha(g) \notin \alpha(A)$.

Theorem. Let N a 3-mfd and $\phi \in H^1(N)$. Suppose that for any $\alpha : \pi \to G$ we have $\Delta_{N,\phi}^{\alpha}$ is non-zero and $\pi_1(N')$ is LERF for any hyperbolic JSJ component N' then ϕ is a fibered class.

We proved, that given $\alpha : \pi_1(N) \to G$, if $\Delta_{N,\phi}^{\alpha} \neq 0$, then $\operatorname{rank}_{\mathbb{Z}[t^{\pm 1}]}(H_0(\Sigma; \mathbb{Z}[G][t^{\pm 1}])) = \operatorname{rank}_{\mathbb{Z}[t^{\pm 1}]}(H_0(N \setminus \Sigma; \mathbb{Z}[G][t^{\pm 1}])).$

・ 戸 ト ・ ヨ ト ・ ヨ ト
Recall: π is LERF if for any f.g. $A \subset \pi$ and $g \notin A$ there is a map $\alpha : \pi \to G$ to a *finite* group G s.t. $\alpha(g) \notin \alpha(A)$.

Theorem. Let N a 3-mfd and $\phi \in H^1(N)$. Suppose that for any $\alpha : \pi \to G$ we have $\Delta_{N,\phi}^{\alpha}$ is non-zero and $\pi_1(N')$ is LERF for any hyperbolic JSJ component N' then ϕ is a fibered class.

We proved, that given $\alpha : \pi_1(N) \to G$, if $\Delta_{N,\phi}^{\alpha} \neq 0$, then $\operatorname{rank}_{\mathbb{Z}[t^{\pm 1}]}(H_0(\Sigma; \mathbb{Z}[G][t^{\pm 1}])) = \operatorname{rank}_{\mathbb{Z}[t^{\pm 1}]}(H_0(N \setminus \Sigma; \mathbb{Z}[G][t^{\pm 1}])).$ $\|$ $\operatorname{rk}_{\mathbb{Z}[t^{\pm 1}]}(H_0(\Sigma; \mathbb{Z}[G]) \otimes \mathbb{Z}[t^{\pm 1}])$

Recall: π is LERF if for any f.g. $A \subset \pi$ and $g \notin A$ there is a map $\alpha : \pi \to G$ to a *finite* group G s.t. $\alpha(g) \notin \alpha(A)$.

Theorem. Let N a 3-mfd and $\phi \in H^1(N)$. Suppose that for any $\alpha : \pi \to G$ we have $\Delta_{N,\phi}^{\alpha}$ is non-zero and $\pi_1(N')$ is LERF for any hyperbolic JSJ component N' then ϕ is a fibered class.

We proved, that given
$$\alpha : \pi_1(N) \to G$$
, if $\Delta_{N,\phi}^{\alpha} \neq 0$, then
 $\operatorname{rank}_{\mathbb{Z}[t^{\pm 1}]}(H_0(\Sigma; \mathbb{Z}[G][t^{\pm 1}])) = \operatorname{rank}_{\mathbb{Z}[t^{\pm 1}]}(H_0(N \setminus \Sigma; \mathbb{Z}[G][t^{\pm 1}])).$

$$\|$$
 $\operatorname{rk}_{\mathbb{Z}[t^{\pm 1}]}(H_0(\Sigma; \mathbb{Z}[G]) \otimes \mathbb{Z}[t^{\pm 1}]) = \operatorname{rk}_{\mathbb{Z}[t^{\pm 1}]}H_0(N \setminus \Sigma; \mathbb{Z}[G]) \otimes \mathbb{Z}[t^{\pm 1}]$

Recall: π is LERF if for any f.g. $A \subset \pi$ and $g \notin A$ there is a map $\alpha : \pi \to G$ to a *finite* group G s.t. $\alpha(g) \notin \alpha(A)$.

Theorem. Let N a 3-mfd and $\phi \in H^1(N)$. Suppose that for any $\alpha : \pi \to G$ we have $\Delta_{N,\phi}^{\alpha}$ is non-zero and $\pi_1(N')$ is LERF for any hyperbolic JSJ component N' then ϕ is a fibered class.

Recall: π is LERF if for any f.g. $A \subset \pi$ and $g \notin A$ there is a map $\alpha : \pi \to G$ to a *finite* group G s.t. $\alpha(g) \notin \alpha(A)$.

Theorem. Let N a 3-mfd and $\phi \in H^1(N)$. Suppose that for any $\alpha : \pi \to G$ we have $\Delta_{N,\phi}^{\alpha}$ is non-zero and $\pi_1(N')$ is LERF for any hyperbolic JSJ component N' then ϕ is a fibered class.

Recall: π is LERF if for any f.g. $A \subset \pi$ and $g \notin A$ there is a map $\alpha : \pi \to G$ to a *finite* group G s.t. $\alpha(g) \notin \alpha(A)$.

Theorem. Let N a 3-mfd and $\phi \in H^1(N)$. Suppose that for any $\alpha : \pi \to G$ we have $\Delta^{\alpha}_{N,\phi}$ is non-zero and $\pi_1(N')$ is LERF for any hyperbolic JSJ component N' then ϕ is a fibered class.

Recall: π is LERF if for any f.g. $A \subset \pi$ and $g \notin A$ there is a map $\alpha : \pi \to G$ to a *finite* group G s.t. $\alpha(g) \notin \alpha(A)$.

Theorem. Let N a 3-mfd and $\phi \in H^1(N)$. Suppose that for any $\alpha : \pi \to G$ we have $\Delta^{\alpha}_{N,\phi}$ is non-zero and $\pi_1(N')$ is LERF for any hyperbolic JSJ component N' then ϕ is a fibered class.

Stefan Friedl (joint with Stefano Vidussi) Detecting the Thurston norm and fibered classes

Recall: π is LERF if for any f.g. $A \subset \pi$ and $g \notin A$ there is a map $\alpha : \pi \to G$ to a *finite* group G s.t. $\alpha(g) \notin \alpha(A)$.

Theorem. Let N a 3-mfd and $\phi \in H^1(N)$. Suppose that for any $\alpha : \pi \to G$ we have $\Delta_{N,\phi}^{\alpha}$ is non-zero and $\pi_1(N')$ is LERF for any hyperbolic JSJ component N' then ϕ is a fibered class.

So we proved, given $\alpha: \pi_1(N) \to G$, if $\Delta^{\alpha}_{N,\phi} \neq 0$, then

(*)
$$\frac{|G|}{|\operatorname{Im}(\pi_1(\Sigma) \to G)|} = \frac{|G|}{|\operatorname{Im}(\pi_1(N \setminus \Sigma) \to G)|}$$

向下 イヨト イヨト

Recall: π is LERF if for any f.g. $A \subset \pi$ and $g \notin A$ there is a map $\alpha : \pi \to G$ to a *finite* group G s.t. $\alpha(g) \notin \alpha(A)$.

Theorem. Let N a 3-mfd and $\phi \in H^1(N)$. Suppose that for any $\alpha : \pi \to G$ we have $\Delta_{N,\phi}^{\alpha}$ is non-zero and $\pi_1(N')$ is LERF for any hyperbolic JSJ component N' then ϕ is a fibered class.

So we proved, given $\alpha: \pi_1(N) \to G$, if $\Delta^{\alpha}_{N,\phi} \neq 0$, then

(*)
$$\frac{|G|}{|\mathsf{Im}(\pi_1(\Sigma) \to G)|} = \frac{|G|}{|\mathsf{Im}(\pi_1(N \setminus \Sigma) \to G)|}$$

Now assume Σ is not a fiber, i.e. $\pi_1(\Sigma) \not\subseteq \pi_1(N \setminus \Sigma)$.

向下 イヨト イヨト

Recall: π is LERF if for any f.g. $A \subset \pi$ and $g \notin A$ there is a map $\alpha : \pi \to G$ to a *finite* group G s.t. $\alpha(g) \notin \alpha(A)$.

Theorem. Let N a 3-mfd and $\phi \in H^1(N)$. Suppose that for any $\alpha : \pi \to G$ we have $\Delta_{N,\phi}^{\alpha}$ is non-zero and $\pi_1(N')$ is LERF for any hyperbolic JSJ component N' then ϕ is a fibered class.

So we proved, given $\alpha: \pi_1(N) \to G$, if $\Delta^{\alpha}_{N,\phi} \neq 0$, then

(*)
$$\frac{|G|}{|\operatorname{Im}(\pi_1(\Sigma) \to G)|} = \frac{|G|}{|\operatorname{Im}(\pi_1(N \setminus \Sigma) \to G)|}$$

Now assume Σ is not a fiber, i.e. $\pi_1(\Sigma) \not\subseteq \pi_1(N \setminus \Sigma)$. Pick $g \in \pi_1(N \setminus \Sigma) \setminus \pi_1(\Sigma)$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Recall: π is LERF if for any f.g. $A \subset \pi$ and $g \notin A$ there is a map $\alpha : \pi \to G$ to a *finite* group G s.t. $\alpha(g) \notin \alpha(A)$.

Theorem. Let N a 3-mfd and $\phi \in H^1(N)$. Suppose that for any $\alpha : \pi \to G$ we have $\Delta_{N,\phi}^{\alpha}$ is non-zero and $\pi_1(N')$ is LERF for any hyperbolic JSJ component N' then ϕ is a fibered class.

So we proved, given $\alpha: \pi_1(N) \to G$, if $\Delta^{\alpha}_{N,\phi} \neq 0$, then

(*)
$$\frac{|G|}{|\operatorname{Im}(\pi_1(\Sigma) \to G)|} = \frac{|G|}{|\operatorname{Im}(\pi_1(N \setminus \Sigma) \to G)|}$$

Now assume Σ is not a fiber, i.e. $\pi_1(\Sigma) \not\subseteq \pi_1(N \setminus \Sigma)$. Pick $g \in \pi_1(N \setminus \Sigma) \setminus \pi_1(\Sigma)$. Since $\pi_1(N)$ is LERF we can find $\pi_1(N) \to G$ such that $\alpha(g) \notin \alpha(\pi_1(\Sigma))$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Recall: π is LERF if for any f.g. $A \subset \pi$ and $g \notin A$ there is a map $\alpha : \pi \to G$ to a *finite* group G s.t. $\alpha(g) \notin \alpha(A)$.

Theorem. Let N a 3-mfd and $\phi \in H^1(N)$. Suppose that for any $\alpha : \pi \to G$ we have $\Delta_{N,\phi}^{\alpha}$ is non-zero and $\pi_1(N')$ is LERF for any hyperbolic JSJ component N' then ϕ is a fibered class.

So we proved, given $\alpha: \pi_1(N) \to G$, if $\Delta^{\alpha}_{N,\phi} \neq 0$, then

(*)
$$\frac{|G|}{|\operatorname{Im}(\pi_1(\Sigma) \to G)|} = \frac{|G|}{|\operatorname{Im}(\pi_1(N \setminus \Sigma) \to G)|}$$

Now assume Σ is not a fiber, i.e. $\pi_1(\Sigma) \not\subseteq \pi_1(N \setminus \Sigma)$. Pick $g \in \pi_1(N \setminus \Sigma) \setminus \pi_1(\Sigma)$. Since $\pi_1(N)$ is LERF we can find $\pi_1(N) \to G$ such that $\alpha(g) \notin \alpha(\pi_1(\Sigma))$. Hence $|\text{Im}(\pi_1(\Sigma) \to G)|$

Recall: π is LERF if for any f.g. $A \subset \pi$ and $g \notin A$ there is a map $\alpha : \pi \to G$ to a *finite* group G s.t. $\alpha(g) \notin \alpha(A)$.

Theorem. Let N a 3-mfd and $\phi \in H^1(N)$. Suppose that for any $\alpha : \pi \to G$ we have $\Delta_{N,\phi}^{\alpha}$ is non-zero and $\pi_1(N')$ is LERF for any hyperbolic JSJ component N' then ϕ is a fibered class.

So we proved, given $\alpha: \pi_1(N) \to G$, if $\Delta^{\alpha}_{N,\phi} \neq 0$, then

(*)
$$\frac{|G|}{|\mathsf{Im}(\pi_1(\Sigma) \to G)|} = \frac{|G|}{|\mathsf{Im}(\pi_1(N \setminus \Sigma) \to G)|}$$

Now assume Σ is not a fiber, i.e. $\pi_1(\Sigma) \not\subseteq \pi_1(N \setminus \Sigma)$. Pick $g \in \pi_1(N \setminus \Sigma) \setminus \pi_1(\Sigma)$. Since $\pi_1(N)$ is LERF we can find $\pi_1(N) \to G$ such that $\alpha(g) \notin \alpha(\pi_1(\Sigma))$. Hence $|\text{Im}(\pi_1(\Sigma) \to G)| = |\text{Im}(\pi_1(\Sigma) \to \pi_1(N \setminus \Sigma) \to G)|$

- 4 同下 4 日下 4 日下 - 日

Recall: π is LERF if for any f.g. $A \subset \pi$ and $g \notin A$ there is a map $\alpha : \pi \to G$ to a *finite* group G s.t. $\alpha(g) \notin \alpha(A)$.

Theorem. Let N a 3-mfd and $\phi \in H^1(N)$. Suppose that for any $\alpha : \pi \to G$ we have $\Delta_{N,\phi}^{\alpha}$ is non-zero and $\pi_1(N')$ is LERF for any hyperbolic JSJ component N' then ϕ is a fibered class.

So we proved, given $\alpha: \pi_1(N) \to G$, if $\Delta^{\alpha}_{N,\phi} \neq 0$, then

(*)
$$\frac{|G|}{|\mathsf{Im}(\pi_1(\Sigma) \to G)|} = \frac{|G|}{|\mathsf{Im}(\pi_1(N \setminus \Sigma) \to G)|}$$

Now assume Σ is not a fiber, i.e. $\pi_1(\Sigma) \not\subseteq \pi_1(N \setminus \Sigma)$. Pick $g \in \pi_1(N \setminus \Sigma) \setminus \pi_1(\Sigma)$. Since $\pi_1(N)$ is LERF we can find $\pi_1(N) \to G$ such that $\alpha(g) \notin \alpha(\pi_1(\Sigma))$. Hence $|\text{Im}(\pi_1(\Sigma) \to G)| = |\text{Im}(\pi_1(\Sigma) \to \pi_1(N \setminus \Sigma) \to G)| < |\text{Im}(\pi_1(N \setminus \Sigma) \to G)|$

- 本部 とくき とくき とうき

Recall: π is LERF if for any f.g. $A \subset \pi$ and $g \notin A$ there is a map $\alpha : \pi \to G$ to a *finite* group G s.t. $\alpha(g) \notin \alpha(A)$.

Theorem. Let N a 3-mfd and $\phi \in H^1(N)$. Suppose that for any $\alpha : \pi \to G$ we have $\Delta^{\alpha}_{N,\phi}$ is non-zero and $\pi_1(N')$ is LERF for any hyperbolic JSJ component N' then ϕ is a fibered class.

So we proved, given $\alpha: \pi_1(N) \to G$, if $\Delta^{\alpha}_{N,\phi} \neq 0$, then

(*)
$$\frac{|G|}{|\operatorname{Im}(\pi_1(\Sigma) \to G)|} = \frac{|G|}{|\operatorname{Im}(\pi_1(N \setminus \Sigma) \to G)|}$$

Now assume Σ is not a fiber, i.e. $\pi_1(\Sigma) \not\subseteq \pi_1(N \setminus \Sigma)$. Pick $g \in \pi_1(N \setminus \Sigma) \setminus \pi_1(\Sigma)$. Since $\pi_1(N)$ is LERF we can find $\pi_1(N) \to G$ such that $\alpha(g) \notin \alpha(\pi_1(\Sigma))$. Hence $|\operatorname{Im}(\pi_1(\Sigma) \to G)| = |\operatorname{Im}(\pi_1(\Sigma) \to \pi_1(N \setminus \Sigma) \to G)| < |\operatorname{Im}(\pi_1(N \setminus \Sigma) \to G)|$ But this contradicts (*)!

イロト イポト イヨト イヨト 一日

Theorem (if Wise's theorem is correct) Let N be any 3-manifold and $\phi \in H^1(N; \mathbb{Z})$ non-fibered, then there exists $\alpha : \pi \to G$ with $\Delta_{N,\phi}^{\alpha} = 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (if Wise's theorem is correct) Let N be any 3-manifold and $\phi \in H^1(N; \mathbb{Z})$ non-fibered, then there exists $\alpha : \pi \to G$ with $\Delta_{N,\phi}^{\alpha} = 0$.

Corollary (Silver-Williams) Let *N* be any 3-manifold and $\phi \in H^1(N; \mathbb{Z}) = \text{Hom}(\pi_1(N), \mathbb{Z})$. If ϕ is non-fibered, then $\text{Ker}(\phi) \in \pi_1(N)$ admits uncountably many finite covers.

伺下 イヨト イヨト

Theorem (if Wise's theorem is correct) Let N be any 3-manifold and $\phi \in H^1(N; \mathbb{Z})$ non-fibered, then there exists $\alpha : \pi \to G$ with $\Delta_{N,\phi}^{\alpha} = 0$.

Corollary (Silver-Williams) Let *N* be any 3-manifold and $\phi \in H^1(N; \mathbb{Z}) = \text{Hom}(\pi_1(N), \mathbb{Z})$. If ϕ is non-fibered, then $\text{Ker}(\phi) \in \pi_1(N)$ admits uncountably many finite covers.

Corollary (F-Vidussi) Let M be an S^1 -bundle over a closed 3-manifold N.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (if Wise's theorem is correct) Let N be any 3-manifold and $\phi \in H^1(N; \mathbb{Z})$ non-fibered, then there exists $\alpha : \pi \to G$ with $\Delta_{N,\phi}^{\alpha} = 0$.

Corollary (Silver-Williams) Let *N* be any 3-manifold and $\phi \in H^1(N; \mathbb{Z}) = \text{Hom}(\pi_1(N), \mathbb{Z})$. If ϕ is non-fibered, then $\text{Ker}(\phi) \in \pi_1(N)$ admits uncountably many finite covers.

Corollary (F-Vidussi) Let M be an S^1 -bundle over a closed 3-manifold N. If M is symplectic, then N fibers over S^1 .

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (if Wise's theorem is correct) Let N be any 3-manifold and $\phi \in H^1(N; \mathbb{Z})$ non-fibered, then there exists $\alpha : \pi \to G$ with $\Delta_{N,\phi}^{\alpha} = 0$.

Corollary (Silver-Williams) Let *N* be any 3-manifold and $\phi \in H^1(N; \mathbb{Z}) = \text{Hom}(\pi_1(N), \mathbb{Z})$. If ϕ is non-fibered, then $\text{Ker}(\phi) \in \pi_1(N)$ admits uncountably many finite covers.

Corollary (F-Vidussi) Let M be an S^1 -bundle over a closed 3-manifold N. If M is symplectic, then N fibers over S^1 .

Given a knot $K \subset S^3$ denote by MN(K) the Morse-Novikov number (i.e. the minimal number of critical points of an S^1 -valued Morse function).

(日本) (日本) (日本)

Theorem (if Wise's theorem is correct) Let N be any 3-manifold and $\phi \in H^1(N; \mathbb{Z})$ non-fibered, then there exists $\alpha : \pi \to G$ with $\Delta_{N,\phi}^{\alpha} = 0$.

Corollary (Silver-Williams) Let *N* be any 3-manifold and $\phi \in H^1(N; \mathbb{Z}) = \text{Hom}(\pi_1(N), \mathbb{Z})$. If ϕ is non-fibered, then $\text{Ker}(\phi) \in \pi_1(N)$ admits uncountably many finite covers.

Corollary (F-Vidussi) Let M be an S^1 -bundle over a closed 3-manifold N. If M is symplectic, then N fibers over S^1 .

Given a knot $K \subset S^3$ denote by MN(K) the Morse-Novikov number (i.e. the minimal number of critical points of an S^1 -valued Morse function). For example, K is fibered if and only if MN(K) = 0.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (if Wise's theorem is correct) Let N be any 3-manifold and $\phi \in H^1(N; \mathbb{Z})$ non-fibered, then there exists $\alpha : \pi \to G$ with $\Delta_{N,\phi}^{\alpha} = 0$.

Corollary (Silver-Williams) Let *N* be any 3-manifold and $\phi \in H^1(N; \mathbb{Z}) = \text{Hom}(\pi_1(N), \mathbb{Z})$. If ϕ is non-fibered, then $\text{Ker}(\phi) \in \pi_1(N)$ admits uncountably many finite covers.

Corollary (F-Vidussi) Let M be an S^1 -bundle over a closed 3-manifold N. If M is symplectic, then N fibers over S^1 .

Given a knot $K \subset S^3$ denote by MN(K) the Morse-Novikov number (i.e. the minimal number of critical points of an S^1 -valued Morse function). For example, K is fibered if and only if MN(K) = 0.

Corollary (?). Let K be a non-fibered knot. Then there exists $\lambda > 0$ such that $MN(nK) > \lambda n$.

Recall that a SRAAG is a subgroup of a RAAG, which in turn is defined from a graph.

伺下 イヨト イヨト

æ

Recall that a SRAAG is a subgroup of a RAAG, which in turn is defined from a graph.

Theorem. (Agol 2006) If N is a 3-manifold such that $\pi_1(N)$ is virtually a SRAAG

伺下 イヨト イヨト

Recall that a SRAAG is a subgroup of a RAAG, which in turn is defined from a graph.

Theorem. (Agol 2006) If N is a 3-manifold such that $\pi_1(N)$ is virtually a SRAAG (i.e. a finite index subgroup of $\pi_1(N)$ is a SRAAG)

Recall that a SRAAG is a subgroup of a RAAG, which in turn is defined from a graph.

Theorem. (Agol 2006) If N is a 3-manifold such that $\pi_1(N)$ is virtually a SRAAG (i.e. a finite index subgroup of $\pi_1(N)$ is a SRAAG) then for any non-fibered $\phi \in H^1(N; \mathbb{Z})$

伺い イヨト イヨト 三日

Recall that a SRAAG is a subgroup of a RAAG, which in turn is defined from a graph.

Theorem. (Agol 2006) If N is a 3-manifold such that $\pi_1(N)$ is virtually a SRAAG (i.e. a finite index subgroup of $\pi_1(N)$ is a SRAAG) then for any non-fibered $\phi \in H^1(N; \mathbb{Z})$ there exists a finite cover $p: N' \to N$ such that $p^*(\phi) \in H^1(N'; \mathbb{Z})$

向下 イヨト イヨト

Recall that a SRAAG is a subgroup of a RAAG, which in turn is defined from a graph.

Theorem. (Agol 2006) If N is a 3-manifold such that $\pi_1(N)$ is virtually a SRAAG (i.e. a finite index subgroup of $\pi_1(N)$ is a SRAAG) then for any non-fibered $\phi \in H^1(N; \mathbb{Z})$ there exists a finite cover $p : N' \to N$ such that $p^*(\phi) \in H^1(N'; \mathbb{Z})$ sits on the boundary of a fibered cone.

向下 イヨト イヨト

Recall that a SRAAG is a subgroup of a RAAG, which in turn is defined from a graph.

Theorem. (Agol 2006) If N is a 3-manifold such that $\pi_1(N)$ is virtually a SRAAG (i.e. a finite index subgroup of $\pi_1(N)$ is a SRAAG) then for any non-fibered $\phi \in H^1(N; \mathbb{Z})$ there exists a finite cover $p : N' \to N$ such that $p^*(\phi) \in H^1(N'; \mathbb{Z})$ sits on the boundary of a fibered cone.

(In particular if $\pi_1(N)$ is virtually a SRAAG, the 3-manifold is virtually fibered.)

伺下 イヨト イヨト

Recall that a SRAAG is a subgroup of a RAAG, which in turn is defined from a graph.

Theorem. (Agol 2006) If N is a 3-manifold such that $\pi_1(N)$ is virtually a SRAAG (i.e. a finite index subgroup of $\pi_1(N)$ is a SRAAG) then for any non-fibered $\phi \in H^1(N; \mathbb{Z})$ there exists a finite cover $p : N' \to N$ such that $p^*(\phi) \in H^1(N'; \mathbb{Z})$ sits on the boundary of a fibered cone.

(In particular if $\pi_1(N)$ is virtually a SRAAG, the 3-manifold is virtually fibered.)

The combination of Wise's theorem (unverified) and Agol's theorem (verified) implies that if N is a Haken hyperbolic 3-manifold, then a finite cover of N fibers over S^1 .

・ 同 ト ・ ヨ ト ・ ヨ ト

Recall that a SRAAG is a subgroup of a RAAG, which in turn is defined from a graph.

Theorem. (Agol 2006) If N is a 3-manifold such that $\pi_1(N)$ is virtually a SRAAG (i.e. a finite index subgroup of $\pi_1(N)$ is a SRAAG) then for any non-fibered $\phi \in H^1(N; \mathbb{Z})$ there exists a finite cover $p : N' \to N$ such that $p^*(\phi) \in H^1(N'; \mathbb{Z})$ sits on the boundary of a fibered cone.

(In particular if $\pi_1(N)$ is virtually a SRAAG, the 3-manifold is virtually fibered.)

The combination of Wise's theorem (unverified) and Agol's theorem (verified) implies that if N is a Haken hyperbolic 3-manifold, then a finite cover of N fibers over S^1 . This a most stunning result.

(四) (日) (日)

Recall that a SRAAG is a subgroup of a RAAG, which in turn is defined from a graph.

Theorem. (Agol 2006) If N is a 3-manifold such that $\pi_1(N)$ is virtually a SRAAG (i.e. a finite index subgroup of $\pi_1(N)$ is a SRAAG) then for any non-fibered $\phi \in H^1(N; \mathbb{Z})$ there exists a finite cover $p : N' \to N$ such that $p^*(\phi) \in H^1(N'; \mathbb{Z})$ sits on the boundary of a fibered cone.

向下 イヨト イヨト

Recall that a SRAAG is a subgroup of a RAAG, which in turn is defined from a graph.

Theorem. (Agol 2006) If N is a 3-manifold such that $\pi_1(N)$ is virtually a SRAAG (i.e. a finite index subgroup of $\pi_1(N)$ is a SRAAG) then for any non-fibered $\phi \in H^1(N; \mathbb{Z})$ there exists a finite cover $p : N' \to N$ such that $p^*(\phi) \in H^1(N'; \mathbb{Z})$ sits on the boundary of a fibered cone.

Theorem (F-Vidussi 2010) Let N be a hyperbolic 3-manifold and $\phi \in H^1(N; \mathbb{Z})$. Then there exists $\alpha : \pi_1(N) \to U(k)$ such that

 $\deg(\Delta_{N,\phi}^{\alpha}) = kx(\phi) + \text{error term.}$

Recall that a SRAAG is a subgroup of a RAAG, which in turn is defined from a graph.

Theorem. (Agol 2006) If N is a 3-manifold such that $\pi_1(N)$ is virtually a SRAAG (i.e. a finite index subgroup of $\pi_1(N)$ is a SRAAG) then for any non-fibered $\phi \in H^1(N; \mathbb{Z})$ there exists a finite cover $p : N' \to N$ such that $p^*(\phi) \in H^1(N'; \mathbb{Z})$ sits on the boundary of a fibered cone.

Theorem (F-Vidussi 2010) Let N be a hyperbolic 3-manifold and $\phi \in H^1(N; \mathbb{Z})$. Then there exists $\alpha : \pi_1(N) \to U(k)$ such that

 $\deg(\Delta_{N,\phi}^{\alpha}) = kx(\phi) + \text{error term.}$

(In particular TAP detect the knot genus for hyperbolic knots.)

Theorem. If $\pi_1(N)$ is virtually a SRAAG then for a non-fibered $\phi \in H^1(N)$ there is $p : N' \to N$ such that $p^*(\phi) \in H^1(N'; \mathbb{Z})$ sits on the bdy of a fibered cone.

Theorem (F-Vidussi 2010) Let N be a hyperbolic 3-manifold and $\phi \in H^1(N; \mathbb{Z})$. Then there exists $\alpha : \pi_1(N) \to U(k)$ such that

 $\deg(\Delta_{N,\phi}^{\alpha}) = kx(\phi) + \text{error term.}$

マボン イラン イラン 一日

Theorem. If $\pi_1(N)$ is virtually a SRAAG then for a non-fibered $\phi \in H^1(N)$ there is $p : N' \to N$ such that $p^*(\phi) \in H^1(N'; \mathbb{Z})$ sits on the bdy of a fibered cone.

Theorem (F-Vidussi 2010) Let N be a hyperbolic 3-manifold and $\phi \in H^1(N; \mathbb{Z})$. Then there exists $\alpha : \pi_1(N) \to U(k)$ such that

 $\deg(\Delta_{N,\phi}^{\alpha}) = kx(\phi) + \text{error term.}$

Proof.

マボン イラン イラン 一日

Theorem. If $\pi_1(N)$ is virtually a SRAAG then for a non-fibered $\phi \in H^1(N)$ there is $p : N' \to N$ such that $p^*(\phi) \in H^1(N'; \mathbb{Z})$ sits on the bdy of a fibered cone.

Theorem (F-Vidussi 2010) Let N be a hyperbolic 3-manifold and $\phi \in H^1(N; \mathbb{Z})$. Then there exists $\alpha : \pi_1(N) \to U(k)$ such that

 $\deg(\Delta_{N,\phi}^{\alpha}) = kx(\phi) + \text{error term.}$

Proof. Let $\phi \in H^1(N; \mathbb{Z})$ non-fibered.
Theorem. If $\pi_1(N)$ is virtually a SRAAG then for a non-fibered $\phi \in H^1(N)$ there is $p : N' \to N$ such that $p^*(\phi) \in H^1(N'; \mathbb{Z})$ sits on the bdy of a fibered cone.

Theorem (F-Vidussi 2010) Let N be a hyperbolic 3-manifold and $\phi \in H^1(N; \mathbb{Z})$. Then there exists $\alpha : \pi_1(N) \to U(k)$ such that

 $\deg(\Delta_{N,\phi}^{\alpha}) = kx(\phi) + \text{error term.}$

Proof. Let $\phi \in H^1(N; \mathbb{Z})$ non-fibered. By Wise and Agol we can find *k*-fold cover $p : N' \to N$ s.t. $\phi' = p^*(\phi) \in H^1(N'; \mathbb{Z})$ sits on the boundary of a fibered cone of N'.

(4月) (4日) (4日) 日

Theorem. If $\pi_1(N)$ is virtually a SRAAG then for a non-fibered $\phi \in H^1(N)$ there is $p : N' \to N$ such that $p^*(\phi) \in H^1(N'; \mathbb{Z})$ sits on the bdy of a fibered cone.

Theorem (F-Vidussi 2010) Let N be a hyperbolic 3-manifold and $\phi \in H^1(N; \mathbb{Z})$. Then there exists $\alpha : \pi_1(N) \to U(k)$ such that

 $\deg(\Delta_{N,\phi}^{\alpha}) = kx(\phi) + \text{error term.}$

Proof. Let $\phi \in H^1(N; \mathbb{Z})$ non-fibered. By Wise and Agol we can find *k*-fold cover $p : N' \to N$ s.t. $\phi' = p^*(\phi) \in H^1(N'; \mathbb{Z})$ sits on the boundary of a fibered cone of N'. The multivariable Alexander polynomial of N' (Alexander norm) picks up $x(\phi')$.

- 사례가 사용가 사용가 구용

Theorem. If $\pi_1(N)$ is virtually a SRAAG then for a non-fibered $\phi \in H^1(N)$ there is $p : N' \to N$ such that $p^*(\phi) \in H^1(N'; \mathbb{Z})$ sits on the bdy of a fibered cone.

Theorem (F-Vidussi 2010) Let N be a hyperbolic 3-manifold and $\phi \in H^1(N; \mathbb{Z})$. Then there exists $\alpha : \pi_1(N) \to U(k)$ such that

 $\deg(\Delta_{N,\phi}^{\alpha}) = kx(\phi) + \text{error term.}$

Proof. Let $\phi \in H^1(N; \mathbb{Z})$ non-fibered. By Wise and Agol we can find *k*-fold cover $p: N' \to N$ s.t. $\phi' = p^*(\phi) \in H^1(N'; \mathbb{Z})$ sits on the boundary of a fibered cone of N'. The multivariable Alexander polynomial of N' (Alexander norm) picks up $x(\phi')$. Hence $\deg(\Delta_{N',\phi'}^{\alpha'}) = x(\phi') + \dots$ for some $\alpha' : \pi_1(N') \to U(1)$.

Theorem. If $\pi_1(N)$ is virtually a SRAAG then for a non-fibered $\phi \in H^1(N)$ there is $p : N' \to N$ such that $p^*(\phi) \in H^1(N'; \mathbb{Z})$ sits on the bdy of a fibered cone.

Theorem (F-Vidussi 2010) Let N be a hyperbolic 3-manifold and $\phi \in H^1(N; \mathbb{Z})$. Then there exists $\alpha : \pi_1(N) \to U(k)$ such that

 $\deg(\Delta_{N,\phi}^{\alpha}) = kx(\phi) + \text{error term.}$

Proof. Let $\phi \in H^1(N; \mathbb{Z})$ non-fibered. By Wise and Agol we can find k-fold cover $p: N' \to N$ s.t. $\phi' = p^*(\phi) \in H^1(N'; \mathbb{Z})$ sits on the boundary of a fibered cone of N'. The multivariable Alexander polynomial of N' (Alexander norm) picks up $x(\phi')$. Hence $\deg(\Delta_{N',\phi'}^{\alpha'}) = x(\phi') + ...$ for some $\alpha' : \pi_1(N') \to U(1)$. Let $\alpha : \pi_1(N) \to U(k)$ the induced representation,

Theorem. If $\pi_1(N)$ is virtually a SRAAG then for a non-fibered $\phi \in H^1(N)$ there is $p : N' \to N$ such that $p^*(\phi) \in H^1(N'; \mathbb{Z})$ sits on the bdy of a fibered cone.

Theorem (F-Vidussi 2010) Let N be a hyperbolic 3-manifold and $\phi \in H^1(N; \mathbb{Z})$. Then there exists $\alpha : \pi_1(N) \to U(k)$ such that

 $\deg(\Delta_{N,\phi}^{\alpha}) = kx(\phi) + \text{error term.}$

Proof. Let $\phi \in H^1(N; \mathbb{Z})$ non-fibered. By Wise and Agol we can find k-fold cover $p: N' \to N$ s.t. $\phi' = p^*(\phi) \in H^1(N'; \mathbb{Z})$ sits on the boundary of a fibered cone of N'. The multivariable Alexander polynomial of N' (Alexander norm) picks up $x(\phi')$. Hence $\deg(\Delta_{N',\phi'}^{\alpha'}) = x(\phi') + ...$ for some $\alpha' : \pi_1(N') \to U(1)$. Let $\alpha : \pi_1(N) \to U(k)$ the induced representation, then $\deg(\Delta_{N,\phi}^{\alpha}) =$

Theorem. If $\pi_1(N)$ is virtually a SRAAG then for a non-fibered $\phi \in H^1(N)$ there is $p : N' \to N$ such that $p^*(\phi) \in H^1(N'; \mathbb{Z})$ sits on the bdy of a fibered cone.

Theorem (F-Vidussi 2010) Let N be a hyperbolic 3-manifold and $\phi \in H^1(N; \mathbb{Z})$. Then there exists $\alpha : \pi_1(N) \to U(k)$ such that

 $\deg(\Delta_{N,\phi}^{\alpha}) = kx(\phi) + \text{error term.}$

Proof. Let $\phi \in H^1(N; \mathbb{Z})$ non-fibered. By Wise and Agol we can find k-fold cover $p: N' \to N$ s.t. $\phi' = p^*(\phi) \in H^1(N'; \mathbb{Z})$ sits on the boundary of a fibered cone of N'. The multivariable Alexander polynomial of N' (Alexander norm) picks up $x(\phi')$. Hence $\deg(\Delta_{N',\phi'}^{\alpha'}) = x(\phi') + ...$ for some $\alpha' : \pi_1(N') \to U(1)$. Let $\alpha : \pi_1(N) \to U(k)$ the induced representation, then $\deg(\Delta_{N,\phi}^{\alpha}) = \deg(\Delta_{N',\phi'}^{\alpha'}) =$

Theorem. If $\pi_1(N)$ is virtually a SRAAG then for a non-fibered $\phi \in H^1(N)$ there is $p : N' \to N$ such that $p^*(\phi) \in H^1(N'; \mathbb{Z})$ sits on the bdy of a fibered cone.

Theorem (F-Vidussi 2010) Let N be a hyperbolic 3-manifold and $\phi \in H^1(N; \mathbb{Z})$. Then there exists $\alpha : \pi_1(N) \to U(k)$ such that

 $\deg(\Delta_{N,\phi}^{\alpha}) = kx(\phi) + \text{error term.}$

Proof. Let $\phi \in H^1(N; \mathbb{Z})$ non-fibered. By Wise and Agol we can find k-fold cover $p: N' \to N$ s.t. $\phi' = p^*(\phi) \in H^1(N'; \mathbb{Z})$ sits on the boundary of a fibered cone of N'. The multivariable Alexander polynomial of N' (Alexander norm) picks up $x(\phi')$. Hence $\deg(\Delta_{N',\phi'}^{\alpha'}) = x(\phi') + ...$ for some $\alpha' : \pi_1(N') \to U(1)$. Let $\alpha : \pi_1(N) \to U(k)$ the induced representation, then $\deg(\Delta_{N,\phi}^{\alpha}) = \deg(\Delta_{N',\phi'}^{\alpha'}) = x(\phi') + ... =$

Theorem. If $\pi_1(N)$ is virtually a SRAAG then for a non-fibered $\phi \in H^1(N)$ there is $p : N' \to N$ such that $p^*(\phi) \in H^1(N'; \mathbb{Z})$ sits on the bdy of a fibered cone.

Theorem (F-Vidussi 2010) Let N be a hyperbolic 3-manifold and $\phi \in H^1(N; \mathbb{Z})$. Then there exists $\alpha : \pi_1(N) \to U(k)$ such that

 $\deg(\Delta_{N,\phi}^{\alpha}) = kx(\phi) + \text{error term.}$

Proof. Let $\phi \in H^1(N; \mathbb{Z})$ non-fibered. By Wise and Agol we can find k-fold cover $p: N' \to N$ s.t. $\phi' = p^*(\phi) \in H^1(N'; \mathbb{Z})$ sits on the boundary of a fibered cone of N'. The multivariable Alexander polynomial of N' (Alexander norm) picks up $x(\phi')$. Hence $\deg(\Delta_{N',\phi'}^{\alpha'}) = x(\phi') + ...$ for some $\alpha' : \pi_1(N') \to U(1)$. Let $\alpha : \pi_1(N) \to U(k)$ the induced representation, then $\deg(\Delta_{N,\phi}^{\alpha}) = \deg(\Delta_{N',\phi'}^{\alpha'}) = x(\phi') + ... = kx(\phi) +$

(ロ) (同) (E) (E) (E)