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Questions about knots

By a knot K we mean a closed embedded curve in S3.

We list some goals in knot theory.
(2) Determine the genus g(K ) of K .
(2’) Determine the free genus of a given knot
(3) Determine whether a given knot is fibered
(4) Determine whether K is slice or not.
(5) Determine which knots are periodic.
(6) Determine which knots are amphichiral.
(7) Determine the partial order ≥ of knots.
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By a knot K we mean a closed embedded curve in S3.
We list some goals in knot theory.
(1) Find invariants which distinguish knots.
(2) Any knot K bounds an orientable embedded surface (Seifert
surface). The genus of K is the minimal genus among all Seifert
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By a knot K we mean a closed embedded curve in S3.
We list some goals in knot theory.
(1) Find invariants which distinguish knots.
(2) Determine the genus g(K ) of K .
(2’) Any knot admits a Seifert surface Σ such that π1(S3 \ Σ) is
free. The minimal genus of such a Seifert surface is the free genus
of K .
Goal: determine the free genus gfree(K ) of a knot.
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Questions about knots

By a knot K we mean a closed embedded curve in S3.
We list some goals in knot theory.
(1) Find invariants which distinguish knots.
(2) Determine the genus g(K ) of K .
(2’) Determine the free genus of a given knot
(3) A knot is fibered if there exists a fibration S3 \ K → S1 (i.e. a
map such that the preimage of an interval is a surface times an
interval). Note that a fiber is a genus minimizing Seifert surface.
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(2) Determine the genus g(K ) of K .
(2’) Determine the free genus of a given knot
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By a knot K we mean a closed embedded curve in S3.
We list some goals in knot theory.
(1) Find invariants which distinguish knots.
(2) Determine the genus g(K ) of K .
(2’) Determine the free genus of a given knot
(3) Determine whether a given knot is fibered
(4) Determine whether K is slice or not.
(5) Determine which knots are periodic.
(6) Determine which knots are amphichiral.
(7) We write K1 ≥ K2 if there exists an epimorphism

π1(S3 \ K1)→ π1(S3 \ K2).

This defines a partial order on the set of knots. Goal: determine
the partial order of knots.

(7) Determine the partial order ≥ of
knots.
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The classical Alexander polynomial of a knot: advanced
definition

For a knot K we write X = S3 \ K .
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The classical Alexander polynomial of a knot: advanced
definition

For a knot K we write X = S3 \ K . We have H1(S3 \ K ) = Z by
Alexander duality and we denote by X̃ the infinite cyclic cover of X
corresponding to π1(X )→ H1(X )→ Z = 〈t〉. The infinite cyclic
group 〈t〉 acts on H1(X̃ ), hence H1(X̃ ) is a module over Z[t±1].
We write

H1(X ;Z[t±1]) = H1(X̃ ).

We have a resolution

Z[t±1]n
D−→ Z[t±1]n → H1(X ,Z[t±1])→ 0

and we define
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For a knot K we write X = S3 \ K . We have H1(S3 \ K ) = Z by
Alexander duality and we denote by X̃ the infinite cyclic cover of X
corresponding to π1(X )→ H1(X )→ Z = 〈t〉. The infinite cyclic
group 〈t〉 acts on H1(X̃ ), hence H1(X̃ ) is a module over Z[t±1].
We write
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The classical Alexander polynomial of a knot: advanced
definition

For a knot K we write X = S3 \ K . We have a resolution

Z[t±1]n
D−→ Z[t±1]n → H1(X ,Z[t±1])→ 0

and we define
∆K (t) = det(D) ∈ Z[t±1].

(1) If A is a Seifert matrix, then D = At − At and hence

∆K (t) = det(At − At).
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The classical Alexander polynomial of a knot: advanced
definition

For a knot K we write X = S3 \ K . We have a resolution

Z[t±1]n
D−→ Z[t±1]n → H1(X ,Z[t±1])→ 0

and we define
∆K (t) = det(D) ∈ Z[t±1].

(1) If A is a Seifert matrix, then D = At − At and hence

∆K (t) = det(At − At).

This approach is very effective for knots but does not generalize
well to 3-manifolds.
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The classical Alexander polynomial of a knot: advanced
definition

For a knot K we write X = S3 \ K . We have a resolution

Z[t±1]n
D−→ Z[t±1]n → H1(X ,Z[t±1])→ 0

and we define
∆K (t) = det(D) ∈ Z[t±1].

(1) If A is a Seifert matrix, then D = At − At and hence

∆K (t) = det(At − At).

(2) ∆K (t) can be computed easily using Fox calculus.

Stefan Friedl Twisted Alexander polynomials - an overview



The classical Alexander polynomial of a knot: advanced
definition

For a knot K we write X = S3 \ K . We have a resolution
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D−→ Z[t±1]n → H1(X ,Z[t±1])→ 0

and we define
∆K (t) = det(D) ∈ Z[t±1].

(1) If A is a Seifert matrix, then D = At − At and hence

∆K (t) = det(At − At).

(2) ∆K (t) can be computed easily using Fox calculus.
(3) ∆K (t) can also be expressed using Reidemeister-Milnor-Turaev
torsion
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The classical Alexander polynomial of a knot: advanced
definition

For a knot K we write X = S3 \ K . We have a resolution

Z[t±1]n
D−→ Z[t±1]n → H1(X ,Z[t±1])→ 0

and we define
∆K (t) = det(D) ∈ Z[t±1].

(1) If A is a Seifert matrix, then D = At − At and hence

∆K (t) = det(At − At).

(2) ∆K (t) can be computed easily using Fox calculus.
(3) ∆K (t) can also be expressed using Reidemeister-Milnor-Turaev
torsion (which is my favorite view point!)
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Properties of the Alexander polynomial

Let K be a knot and ∆K (t) its Alexander polynomial.

(1) ∆K (t) ∈ Z[t±1] (2) The Alexander polynomial of the trivial
knot equals 1.
(3) There are non-trivial knots with Alexander polynomial 1
(4) The Alexander polynomial is unchanged under mutation.
(5) ∆K (t) = ∆K (t−1)
(6) ∆K (1) = ±1
(7) deg(∆K (t)) ≤ 2g(K )
(8) If K is fibered, then deg(∆K (t)) ≤ 2g(K ) and ∆K (t) is
monic.
(9) If K is slice, then ∆K (t) = f (t)f (t−1) for some f (t) ∈ Z[t±1]
(10) ∆K∗(t) = ∆K (t)
(11) If K1 ≥ K2, then ∆K2(t) divides ∆K1(t)
(12) The Alexander polynomial of a periodic knot has a special
form
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Let K be a knot and ∆K (t) its Alexander polynomial.
(1) ∆K (t) ∈ Z[t±1]

(2) The Alexander polynomial of the trivial
knot equals 1.
(3) There are non-trivial knots with Alexander polynomial 1
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(6) ∆K (1) = ±1
(7) deg(∆K (t)) ≤ 2g(K )
(8) If K is fibered, then deg(∆K (t)) ≤ 2g(K ) and ∆K (t) is
monic.
(9) If K is slice, then ∆K (t) = f (t)f (t−1) for some f (t) ∈ Z[t±1]
(10) ∆K∗(t) = ∆K (t)
(11) If K1 ≥ K2, then ∆K2(t) divides ∆K1(t)
(12) The Alexander polynomial of a periodic knot has a special
form

Stefan Friedl Twisted Alexander polynomials - an overview



Properties of the Alexander polynomial

Let K be a knot and ∆K (t) its Alexander polynomial.
(1) ∆K (t) ∈ Z[t±1] and is well-defined up to
multiplication by ±tk .

(2) The Alexander polynomial of the trivial knot equals 1.
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Twisted Alexander polynomials: homological definition

Let K ⊂ S3 and α : π = π1(S3 \ K )→ GL(n,R) a representation
over a UFD

Denote the epimorphism π → Z by φ and the
universal cover of X = S3 \ K by X̃ . Z[π] acts on C∗(X̃ ) by deck
transformations and Z[π] acts on R[t±1]⊗ Rn = Rn[t±1]
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Let K ⊂ S3 and α : π = π1(S3 \ K )→ GL(n,R) a representation
over a UFD Denote the epimorphism π → Z by φ and the
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Twisted Alexander polynomials: homological definition

Let K ⊂ S3 and α : π = π1(S3 \ K )→ GL(n,R) a representation
over a UFD Denote the epimorphism π → Z by φ and the
universal cover of X = S3 \ K by X̃ . Z[π] acts on C∗(X̃ ) by deck
transformations and Z[π] acts on R[t±1]⊗ Rn = Rn[t±1] as
follows:

g · (p(t)⊗ v) = tφ(g)p(t)⊗ α(g)v .
Consider Cα

∗ (X ; Rn[t±1]) := C∗(X̃ )⊗Z[π] Rn[t±1]
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Twisted Alexander polynomials: homological definition

Let K ⊂ S3 and α : π = π1(S3 \ K )→ GL(n,R) a representation
over a UFD Denote the epimorphism π → Z by φ and the
universal cover of X = S3 \ K by X̃ . Z[π] acts on C∗(X̃ ) by deck
transformations and Z[π] acts on R[t±1]⊗ Rn = Rn[t±1] as
follows:

g · (p(t)⊗ v) = tφ(g)p(t)⊗ α(g)v .
Consider Cα

∗ (X ; Rn[t±1]) := C∗(X̃ )⊗Z[π] Rn[t±1]
(this is a chain complex over the ring R[t±1])
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transformations and Z[π] acts on R[t±1]⊗ Rn = Rn[t±1] as
follows:

g · (p(t)⊗ v) = tφ(g)p(t)⊗ α(g)v .
Consider Cα

∗ (X ; Rn[t±1]) := C∗(X̃ )⊗Z[π] Rn[t±1]
(this is a chain complex over the ring R[t±1]) and its homology
Hα
∗ (X ; Rn[t±1]).
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Let K ⊂ S3 and α : π = π1(S3 \ K )→ GL(n,R) a representation
over a UFD Denote the epimorphism π → Z by φ and the
universal cover of X = S3 \ K by X̃ . Z[π] acts on C∗(X̃ ) by deck
transformations and Z[π] acts on R[t±1]⊗ Rn = Rn[t±1] as
follows:

g · (p(t)⊗ v) = tφ(g)p(t)⊗ α(g)v .
Consider Cα

∗ (X ; Rn[t±1]) := C∗(X̃ )⊗Z[π] Rn[t±1]
(this is a chain complex over the ring R[t±1]) and its homology
Hα
∗ (X ; Rn[t±1]). Pick a resolution

Rn[t±1]k
D−→ Rn[t±1]l → Hα

∗ (X ; Rn[t±1])→ 0
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Twisted Alexander polynomials: homological definition

Let K ⊂ S3 and α : π = π1(S3 \ K )→ GL(n,R) a representation
over a UFD Denote the epimorphism π → Z by φ and the
universal cover of X = S3 \ K by X̃ . Z[π] acts on C∗(X̃ ) by deck
transformations and Z[π] acts on R[t±1]⊗ Rn = Rn[t±1] as
follows:

g · (p(t)⊗ v) = tφ(g)p(t)⊗ α(g)v .
Consider Cα

∗ (X ; Rn[t±1]) := C∗(X̃ )⊗Z[π] Rn[t±1]
(this is a chain complex over the ring R[t±1]) and its homology
Hα
∗ (X ; Rn[t±1]). Pick a resolution

Rn[t±1]k
D−→ Rn[t±1]l → Hα

∗ (X ; Rn[t±1])→ 0

and define
∆α

K (t) = gcd of l × l-minors of D
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Twisted Alexander polynomials: homological definition

Let K ⊂ S3 and α : π = π1(S3 \ K )→ GL(n,R) a representation
over a UFD Denote the epimorphism π → Z by φ and the
universal cover of X = S3 \ K by X̃ . Z[π] acts on C∗(X̃ ) by deck
transformations and Z[π] acts on R[t±1]⊗ Rn = Rn[t±1] as
follows:

g · (p(t)⊗ v) = tφ(g)p(t)⊗ α(g)v .
Consider Cα

∗ (X ; Rn[t±1]) := C∗(X̃ )⊗Z[π] Rn[t±1]
(this is a chain complex over the ring R[t±1]) and its homology
Hα
∗ (X ; Rn[t±1]). Pick a resolution

Rn[t±1]k
D−→ Rn[t±1]l → Hα

∗ (X ; Rn[t±1])→ 0

and define
∆α

K (t) = gcd of l × l-minors of D

This is twisted Alexander polynomial (TAP) of the pair (K , α).
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Twisted Alexander polynomials: homological definition

Let K ⊂ S3 and α : π = π1(S3 \ K )→ GL(n,R) a representation
over a UFD Denote the epimorphism π → Z by φ and the
universal cover of X = S3 \ K by X̃ . Z[π] acts on C∗(X̃ ) by deck
transformations and Z[π] acts on R[t±1]⊗ Rn = Rn[t±1] as
follows:

g · (p(t)⊗ v) = tφ(g)p(t)⊗ α(g)v .
Consider Cα

∗ (X ; Rn[t±1]) := C∗(X̃ )⊗Z[π] Rn[t±1]
(this is a chain complex over the ring R[t±1]) and its homology
Hα
∗ (X ; Rn[t±1]). Pick a resolution

Rn[t±1]k
D−→ Rn[t±1]l → Hα

∗ (X ; Rn[t±1])→ 0

and define
∆α

K (t) = gcd of l × l-minors of D

This is twisted Alexander polynomial (TAP) of the pair (K , α).
The definition is due to Lin 1991, Wada 1994, Jiang-Wang 1993,
Kitano 1996 and Kirk-Livingston 1996
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Twisted Alexander polynomials (TAP): properties

Let α : π = π1(S3 \ K )→ GL(n,R) a representation.

(1) ∆α
K lies in R[t±1] and is well-defined up to a unit in R[t±1].

(4) Any non-trivial knot admits a representation with ∆α
K 6= 1

(6) If the representation is unitary, then the TAP is symmetric
(9) The TAPs for all reps determine whether a knot is fibered
Cochran, Cogolludo, Dubois, Florens, Harvey, Hirasawa, Horie,
Huynh, Le, Matsumoto, Murasugi, Pajitnov, Tamulis, Turaev,
Yamaguchi.
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Let α : π = π1(S3 \ K )→ GL(n,R) a representation.
(1) ∆α

K lies in R[t±1] and is well-defined up to a unit in R[t±1].
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Twisted Alexander polynomials (TAP): properties

Let α : π = π1(S3 \ K )→ GL(n,R) a representation.
(1) ∆α

K lies in R[t±1] and is well-defined up to a unit in R[t±1].
(There are more refined definitions with smaller indeterminacy.)

(4) Any non-trivial knot admits a representation with ∆α
K 6= 1

(6) If the representation is unitary, then the TAP is symmetric
(9) The TAPs for all reps determine whether a knot is fibered
Cochran, Cogolludo, Dubois, Florens, Harvey, Hirasawa, Horie,
Huynh, Le, Matsumoto, Murasugi, Pajitnov, Tamulis, Turaev,
Yamaguchi.
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Twisted Alexander polynomials (TAP): properties

Let α : π = π1(S3 \ K )→ GL(n,R) a representation.
(1) ∆α

K lies in R[t±1] and is well-defined up to a unit in R[t±1].
(2) TAP can be computed from Fox calculus or Reidemeister
torsion

(4) Any non-trivial knot admits a representation with ∆α
K 6= 1

(6) If the representation is unitary, then the TAP is symmetric
(9) The TAPs for all reps determine whether a knot is fibered
Cochran, Cogolludo, Dubois, Florens, Harvey, Hirasawa, Horie,
Huynh, Le, Matsumoto, Murasugi, Pajitnov, Tamulis, Turaev,
Yamaguchi.
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Twisted Alexander polynomials (TAP): properties

Let α : π = π1(S3 \ K )→ GL(n,R) a representation.
(1) ∆α

K lies in R[t±1] and is well-defined up to a unit in R[t±1].
(2) TAP can be computed from Fox calculus or torsion
(shown by Wada 1994, Kitano 1996 and Kirk-Livingston 1996)

(4) Any non-trivial knot admits a representation with ∆α
K 6= 1

(6) If the representation is unitary, then the TAP is symmetric
(9) The TAPs for all reps determine whether a knot is fibered
Cochran, Cogolludo, Dubois, Florens, Harvey, Hirasawa, Horie,
Huynh, Le, Matsumoto, Murasugi, Pajitnov, Tamulis, Turaev,
Yamaguchi.
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Twisted Alexander polynomials (TAP): properties

Let α : π = π1(S3 \ K )→ GL(n,R) a representation.
(1) ∆α

K lies in R[t±1] and is well-defined up to a unit in R[t±1].
(2) TAP can be computed from Fox calculus or torsion
(3) The twisted Alexander polynomial (TAP) is one for the unknot

(4) Any non-trivial knot admits a representation with ∆α
K 6= 1

(6) If the representation is unitary, then the TAP is symmetric
(9) The TAPs for all reps determine whether a knot is fibered
Cochran, Cogolludo, Dubois, Florens, Harvey, Hirasawa, Horie,
Huynh, Le, Matsumoto, Murasugi, Pajitnov, Tamulis, Turaev,
Yamaguchi.
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Twisted Alexander polynomials (TAP): properties

Let α : π = π1(S3 \ K )→ GL(n,R) a representation.
(1) ∆α

K lies in R[t±1] and is well-defined up to a unit in R[t±1].
(2) TAP can be computed from Fox calculus or torsion
(3) The twisted Alexander polynomial (TAP) is one for the unknot
(4) Any non-trivial knot admits a representation with ∆α

K 6= 1
(this was shown by Silver-Williams 2005 and F-Vidussi 2005)

(6) If the representation is unitary, then the TAP is symmetric
(9) The TAPs for all reps determine whether a knot is fibered
Cochran, Cogolludo, Dubois, Florens, Harvey, Hirasawa, Horie,
Huynh, Le, Matsumoto, Murasugi, Pajitnov, Tamulis, Turaev,
Yamaguchi.
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Twisted Alexander polynomials (TAP): properties

Let α : π = π1(S3 \ K )→ GL(n,R) a representation.
(1) ∆α

K lies in R[t±1] and is well-defined up to a unit in R[t±1].
(2) TAP can be computed from Fox calculus or torsion
(3) The twisted Alexander polynomial (TAP) is one for the unknot
(4) Any non-trivial knot admits a representation with ∆α

K 6= 1
(5a) The TAP can detect mutation

(6) If the representation is unitary, then the TAP is symmetric
(9) The TAPs for all reps determine whether a knot is fibered
Cochran, Cogolludo, Dubois, Florens, Harvey, Hirasawa, Horie,
Huynh, Le, Matsumoto, Murasugi, Pajitnov, Tamulis, Turaev,
Yamaguchi.
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Twisted Alexander polynomials (TAP): properties

Let α : π = π1(S3 \ K )→ GL(n,R) a representation.
(1) ∆α

K lies in R[t±1] and is well-defined up to a unit in R[t±1].
(2) TAP can be computed from Fox calculus or torsion
(3) The twisted Alexander polynomial (TAP) is one for the unknot
(4) Any non-trivial knot admits a representation with ∆α

K 6= 1
(5a) The TAP can detect mutation
(e.g. it distinguishes the Conway knot from the Kinoshita-Terasaka
knot, Lin 1991)

(6) If the representation is unitary, then the TAP is symmetric
(9) The TAPs for all reps determine whether a knot is fibered
Cochran, Cogolludo, Dubois, Florens, Harvey, Hirasawa, Horie,
Huynh, Le, Matsumoto, Murasugi, Pajitnov, Tamulis, Turaev,
Yamaguchi.
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Twisted Alexander polynomials (TAP): properties

Let α : π = π1(S3 \ K )→ GL(n,R) a representation.
(1) ∆α

K lies in R[t±1] and is well-defined up to a unit in R[t±1].
(2) TAP can be computed from Fox calculus or torsion
(3) The twisted Alexander polynomial (TAP) is one for the unknot
(4) Any non-trivial knot admits a representation with ∆α

K 6= 1
(5a) The TAP can detect mutation
(e.g. it distinguishes the Conway knot from the Kinoshita-Terasaka
knot, Lin 1991)
(5b) A refinement of TAPs can detect mirror images
(examples are given by Kirk-Livingston 1996)

(6) If the representation is unitary, then the TAP is symmetric
(9) The TAPs for all reps determine whether a knot is fibered
Cochran, Cogolludo, Dubois, Florens, Harvey, Hirasawa, Horie,
Huynh, Le, Matsumoto, Murasugi, Pajitnov, Tamulis, Turaev,
Yamaguchi.
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Twisted Alexander polynomials (TAP): properties

Let α : π = π1(S3 \ K )→ GL(n,R) a representation.
(1) ∆α

K lies in R[t±1] and is well-defined up to a unit in R[t±1].
(2) TAP can be computed from Fox calculus or torsion
(3) The twisted Alexander polynomial (TAP) is one for the unknot
(4) Any non-trivial knot admits a representation with ∆α

K 6= 1
(5) TAPs detect mutation and chirality
(6) If the representation is unitary, then the TAP is symmetric
(a consequence of Poincaré duality, shown by Kitano 1996)

(9) The TAPs for all reps determine whether a knot is fibered
Cochran, Cogolludo, Dubois, Florens, Harvey, Hirasawa, Horie,
Huynh, Le, Matsumoto, Murasugi, Pajitnov, Tamulis, Turaev,
Yamaguchi.
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Twisted Alexander polynomials (TAP): properties

Let α : π = π1(S3 \ K )→ GL(n,R) a representation.
(1) ∆α

K lies in R[t±1] and is well-defined up to a unit in R[t±1].
(2) TAP can be computed from Fox calculus or torsion
(3) The twisted Alexander polynomial (TAP) is one for the unknot
(4) Any non-trivial knot admits a representation with ∆α

K 6= 1
(5) TAPs detect mutation and chirality
(6) If the representation is unitary, then the TAP is symmetric
(7a) TAP gives lower bounds on the genus which are often sharp
(shown by F-Kim 2006)

(9) The TAPs for all reps determine whether a knot is fibered
Cochran, Cogolludo, Dubois, Florens, Harvey, Hirasawa, Horie,
Huynh, Le, Matsumoto, Murasugi, Pajitnov, Tamulis, Turaev,
Yamaguchi.
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Twisted Alexander polynomials (TAP): properties

Let α : π = π1(S3 \ K )→ GL(n,R) a representation.
(1) ∆α

K lies in R[t±1] and is well-defined up to a unit in R[t±1].
(2) TAP can be computed from Fox calculus or torsion
(3) The twisted Alexander polynomial (TAP) is one for the unknot
(4) Any non-trivial knot admits a representation with ∆α

K 6= 1
(5) TAPs detect mutation and chirality
(6) If the representation is unitary, then the TAP is symmetric
(7a) TAP gives lower bounds on the genus which are often sharp
(shown by F-Kim 2006)
(7b) A version of the TAP gives a lower bound on the free genus
(shown by Kitayama in 2008)

(9) The TAPs for all reps determine whether a knot is fibered
Cochran, Cogolludo, Dubois, Florens, Harvey, Hirasawa, Horie,
Huynh, Le, Matsumoto, Murasugi, Pajitnov, Tamulis, Turaev,
Yamaguchi.
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Let α : π = π1(S3 \ K )→ GL(n,R) a representation.
(1) ∆α

K lies in R[t±1] and is well-defined up to a unit in R[t±1].
(2) TAP can be computed from Fox calculus or torsion
(3) The twisted Alexander polynomial (TAP) is one for the unknot
(4) Any non-trivial knot admits a representation with ∆α

K 6= 1
(5) TAPs detect mutation and chirality
(6) If the representation is unitary, then the TAP is symmetric
(7) TAP gives lower bounds on the genus and free genus
(8) The TAP of a fibered knot is monic

(9) The TAPs for all reps determine whether a knot is fibered
Cochran, Cogolludo, Dubois, Florens, Harvey, Hirasawa, Horie,
Huynh, Le, Matsumoto, Murasugi, Pajitnov, Tamulis, Turaev,
Yamaguchi.
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Twisted Alexander polynomials (TAP): properties

Let α : π = π1(S3 \ K )→ GL(n,R) a representation.
(1) ∆α

K lies in R[t±1] and is well-defined up to a unit in R[t±1].
(2) TAP can be computed from Fox calculus or torsion
(3) The twisted Alexander polynomial (TAP) is one for the unknot
(4) Any non-trivial knot admits a representation with ∆α

K 6= 1
(5) TAPs detect mutation and chirality
(6) If the representation is unitary, then the TAP is symmetric
(7) TAP gives lower bounds on the genus and free genus
(8) The TAP of a fibered knot is monic
(shown by Cha 2001, Goda-Kitano-Morifuji 2001, F-Kim 2004)

(9) The TAPs for all reps determine whether a knot is fibered
Cochran, Cogolludo, Dubois, Florens, Harvey, Hirasawa, Horie,
Huynh, Le, Matsumoto, Murasugi, Pajitnov, Tamulis, Turaev,
Yamaguchi.
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Twisted Alexander polynomials (TAP): properties

Let α : π = π1(S3 \ K )→ GL(n,R) a representation.
(1) ∆α

K lies in R[t±1] and is well-defined up to a unit in R[t±1].
(2) TAP can be computed from Fox calculus or torsion
(3) The twisted Alexander polynomial (TAP) is one for the unknot
(4) Any non-trivial knot admits a representation with ∆α

K 6= 1
(5) TAPs detect mutation and chirality
(6) If the representation is unitary, then the TAP is symmetric
(7) TAP gives lower bounds on the genus and free genus
(8) The TAP of a fibered knot is monic
(9) The TAPs for all reps determine whether a knot is fibered
(shown by F-Vidussi in 2008)

Cochran, Cogolludo, Dubois,
Florens, Harvey, Hirasawa, Horie, Huynh, Le, Matsumoto,
Murasugi, Pajitnov, Tamulis, Turaev, Yamaguchi.
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Twisted Alexander polynomials (TAP): properties

Let α : π = π1(S3 \ K )→ GL(n,R) a representation.
(1) ∆α

K lies in R[t±1] and is well-defined up to a unit in R[t±1].
(2) TAP can be computed from Fox calculus or torsion
(3) The twisted Alexander polynomial (TAP) is one for the unknot
(4) Any non-trivial knot admits a representation with ∆α

K 6= 1
(5) TAPs detect mutation and chirality
(6) If the representation is unitary, then the TAP is symmetric
(7) TAP gives lower bounds on the genus and free genus
(8) The TAP of a fibered knot is monic
(9) The TAPs for all reps determine whether a knot is fibered
(10) The TAPs corresponding to appropriate representations give
sliceness obstructions for knots and links

Cochran, Cogolludo, Dubois, Florens, Harvey, Hirasawa, Horie,
Huynh, Le, Matsumoto, Murasugi, Pajitnov, Tamulis, Turaev,
Yamaguchi.
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Twisted Alexander polynomials (TAP): properties

Let α : π = π1(S3 \ K )→ GL(n,R) a representation.
(1) ∆α

K lies in R[t±1] and is well-defined up to a unit in R[t±1].
(2) TAP can be computed from Fox calculus or torsion
(3) The twisted Alexander polynomial (TAP) is one for the unknot
(4) Any non-trivial knot admits a representation with ∆α

K 6= 1
(5) TAPs detect mutation and chirality
(6) If the representation is unitary, then the TAP is symmetric
(7) TAP gives lower bounds on the genus and free genus
(8) The TAP of a fibered knot is monic
(9) The TAPs for all reps determine whether a knot is fibered
(10) The TAPs corresponding to appropriate representations give
sliceness obstructions for knots and links
(shown by Kirk-Livingston 1996 and Herald-Kirk-Livingston 2008
for knots and Cha-F 2010 for links)

Cochran, Cogolludo, Dubois, Florens, Harvey, Hirasawa, Horie,
Huynh, Le, Matsumoto, Murasugi, Pajitnov, Tamulis, Turaev,
Yamaguchi.
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Twisted Alexander polynomials (TAP): properties

Let α : π = π1(S3 \ K )→ GL(n,R) a representation.
(1) ∆α

K lies in R[t±1] and is well-defined up to a unit in R[t±1].
(2) TAP can be computed from Fox calculus or torsion
(3) The twisted Alexander polynomial (TAP) is one for the unknot
(4) Any non-trivial knot admits a representation with ∆α

K 6= 1
(5) TAPs detect mutation and chirality
(6) If the representation is unitary, then the TAP is symmetric
(7) TAP gives lower bounds on the genus and free genus
(8) The TAP of a fibered knot is monic
(9) The TAPs for all reps determine whether a knot is fibered
(11) TAPs give sliceness obstructions for knots and links

Cochran, Cogolludo, Dubois, Florens, Harvey, Hirasawa, Horie,
Huynh, Le, Matsumoto, Murasugi, Pajitnov, Tamulis, Turaev,
Yamaguchi.
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Twisted Alexander polynomials (TAP): properties

Let α : π = π1(S3 \ K )→ GL(n,R) a representation.
(1) ∆α

K lies in R[t±1] and is well-defined up to a unit in R[t±1].
(2) TAP can be computed from Fox calculus or torsion
(3) The twisted Alexander polynomial (TAP) is one for the unknot
(4) Any non-trivial knot admits a representation with ∆α

K 6= 1
(5) TAPs detect mutation and chirality
(6) If the representation is unitary, then the TAP is symmetric
(7) TAP gives lower bounds on the genus and free genus
(8) The TAP of a fibered knot is monic
(9) The TAPs for all reps determine whether a knot is fibered
(11) TAPs give sliceness obstructions for knots and links
(13) The TAP of periodic knots has a particular form
(shown by Hillman-Livingston-Naik 2005)

Cochran, Cogolludo, Dubois, Florens, Harvey, Hirasawa, Horie,
Huynh, Le, Matsumoto, Murasugi, Pajitnov, Tamulis, Turaev,
Yamaguchi.
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Twisted Alexander polynomials (TAP): properties

Let α : π = π1(S3 \ K )→ GL(n,R) a representation.
(1) ∆α

K lies in R[t±1] and is well-defined up to a unit in R[t±1].
(2) TAP can be computed from Fox calculus or torsion
(3) The twisted Alexander polynomial (TAP) is one for the unknot
(4) Any non-trivial knot admits a representation with ∆α

K 6= 1
(5) TAPs detect mutation and chirality
(6) If the representation is unitary, then the TAP is symmetric
(7) TAP gives lower bounds on the genus and free genus
(8) The TAP of a fibered knot is monic
(9) The TAPs for all reps determine whether a knot is fibered
(11) TAPs give sliceness obstructions for knots and links
(13) The TAP of periodic knots has a particular form
(14) If K1 ≥ K2 and α a representation for K2, then the TAP of
K2 divides the TAP of K1 for a corresponding representation
(shown by Kitano-Suzuki 2005)

Cochran, Cogolludo, Dubois,
Florens, Harvey, Hirasawa, Horie, Huynh, Le, Matsumoto,
Murasugi, Pajitnov, Tamulis, Turaev, Yamaguchi.

Stefan Friedl Twisted Alexander polynomials - an overview



Twisted Alexander polynomials (TAP): properties

Let α : π = π1(S3 \ K )→ GL(n,R) a representation.
(1) ∆α

K lies in R[t±1] and is well-defined up to a unit in R[t±1].
(2) TAP can be computed from Fox calculus or torsion
(3) The twisted Alexander polynomial (TAP) is one for the unknot
(4) Any non-trivial knot admits a representation with ∆α

K 6= 1
(5) TAPs detect mutation and chirality
(6) If the representation is unitary, then the TAP is symmetric
(7) TAP gives lower bounds on the genus and free genus
(8) The TAP of a fibered knot is monic
(9) The TAPs for all reps determine whether a knot is fibered
(11) TAPs give sliceness obstructions for knots and links
(13) The TAP of periodic knots has a particular form
(14) TAPs give obstructions to K1 ≥ K2.
(15) More work done by:

Cochran, Cogolludo, Dubois, Florens,
Harvey, Hirasawa, Horie, Huynh, Le, Matsumoto, Murasugi,
Pajitnov, Tamulis, Turaev, Yamaguchi.
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Twisted Alexander polynomials (TAP): properties

Let α : π = π1(S3 \ K )→ GL(n,R) a representation.
(1) ∆α

K lies in R[t±1] and is well-defined up to a unit in R[t±1].
(2) TAP can be computed from Fox calculus or torsion
(3) The twisted Alexander polynomial (TAP) is one for the unknot
(4) Any non-trivial knot admits a representation with ∆α

K 6= 1
(5) TAPs detect mutation and chirality
(6) If the representation is unitary, then the TAP is symmetric
(7) TAP gives lower bounds on the genus and free genus
(8) The TAP of a fibered knot is monic
(9) The TAPs for all reps determine whether a knot is fibered
(11) TAPs give sliceness obstructions for knots and links
(13) The TAP of periodic knots has a particular form
(14) TAPs give obstructions to K1 ≥ K2.
(15) More work done by: Cochran, Cogolludo, Dubois, Florens,
Harvey, Hirasawa, Horie, Huynh, Le, Matsumoto, Murasugi,
Pajitnov, Tamulis, Turaev, Yamaguchi.
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Main reasons to study twisted Alexander polynomials

(1) TAPs are easily computable and contain more information than
the ordinary Alexander polynomial

(2) TAPs relate the ordinary Alexander polynomial with the
representation theory of knots, which is an extremely interesting
and active field.
(3) The Alexander polynomial of a knot or 3-manifold corresponds
to Seiberg-Witten invariants, and TAPs corresponding to regular
representations correspond to Seiberg-Witten invariants of finite
covers.
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