Twisted Alexander polynomials - an overview

Stefan Friedl

September 2010

Questions about knots

By a knot K we mean a closed embedded curve in S^{3}.

Questions about knots

By a knot K we mean a closed embedded curve in S^{3}. We list some goals in knot theory.

Questions about knots

By a knot K we mean a closed embedded curve in S^{3}. We list some goals in knot theory.
(1) Find invariants which distinguish knots.

Questions about knots

By a knot K we mean a closed embedded curve in S^{3}.
We list some goals in knot theory.
(1) Find invariants which distinguish knots.
(2) Any knot K bounds an orientable embedded surface (Seifert surface).

Questions about knots

By a knot K we mean a closed embedded curve in S^{3}.
We list some goals in knot theory.
(1) Find invariants which distinguish knots.
(2) Any knot K bounds an orientable embedded surface (Seifert surface). The genus of K is the minimal genus among all Seifert surfaces.

Questions about knots

By a knot K we mean a closed embedded curve in S^{3}.
We list some goals in knot theory.
(1) Find invariants which distinguish knots.
(2) Any knot K bounds an orientable embedded surface (Seifert surface). The genus of K is the minimal genus among all Seifert surfaces.
Goal: determine the genus $g(K)$ of a given knot

Questions about knots

By a knot K we mean a closed embedded curve in S^{3}. We list some goals in knot theory.
(1) Find invariants which distinguish knots.
(2) Determine the genus $g(K)$ of K.

Questions about knots

By a knot K we mean a closed embedded curve in S^{3}.
We list some goals in knot theory.
(1) Find invariants which distinguish knots.
(2) Determine the genus $g(K)$ of K.
(2') Any knot admits a Seifert surface Σ such that $\pi_{1}\left(S^{3} \backslash \Sigma\right)$ is free.

Questions about knots

By a knot K we mean a closed embedded curve in S^{3}.
We list some goals in knot theory.
(1) Find invariants which distinguish knots.
(2) Determine the genus $g(K)$ of K.
(2') Any knot admits a Seifert surface Σ such that $\pi_{1}\left(S^{3} \backslash \Sigma\right)$ is free. The minimal genus of such a Seifert surface is the free genus of K.

Questions about knots

By a knot K we mean a closed embedded curve in S^{3}.
We list some goals in knot theory.
(1) Find invariants which distinguish knots.
(2) Determine the genus $g(K)$ of K.
(2') Any knot admits a Seifert surface Σ such that $\pi_{1}\left(S^{3} \backslash \Sigma\right)$ is free. The minimal genus of such a Seifert surface is the free genus of K.
Goal: determine the free genus $g_{f r e e}(K)$ of a knot.

Questions about knots

By a knot K we mean a closed embedded curve in S^{3}.
We list some goals in knot theory.
(1) Find invariants which distinguish knots.
(2) Determine the genus $g(K)$ of K.
(2') Determine the free genus of a given knot

Questions about knots

By a knot K we mean a closed embedded curve in S^{3}.
We list some goals in knot theory.
(1) Find invariants which distinguish knots.
(2) Determine the genus $g(K)$ of K.
(2') Determine the free genus of a given knot
(3) A knot is fibered if there exists a fibration $S^{3} \backslash K \rightarrow S^{1}$

Questions about knots

By a knot K we mean a closed embedded curve in S^{3}.
We list some goals in knot theory.
(1) Find invariants which distinguish knots.
(2) Determine the genus $g(K)$ of K.
(2') Determine the free genus of a given knot
(3) A knot is fibered if there exists a fibration $S^{3} \backslash K \rightarrow S^{1}$ (i.e. a map such that the preimage of an interval is a surface times an interval).

Questions about knots

By a knot K we mean a closed embedded curve in S^{3}.
We list some goals in knot theory.
(1) Find invariants which distinguish knots.
(2) Determine the genus $g(K)$ of K.
(2') Determine the free genus of a given knot
(3) A knot is fibered if there exists a fibration $S^{3} \backslash K \rightarrow S^{1}$ (i.e. a map such that the preimage of an interval is a surface times an interval). Note that a fiber is a genus minimizing Seifert surface.

Questions about knots

By a knot K we mean a closed embedded curve in S^{3}.
We list some goals in knot theory.
(1) Find invariants which distinguish knots.
(2) Determine the genus $g(K)$ of K.
(2') Determine the free genus of a given knot
(3) A knot is fibered if there exists a fibration $S^{3} \backslash K \rightarrow S^{1}$ (i.e. a map such that the preimage of an interval is a surface times an interval). Note that a fiber is a genus minimizing Seifert surface. Goal: determine whether a knot K is fibered.

Questions about knots

By a knot K we mean a closed embedded curve in S^{3}.
We list some goals in knot theory.
(1) Find invariants which distinguish knots.
(2) Determine the genus $g(K)$ of K.
(2') Determine the free genus of a given knot
(3) Determine whether a given knot is fibered

Questions about knots

By a knot K we mean a closed embedded curve in S^{3}.
We list some goals in knot theory.
(1) Find invariants which distinguish knots.
(2) Determine the genus $g(K)$ of K.
(2') Determine the free genus of a given knot
(3) Determine whether a given knot is fibered
(4) A knot is slice if it bounds a smooth disk in D^{4}.

Questions about knots

By a knot K we mean a closed embedded curve in S^{3}.
We list some goals in knot theory.
(1) Find invariants which distinguish knots.
(2) Determine the genus $g(K)$ of K.
(2') Determine the free genus of a given knot
(3) Determine whether a given knot is fibered
(4) A knot is slice if it bounds a smooth disk in D^{4}.

Goal: determine which knots are slice.

Questions about knots

By a knot K we mean a closed embedded curve in S^{3}.
We list some goals in knot theory.
(1) Find invariants which distinguish knots.
(2) Determine the genus $g(K)$ of K.
(2') Determine the free genus of a given knot
(3) Determine whether a given knot is fibered
(4) Determine whether K is slice or not.

Questions about knots

By a knot K we mean a closed embedded curve in S^{3}.
We list some goals in knot theory.
(1) Find invariants which distinguish knots.
(2) Determine the genus $g(K)$ of K.
(2') Determine the free genus of a given knot
(3) Determine whether a given knot is fibered
(4) Determine whether K is slice or not.
(5) A knot K is periodic of order n

Questions about knots

By a knot K we mean a closed embedded curve in S^{3}.
We list some goals in knot theory.
(1) Find invariants which distinguish knots.
(2) Determine the genus $g(K)$ of K.
(2') Determine the free genus of a given knot
(3) Determine whether a given knot is fibered
(4) Determine whether K is slice or not.
(5) A knot K is periodic of order n if there exists a homeomorphism of S^{3} of order r

Questions about knots

By a knot K we mean a closed embedded curve in S^{3}.
We list some goals in knot theory.
(1) Find invariants which distinguish knots.
(2) Determine the genus $g(K)$ of K.
(2') Determine the free genus of a given knot
(3) Determine whether a given knot is fibered
(4) Determine whether K is slice or not.
(5) A knot K is periodic of order n if there exists a homeomorphism of S^{3} of order r which fixes an unknot pointwise and K setwise.

Questions about knots

By a knot K we mean a closed embedded curve in S^{3}.
We list some goals in knot theory.
(1) Find invariants which distinguish knots.
(2) Determine the genus $g(K)$ of K.
(2') Determine the free genus of a given knot
(3) Determine whether a given knot is fibered
(4) Determine whether K is slice or not.
(5) A knot K is periodic of order n if there exists a homeomorphism of S^{3} of order r which fixes an unknot pointwise and K setwise. Goal: Determine which knots are periodic.

Questions about knots

By a knot K we mean a closed embedded curve in S^{3}.
We list some goals in knot theory.
(1) Find invariants which distinguish knots.
(2) Determine the genus $g(K)$ of K.
(2') Determine the free genus of a given knot
(3) Determine whether a given knot is fibered
(4) Determine whether K is slice or not.
(5) Determine which knots are periodic.

Questions about knots

By a knot K we mean a closed embedded curve in S^{3}.
We list some goals in knot theory.
(1) Find invariants which distinguish knots.
(2) Determine the genus $g(K)$ of K.
(2') Determine the free genus of a given knot
(3) Determine whether a given knot is fibered
(4) Determine whether K is slice or not.
(5) Determine which knots are periodic.
(6) Given a knot K denote by K^{*} its mirror image

Questions about knots

By a knot K we mean a closed embedded curve in S^{3}.
We list some goals in knot theory.
(1) Find invariants which distinguish knots.
(2) Determine the genus $g(K)$ of K.
(2') Determine the free genus of a given knot
(3) Determine whether a given knot is fibered
(4) Determine whether K is slice or not.
(5) Determine which knots are periodic.
(6) Given a knot K denote by K^{*} its mirror image i.e. the result of reflecting K in a plane.

Questions about knots

By a knot K we mean a closed embedded curve in S^{3}.
We list some goals in knot theory.
(1) Find invariants which distinguish knots.
(2) Determine the genus $g(K)$ of K.
(2') Determine the free genus of a given knot
(3) Determine whether a given knot is fibered
(4) Determine whether K is slice or not.
(5) Determine which knots are periodic.
(6) Given a knot K denote by K^{*} its mirror image i.e. the result of reflecting K in a plane. A knot which equals its mirror image is called amphichiral.

Questions about knots

By a knot K we mean a closed embedded curve in S^{3}.
We list some goals in knot theory.
(1) Find invariants which distinguish knots.
(2) Determine the genus $g(K)$ of K.
(2') Determine the free genus of a given knot
(3) Determine whether a given knot is fibered
(4) Determine whether K is slice or not.
(5) Determine which knots are periodic.
(6) Given a knot K denote by K^{*} its mirror image i.e. the result of reflecting K in a plane. A knot which equals its mirror image is called amphichiral. Goal: Determine which knots are amphichiral.

Questions about knots

By a knot K we mean a closed embedded curve in S^{3}.
We list some goals in knot theory.
(1) Find invariants which distinguish knots.
(2) Determine the genus $g(K)$ of K.
(2') Determine the free genus of a given knot
(3) Determine whether a given knot is fibered
(4) Determine whether K is slice or not.
(5) Determine which knots are periodic.
(6) Determine which knots are amphichiral.

Questions about knots

By a knot K we mean a closed embedded curve in S^{3}.
We list some goals in knot theory.
(1) Find invariants which distinguish knots.
(2) Determine the genus $g(K)$ of K.
(2') Determine the free genus of a given knot
(3) Determine whether a given knot is fibered
(4) Determine whether K is slice or not.
(5) Determine which knots are periodic.
(6) Determine which knots are amphichiral.
(7) We write $K_{1} \geq K_{2}$ if there exists an epimorphism

$$
\pi_{1}\left(S^{3} \backslash K_{1}\right) \rightarrow \pi_{1}\left(S^{3} \backslash K_{2}\right)
$$

Questions about knots

By a knot K we mean a closed embedded curve in S^{3}.
We list some goals in knot theory.
(1) Find invariants which distinguish knots.
(2) Determine the genus $g(K)$ of K.
(2') Determine the free genus of a given knot
(3) Determine whether a given knot is fibered
(4) Determine whether K is slice or not.
(5) Determine which knots are periodic.
(6) Determine which knots are amphichiral.
(7) We write $K_{1} \geq K_{2}$ if there exists an epimorphism

$$
\pi_{1}\left(S^{3} \backslash K_{1}\right) \rightarrow \pi_{1}\left(S^{3} \backslash K_{2}\right)
$$

This defines a partial order on the set of knots.

Questions about knots

By a knot K we mean a closed embedded curve in S^{3}.
We list some goals in knot theory.
(1) Find invariants which distinguish knots.
(2) Determine the genus $g(K)$ of K.
(2') Determine the free genus of a given knot
(3) Determine whether a given knot is fibered
(4) Determine whether K is slice or not.
(5) Determine which knots are periodic.
(6) Determine which knots are amphichiral.
(7) We write $K_{1} \geq K_{2}$ if there exists an epimorphism

$$
\pi_{1}\left(S^{3} \backslash K_{1}\right) \rightarrow \pi_{1}\left(S^{3} \backslash K_{2}\right)
$$

This defines a partial order on the set of knots. Goal: determine the partial order of knots.

Questions about knots

By a knot K we mean a closed embedded curve in S^{3}.
We list some goals in knot theory.
(1) Find invariants which distinguish knots.
(2) Determine the genus $g(K)$ of K.
(2') Determine the free genus of a given knot
(3) Determine whether a given knot is fibered
(4) Determine whether K is slice or not.
(5) Determine which knots are periodic.
(6) Determine which knots are amphichiral.
(7) Determine the partial order \geq of knots.

The classical Alexander polynomial of a knot: advanced definition

For a knot K we write $X=S^{3} \backslash K$.

The classical Alexander polynomial of a knot: advanced definition

For a knot K we write $X=S^{3} \backslash K$. We have $H_{1}\left(S^{3} \backslash K\right)=\mathbb{Z}$ by Alexander duality

The classical Alexander polynomial of a knot: advanced definition

For a knot K we write $X=S^{3} \backslash K$. We have $H_{1}\left(S^{3} \backslash K\right)=\mathbb{Z}$ by Alexander duality and we denote by \tilde{X} the infinite cyclic cover of X corresponding to $\pi_{1}(X) \rightarrow H_{1}(X) \rightarrow \mathbb{Z}=\langle t\rangle$.

The classical Alexander polynomial of a knot: advanced definition

For a knot K we write $X=S^{3} \backslash K$. We have $H_{1}\left(S^{3} \backslash K\right)=\mathbb{Z}$ by Alexander duality and we denote by \tilde{X} the infinite cyclic cover of X corresponding to $\pi_{1}(X) \rightarrow H_{1}(X) \rightarrow \mathbb{Z}=\langle t\rangle$. The infinite cyclic group $\langle t\rangle$ acts on $H_{1}(X)$,

The classical Alexander polynomial of a knot: advanced definition

For a knot K we write $X=S^{3} \backslash K$. We have $H_{1}\left(S^{3} \backslash K\right)=\mathbb{Z}$ by Alexander duality and we denote by \tilde{X} the infinite cyclic cover of X corresponding to $\pi_{1}(X) \rightarrow H_{1}(X) \rightarrow \mathbb{Z}=\langle t\rangle$. The infinite cyclic group $\langle t\rangle$ acts on $H_{1}(\tilde{X})$, hence $H_{1}(\tilde{X})$ is a module over $\mathbb{Z}\left[t^{ \pm 1}\right]$.

The classical Alexander polynomial of a knot: advanced definition

For a knot K we write $X=S^{3} \backslash K$. We have $H_{1}\left(S^{3} \backslash K\right)=\mathbb{Z}$ by Alexander duality and we denote by \tilde{X} the infinite cyclic cover of X corresponding to $\pi_{1}(X) \rightarrow H_{1}(X) \rightarrow \mathbb{Z}=\langle t\rangle$. The infinite cyclic group $\langle t\rangle$ acts on $H_{1}(\tilde{X})$, hence $H_{1}(\tilde{X})$ is a module over $\mathbb{Z}\left[t^{ \pm 1}\right]$. We write

$$
H_{1}\left(X ; \mathbb{Z}\left[t^{ \pm 1}\right]\right)=H_{1}(\tilde{X})
$$

The classical Alexander polynomial of a knot: advanced definition

For a knot K we write $X=S^{3} \backslash K$. We have $H_{1}\left(S^{3} \backslash K\right)=\mathbb{Z}$ by Alexander duality and we denote by \tilde{X} the infinite cyclic cover of X corresponding to $\pi_{1}(X) \rightarrow H_{1}(X) \rightarrow \underset{\sim}{\mathbb{Z}}=\langle t\rangle$. The infinite cyclic group $\langle t\rangle$ acts on $H_{1}(\tilde{X})$, hence $H_{1}(\tilde{X})$ is a module over $\mathbb{Z}\left[t^{ \pm 1}\right]$. We write

$$
H_{1}\left(X ; \mathbb{Z}\left[t^{ \pm 1}\right]\right)=H_{1}(\tilde{X})
$$

We have a resolution

$$
\mathbb{Z}\left[t^{ \pm 1}\right]^{n} \xrightarrow{D} \mathbb{Z}\left[t^{ \pm 1}\right]^{n} \rightarrow H_{1}\left(X, \mathbb{Z}\left[t^{ \pm 1}\right]\right) \rightarrow 0
$$

and we define

The classical Alexander polynomial of a knot: advanced definition

For a knot K we write $X=S^{3} \backslash K$. We have $H_{1}\left(S^{3} \backslash K\right)=\mathbb{Z}$ by Alexander duality and we denote by \tilde{X} the infinite cyclic cover of X corresponding to $\pi_{1}(X) \rightarrow H_{1}(X) \rightarrow \underset{\sim}{\mathbb{Z}}=\langle t\rangle$. The infinite cyclic group $\langle t\rangle$ acts on $H_{1}(\tilde{X})$, hence $H_{1}(\tilde{X})$ is a module over $\mathbb{Z}\left[t^{ \pm 1}\right]$. We write

$$
H_{1}\left(X ; \mathbb{Z}\left[t^{ \pm 1}\right]\right)=H_{1}(\tilde{X})
$$

We have a resolution

$$
\mathbb{Z}\left[t^{ \pm 1}\right]^{n} \xrightarrow{D} \mathbb{Z}\left[t^{ \pm 1}\right]^{n} \rightarrow H_{1}\left(X, \mathbb{Z}\left[t^{ \pm 1}\right]\right) \rightarrow 0
$$

and we define

$$
\Delta_{K}(t)=\operatorname{det}(D) \in \mathbb{Z}\left[t^{ \pm 1}\right]
$$

The classical Alexander polynomial of a knot: advanced definition

For a knot K we write $X=S^{3} \backslash K$. We have a resolution

$$
\mathbb{Z}\left[t^{ \pm 1}\right]^{n} \xrightarrow{D} \mathbb{Z}\left[t^{ \pm 1}\right]^{n} \rightarrow H_{1}\left(X, \mathbb{Z}\left[t^{ \pm 1}\right]\right) \rightarrow 0
$$

and we define

$$
\Delta_{K}(t)=\operatorname{det}(D) \in \mathbb{Z}\left[t^{ \pm 1}\right] .
$$

(1) If A is a Seifert matrix, then $D=A t-A^{t}$ and hence

$$
\Delta_{K}(t)=\operatorname{det}\left(A t-A^{t}\right)
$$

The classical Alexander polynomial of a knot: advanced definition

For a knot K we write $X=S^{3} \backslash K$.
We have a resolution

$$
\mathbb{Z}\left[t^{ \pm 1}\right]^{n} \xrightarrow{D} \mathbb{Z}\left[t^{ \pm 1}\right]^{n} \rightarrow H_{1}\left(X, \mathbb{Z}\left[t^{ \pm 1}\right]\right) \rightarrow 0
$$

and we define

$$
\Delta_{K}(t)=\operatorname{det}(D) \in \mathbb{Z}\left[t^{ \pm 1}\right] .
$$

(1) If A is a Seifert matrix, then $D=A t-A^{t}$ and hence

$$
\Delta_{K}(t)=\operatorname{det}\left(A t-A^{t}\right)
$$

This approach is very effective for knots but does not generalize well to 3-manifolds.

The classical Alexander polynomial of a knot: advanced definition

For a knot K we write $X=S^{3} \backslash K$.
We have a resolution

$$
\mathbb{Z}\left[t^{ \pm 1}\right]^{n} \xrightarrow{D} \mathbb{Z}\left[t^{ \pm 1}\right]^{n} \rightarrow H_{1}\left(X, \mathbb{Z}\left[t^{ \pm 1}\right]\right) \rightarrow 0
$$

and we define

$$
\Delta_{K}(t)=\operatorname{det}(D) \in \mathbb{Z}\left[t^{ \pm 1}\right] .
$$

(1) If A is a Seifert matrix, then $D=A t-A^{t}$ and hence

$$
\Delta_{K}(t)=\operatorname{det}\left(A t-A^{t}\right)
$$

(2) $\Delta_{K}(t)$ can be computed easily using Fox calculus.

The classical Alexander polynomial of a knot: advanced definition

For a knot K we write $X=S^{3} \backslash K$.
We have a resolution

$$
\mathbb{Z}\left[t^{ \pm 1}\right]^{n} \xrightarrow{D} \mathbb{Z}\left[t^{ \pm 1}\right]^{n} \rightarrow H_{1}\left(X, \mathbb{Z}\left[t^{ \pm 1}\right]\right) \rightarrow 0
$$

and we define

$$
\Delta_{K}(t)=\operatorname{det}(D) \in \mathbb{Z}\left[t^{ \pm 1}\right]
$$

(1) If A is a Seifert matrix, then $D=A t-A^{t}$ and hence

$$
\Delta_{K}(t)=\operatorname{det}\left(A t-A^{t}\right)
$$

(2) $\Delta_{K}(t)$ can be computed easily using Fox calculus.
(3) $\Delta_{K}(t)$ can also be expressed using Reidemeister-Milnor-Turaev torsion

The classical Alexander polynomial of a knot: advanced definition

For a knot K we write $X=S^{3} \backslash K$.
We have a resolution

$$
\mathbb{Z}\left[t^{ \pm 1}\right]^{n} \xrightarrow{D} \mathbb{Z}\left[t^{ \pm 1}\right]^{n} \rightarrow H_{1}\left(X, \mathbb{Z}\left[t^{ \pm 1}\right]\right) \rightarrow 0
$$

and we define

$$
\Delta_{K}(t)=\operatorname{det}(D) \in \mathbb{Z}\left[t^{ \pm 1}\right]
$$

(1) If A is a Seifert matrix, then $D=A t-A^{t}$ and hence

$$
\Delta_{K}(t)=\operatorname{det}\left(A t-A^{t}\right)
$$

(2) $\Delta_{K}(t)$ can be computed easily using Fox calculus.
(3) $\Delta_{K}(t)$ can also be expressed using Reidemeister-Milnor-Turaev torsion (which is my favorite view point!)

Properties of the Alexander polynomial

Let K be a knot and $\Delta_{K}(t)$ its Alexander polynomial.

Properties of the Alexander polynomial

Let K be a knot and $\Delta_{K}(t)$ its Alexander polynomial.
(1) $\Delta_{K}(t) \in \mathbb{Z}\left[t^{ \pm 1}\right]$

Properties of the Alexander polynomial

Let K be a knot and $\Delta_{K}(t)$ its Alexander polynomial.
(1) $\Delta_{K}(t) \in \mathbb{Z}\left[t^{ \pm 1}\right]$ and is well-defined up to multiplication by $\pm t^{k}$.

Properties of the Alexander polynomial

Let K be a knot and $\Delta_{K}(t)$ its Alexander polynomial. (1) $\Delta_{K}(t) \in \mathbb{Z}\left[t^{ \pm 1}\right]$ and well-def. up to multiplication by $\pm t^{k}$.
(2) The Alexander polynomial of the trivial knot equals 1.

Properties of the Alexander polynomial

Let K be a knot and $\Delta_{K}(t)$ its Alexander polynomial. (1) $\Delta_{K}(t) \in \mathbb{Z}\left[t^{ \pm 1}\right]$ and well-def. up to multiplication by $\pm t^{k}$.
(2) The Alexander polynomial of the trivial knot equals 1.

The Alexander polynomial of the trefoil knot equals $t^{-1}-1+t$.

Properties of the Alexander polynomial

Let K be a knot and $\Delta_{K}(t)$ its Alexander polynomial.
(1) $\Delta_{K}(t) \in \mathbb{Z}\left[t^{ \pm 1}\right]$ and well-def. up to multiplication by $\pm t^{k}$.
(2) The Alexander polynomial of the trivial knot equals 1.
(3) There are non-trivial knots with Alexander polynomial 1

Properties of the Alexander polynomial

Let K be a knot and $\Delta_{K}(t)$ its Alexander polynomial. (1) $\Delta_{K}(t) \in \mathbb{Z}\left[t^{ \pm 1}\right]$ and well-def. up to multiplication by $\pm t^{k}$.
(2) The Alexander polynomial of the trivial knot equals 1.
(3) There are non-trivial knots with Alexander polynomial 1 so the Alexander polynomial is not a complete invariant of knots

Properties of the Alexander polynomial

Let K be a knot and $\Delta_{K}(t)$ its Alexander polynomial.
(1) $\Delta_{K}(t) \in \mathbb{Z}\left[t^{ \pm 1}\right]$ and well-def. up to multiplication by $\pm t^{k}$.
(2) The Alexander polynomial of the trivial knot equals 1.
(3) There are non-trivial knots with Alexander polynomial 1
(4) The Alexander polynomial is unchanged under mutation.

Properties of the Alexander polynomial

Let K be a knot and $\Delta_{K}(t)$ its Alexander polynomial.
(1) $\Delta_{K}(t) \in \mathbb{Z}\left[t^{ \pm 1}\right]$ and well-def. up to multiplication by $\pm t^{k}$.
(2) The Alexander polynomial of the trivial knot equals 1.
(3) There are non-trivial knots with Alexander polynomial 1
(4) The Alexander polynomial is unchanged under mutation.
(5) $\Delta_{K}(t)=\Delta_{K}\left(t^{-1}\right)$

Properties of the Alexander polynomial

Let K be a knot and $\Delta_{K}(t)$ its Alexander polynomial.
(1) $\Delta_{K}(t) \in \mathbb{Z}\left[t^{ \pm 1}\right]$ and well-def. up to multiplication by $\pm t^{k}$.
(2) The Alexander polynomial of the trivial knot equals 1.
(3) There are non-trivial knots with Alexander polynomial 1
(4) The Alexander polynomial is unchanged under mutation.
(5) $\Delta_{K}(t)=\Delta_{K}\left(t^{-1}\right)$
(this is a consequence of Poincaré duality)

Properties of the Alexander polynomial

Let K be a knot and $\Delta_{K}(t)$ its Alexander polynomial.
(1) $\Delta_{K}(t) \in \mathbb{Z}\left[t^{ \pm 1}\right]$ and well-def. up to multiplication by $\pm t^{k}$.
(2) The Alexander polynomial of the trivial knot equals 1.
(3) There are non-trivial knots with Alexander polynomial 1
(4) The Alexander polynomial is unchanged under mutation.
(5) $\Delta_{K}(t)=\Delta_{K}\left(t^{-1}\right)$
(6) $\Delta_{K}(1)= \pm 1$

Properties of the Alexander polynomial

Let K be a knot and $\Delta_{K}(t)$ its Alexander polynomial.
(1) $\Delta_{K}(t) \in \mathbb{Z}\left[t^{ \pm 1}\right]$ and well-def. up to multiplication by $\pm t^{k}$.
(2) The Alexander polynomial of the trivial knot equals 1.
(3) There are non-trivial knots with Alexander polynomial 1
(4) The Alexander polynomial is unchanged under mutation.
(5) $\Delta_{K}(t)=\Delta_{K}\left(t^{-1}\right)$
(6) $\Delta_{K}(1)= \pm 1$
(For K a null-homologous knot in a homology sphere Σ we have $\left.\Delta_{K}(1)=\left|H_{1}(\Sigma)\right|\right)$

Properties of the Alexander polynomial

Let K be a knot and $\Delta_{K}(t)$ its Alexander polynomial.
(1) $\Delta_{K}(t) \in \mathbb{Z}\left[t^{ \pm 1}\right]$ and well-def. up to multiplication by $\pm t^{k}$.
(2) The Alexander polynomial of the trivial knot equals 1.
(3) There are non-trivial knots with Alexander polynomial 1
(4) The Alexander polynomial is unchanged under mutation.
(5) $\Delta_{K}(t)=\Delta_{K}\left(t^{-1}\right)$
(6) $\Delta_{K}(1)= \pm 1$
(7) $\operatorname{deg}\left(\Delta_{K}(t)\right) \leq 2 g(K)$

Properties of the Alexander polynomial

Let K be a knot and $\Delta_{K}(t)$ its Alexander polynomial.
(1) $\Delta_{K}(t) \in \mathbb{Z}\left[t^{ \pm 1}\right]$ and well-def. up to multiplication by $\pm t^{k}$.
(2) The Alexander polynomial of the trivial knot equals 1.
(3) There are non-trivial knots with Alexander polynomial 1
(4) The Alexander polynomial is unchanged under mutation.
(5) $\Delta_{K}(t)=\Delta_{K}\left(t^{-1}\right)$
(6) $\Delta_{K}(1)= \pm 1$
(7) $\operatorname{deg}\left(\Delta_{K}(t)\right) \leq 2 g(K)$
(This is a consequence of $\Delta_{K}(t)=\operatorname{det}\left(A t-A^{t}\right.$) where A can be a Seifert matrix of size $2 g(K) \times 2 g(K))$.

Properties of the Alexander polynomial

Let K be a knot and $\Delta_{K}(t)$ its Alexander polynomial.
(1) $\Delta_{K}(t) \in \mathbb{Z}\left[t^{ \pm 1}\right]$ and well-def. up to multiplication by $\pm t^{k}$.
(2) The Alexander polynomial of the trivial knot equals 1.
(3) There are non-trivial knots with Alexander polynomial 1
(4) The Alexander polynomial is unchanged under mutation.
(5) $\Delta_{K}(t)=\Delta_{K}\left(t^{-1}\right)$
(6) $\Delta_{K}(1)= \pm 1$
(7) $\operatorname{deg}\left(\Delta_{K}(t)\right) \leq 2 g(K)$
(8) If K is fibered, then $\operatorname{deg}\left(\Delta_{K}(t)\right) \leq 2 g(K)$

Properties of the Alexander polynomial

Let K be a knot and $\Delta_{K}(t)$ its Alexander polynomial.
(1) $\Delta_{K}(t) \in \mathbb{Z}\left[t^{ \pm 1}\right]$ and well-def. up to multiplication by $\pm t^{k}$.
(2) The Alexander polynomial of the trivial knot equals 1.
(3) There are non-trivial knots with Alexander polynomial 1
(4) The Alexander polynomial is unchanged under mutation.
(5) $\Delta_{K}(t)=\Delta_{K}\left(t^{-1}\right)$
(6) $\Delta_{K}(1)= \pm 1$
(7) $\operatorname{deg}\left(\Delta_{K}(t)\right) \leq 2 g(K)$
(8) If K is fibered, then $\operatorname{deg}\left(\Delta_{K}(t)\right) \leq 2 g(K)$ and $\Delta_{K}(t)$ is monic i.e. the top coefficient is ± 1.

Properties of the Alexander polynomial

Let K be a knot and $\Delta_{K}(t)$ its Alexander polynomial.
(1) $\Delta_{K}(t) \in \mathbb{Z}\left[t^{ \pm 1}\right]$ and well-def. up to multiplication by $\pm t^{k}$.
(2) The Alexander polynomial of the trivial knot equals 1.
(3) There are non-trivial knots with Alexander polynomial 1
(4) The Alexander polynomial is unchanged under mutation.
(5) $\Delta_{K}(t)=\Delta_{K}\left(t^{-1}\right)$
(6) $\Delta_{K}(1)= \pm 1$
(7) $\operatorname{deg}\left(\Delta_{K}(t)\right) \leq 2 g(K)$
(8) If K is fibered, then $\operatorname{deg}\left(\Delta_{K}(t)\right) \leq 2 g(K)$ and $\Delta_{K}(t)$ is monic i.e. the top coefficient is ± 1.
(If K is fibered and A a Seifert matrix for a fiber, then $\operatorname{det}(A)=1$,

Properties of the Alexander polynomial

Let K be a knot and $\Delta_{K}(t)$ its Alexander polynomial.
(1) $\Delta_{K}(t) \in \mathbb{Z}\left[t^{ \pm 1}\right]$ and well-def. up to multiplication by $\pm t^{k}$.
(2) The Alexander polynomial of the trivial knot equals 1.
(3) There are non-trivial knots with Alexander polynomial 1
(4) The Alexander polynomial is unchanged under mutation.
(5) $\Delta_{K}(t)=\Delta_{K}\left(t^{-1}\right)$
(6) $\Delta_{K}(1)= \pm 1$
(7) $\operatorname{deg}\left(\Delta_{K}(t)\right) \leq 2 g(K)$
(8) If K is fibered, then $\operatorname{deg}\left(\Delta_{K}(t)\right) \leq 2 g(K)$ and $\Delta_{K}(t)$ is monic i.e. the top coefficient is ± 1.
(If K is fibered and A a Seifert matrix for a fiber, then $\operatorname{det}(A)=1$, so the claim follows from $\left.\Delta_{K}(t)=\operatorname{det}\left(A t-A^{t}\right)\right)$.

Properties of the Alexander polynomial

Let K be a knot and $\Delta_{K}(t)$ its Alexander polynomial.
(1) $\Delta_{K}(t) \in \mathbb{Z}\left[t^{ \pm 1}\right]$ and well-def. up to multiplication by $\pm t^{k}$.
(2) The Alexander polynomial of the trivial knot equals 1.
(3) There are non-trivial knots with Alexander polynomial 1
(4) The Alexander polynomial is unchanged under mutation.
(5) $\Delta_{K}(t)=\Delta_{K}\left(t^{-1}\right)$
(6) $\Delta_{K}(1)= \pm 1$
(7) $\operatorname{deg}\left(\Delta_{K}(t)\right) \leq 2 g(K)$
(8) If K is fibered, then $\operatorname{deg}\left(\Delta_{K}(t)\right) \leq 2 g(K)$ and $\Delta_{K}(t)$ is monic.
(9) If K is slice, then $\Delta_{K}(t)=f(t) f\left(t^{-1}\right)$ for some $f(t) \in \mathbb{Z}\left[t^{ \pm 1}\right]$

Properties of the Alexander polynomial

Let K be a knot and $\Delta_{K}(t)$ its Alexander polynomial.
(1) $\Delta_{K}(t) \in \mathbb{Z}\left[t^{ \pm 1}\right]$ and well-def. up to multiplication by $\pm t^{k}$.
(2) The Alexander polynomial of the trivial knot equals 1.
(3) There are non-trivial knots with Alexander polynomial 1
(4) The Alexander polynomial is unchanged under mutation.
(5) $\Delta_{K}(t)=\Delta_{K}\left(t^{-1}\right)$
(6) $\Delta_{K}(1)= \pm 1$
(7) $\operatorname{deg}\left(\Delta_{K}(t)\right) \leq 2 g(K)$
(8) If K is fibered, then $\operatorname{deg}\left(\Delta_{K}(t)\right) \leq 2 g(K)$ and $\Delta_{K}(t)$ is monic.
(9) If K is slice, then $\Delta_{K}(t)=f(t) f\left(t^{-1}\right)$ for some $f(t) \in \mathbb{Z}\left[t^{ \pm 1}\right]$
(If $D \subset D^{4}$ is a slice disk, this follows from Poincaré duality applied to the pair $\left(D^{4} \backslash D, S^{3} \backslash K\right)$)

Properties of the Alexander polynomial

Let K be a knot and $\Delta_{K}(t)$ its Alexander polynomial.
(1) $\Delta_{K}(t) \in \mathbb{Z}\left[t^{ \pm 1}\right]$ and well-def. up to multiplication by $\pm t^{k}$.
(2) The Alexander polynomial of the trivial knot equals 1.
(3) There are non-trivial knots with Alexander polynomial 1
(4) The Alexander polynomial is unchanged under mutation.
(5) $\Delta_{K}(t)=\Delta_{K}\left(t^{-1}\right)$
(6) $\Delta_{K}(1)= \pm 1$
(7) $\operatorname{deg}\left(\Delta_{K}(t)\right) \leq 2 g(K)$
(8) If K is fibered, then $\operatorname{deg}\left(\Delta_{K}(t)\right) \leq 2 g(K)$ and $\Delta_{K}(t)$ is monic.
(9) If K is slice, then $\Delta_{K}(t)=f(t) f\left(t^{-1}\right)$ for some $f(t) \in \mathbb{Z}\left[t^{ \pm 1}\right]$
(10) $\Delta_{K^{*}}(t)=\Delta_{K}(t)$

Properties of the Alexander polynomial

Let K be a knot and $\Delta_{K}(t)$ its Alexander polynomial.
(1) $\Delta_{K}(t) \in \mathbb{Z}\left[t^{ \pm 1}\right]$ and well-def. up to multiplication by $\pm t^{k}$.
(2) The Alexander polynomial of the trivial knot equals 1.
(3) There are non-trivial knots with Alexander polynomial 1
(4) The Alexander polynomial is unchanged under mutation.
(5) $\Delta_{K}(t)=\Delta_{K}\left(t^{-1}\right)$
(6) $\Delta_{K}(1)= \pm 1$
(7) $\operatorname{deg}\left(\Delta_{K}(t)\right) \leq 2 g(K)$
(8) If K is fibered, then $\operatorname{deg}\left(\Delta_{K}(t)\right) \leq 2 g(K)$ and $\Delta_{K}(t)$ is monic.
(9) If K is slice, then $\Delta_{K}(t)=f(t) f\left(t^{-1}\right)$ for some $f(t) \in \mathbb{Z}\left[t^{ \pm 1}\right]$ (10) $\Delta_{K^{*}}(t)=\Delta_{K}(t)$
i.e. the Alexander polynomial does not distinguish between mirror images

Properties of the Alexander polynomial

Let K be a knot and $\Delta_{K}(t)$ its Alexander polynomial.
(1) $\Delta_{K}(t) \in \mathbb{Z}\left[t^{ \pm 1}\right]$ and well-def. up to multiplication by $\pm t^{k}$.
(2) The Alexander polynomial of the trivial knot equals 1.
(3) There are non-trivial knots with Alexander polynomial 1
(4) The Alexander polynomial is unchanged under mutation.
(5) $\Delta_{K}(t)=\Delta_{K}\left(t^{-1}\right)$
(6) $\Delta_{K}(1)= \pm 1$
(7) $\operatorname{deg}\left(\Delta_{K}(t)\right) \leq 2 g(K)$
(8) If K is fibered, then $\operatorname{deg}\left(\Delta_{K}(t)\right) \leq 2 g(K)$ and $\Delta_{K}(t)$ is monic.
(9) If K is slice, then $\Delta_{K}(t)=f(t) f\left(t^{-1}\right)$ for some $f(t) \in \mathbb{Z}\left[t^{ \pm 1}\right]$
(10) $\Delta_{K^{*}}(t)=\Delta_{K}(t)$
(11) If $K_{1} \geq K_{2}$, then $\Delta_{K_{2}}(t)$ divides $\Delta_{K_{1}}(t)$

Properties of the Alexander polynomial

Let K be a knot and $\Delta_{K}(t)$ its Alexander polynomial.
(1) $\Delta_{K}(t) \in \mathbb{Z}\left[t^{ \pm 1}\right]$ and well-def. up to multiplication by $\pm t^{k}$.
(2) The Alexander polynomial of the trivial knot equals 1.
(3) There are non-trivial knots with Alexander polynomial 1
(4) The Alexander polynomial is unchanged under mutation.
(5) $\Delta_{K}(t)=\Delta_{K}\left(t^{-1}\right)$
(6) $\Delta_{K}(1)= \pm 1$
(7) $\operatorname{deg}\left(\Delta_{K}(t)\right) \leq 2 g(K)$
(8) If K is fibered, then $\operatorname{deg}\left(\Delta_{K}(t)\right) \leq 2 g(K)$ and $\Delta_{K}(t)$ is monic.
(9) If K is slice, then $\Delta_{K}(t)=f(t) f\left(t^{-1}\right)$ for some $f(t) \in \mathbb{Z}\left[t^{ \pm 1}\right]$
(10) $\Delta_{K^{*}}(t)=\Delta_{K}(t)$
(11) If $K_{1} \geq K_{2}$, then $\Delta_{K_{2}}(t)$ divides $\Delta_{K_{1}}(t)$
(12) The Alexander polynomial of a periodic knot has a special form

Twisted Alexander polynomials: homological definition

$$
\begin{aligned}
& \text { Let } K \subset S^{3} \text { and } \alpha: \pi=\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G L(n, R) \text { a representation } \\
& \text { over a UFD }
\end{aligned}
$$

Twisted Alexander polynomials: homological definition

$$
\begin{aligned}
& \text { Let } K \subset S^{3} \text { and } \alpha: \pi=\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G L(n, R) \text { a representation } \\
& \text { over a UFD }(\text { e.g. } \mathbb{Z} \text { or } \mathbb{C})
\end{aligned}
$$

Twisted Alexander polynomials: homological definition

Let $K \subset S^{3}$ and $\alpha: \pi=\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G L(n, R)$ a representation over a UFD Denote the epimorphism $\pi \rightarrow \mathbb{Z}$ by ϕ

Twisted Alexander polynomials: homological definition

Let $K \subset S^{3}$ and $\alpha: \pi=\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G L(n, R)$ a representation over a UFD Denote the epimorphism $\pi \rightarrow \mathbb{Z}$ by ϕ and the universal cover of $X=S^{3} \backslash K$ by \tilde{X}.

Twisted Alexander polynomials: homological definition

Let $K \subset S^{3}$ and $\alpha: \pi=\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G L(n, R)$ a representation over a UFD Denote the epimorphism $\pi \rightarrow \mathbb{Z}$ by ϕ and the universal cover of $X=S^{3} \backslash K$ by $\tilde{X} . \mathbb{Z}[\pi]$ acts on $C_{*}(\tilde{X})$ by deck transformations

Twisted Alexander polynomials: homological definition

Let $K \subset S^{3}$ and $\alpha: \pi=\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G L(n, R)$ a representation over a UFD Denote the epimorphism $\pi \rightarrow \mathbb{Z}$ by ϕ and the universal cover of $X=S^{3} \backslash K$ by $\tilde{X} . \mathbb{Z}[\pi]$ acts on $C_{*}(\tilde{X})$ by deck transformations and $\mathbb{Z}[\pi]$ acts on $R\left[t^{ \pm 1}\right] \otimes R^{n}=R^{n}\left[t^{ \pm 1}\right]$ as follows:

Twisted Alexander polynomials: homological definition

Let $K \subset S^{3}$ and $\alpha: \pi=\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G L(n, R)$ a representation over a UFD Denote the epimorphism $\pi \rightarrow \mathbb{Z}$ by ϕ and the universal cover of $X=S^{3} \backslash K$ by $\tilde{X} . \mathbb{Z}[\pi]$ acts on $C_{*}(\tilde{X})$ by deck transformations and $\mathbb{Z}[\pi]$ acts on $R\left[t^{ \pm 1}\right] \otimes R^{n}=R^{n}\left[t^{ \pm 1}\right]$ as follows:

$$
g \cdot(p(t) \otimes v)=t^{\phi(g)} p(t) \otimes \alpha(g) v
$$

Twisted Alexander polynomials: homological definition

Let $K \subset S^{3}$ and $\alpha: \pi=\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G L(n, R)$ a representation over a UFD Denote the epimorphism $\pi \rightarrow \mathbb{Z}$ by ϕ and the universal cover of $X=S^{3} \backslash K$ by $\tilde{X} . \mathbb{Z}[\pi]$ acts on $C_{*}(\tilde{X})$ by deck transformations and $\mathbb{Z}[\pi]$ acts on $R\left[t^{ \pm 1}\right] \otimes R^{n}=R^{n}\left[t^{ \pm 1}\right]$ as follows:

$$
g \cdot(p(t) \otimes v)=t^{\phi(g)} \underset{\sim}{p}(t) \otimes \alpha(g) v
$$

Consider $\quad C_{*}^{\alpha}\left(X ; R^{n}\left[t^{ \pm 1}\right]\right):=C_{*}(\tilde{X}) \otimes_{\mathbb{Z}[\pi]} R^{n}\left[t^{ \pm 1}\right]$

Twisted Alexander polynomials: homological definition

Let $K \subset S^{3}$ and $\alpha: \pi=\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G L(n, R)$ a representation over a UFD Denote the epimorphism $\pi \rightarrow \mathbb{Z}$ by ϕ and the universal cover of $X=S^{3} \backslash K$ by $\tilde{X} . \mathbb{Z}[\pi]$ acts on $C_{*}(\tilde{X})$ by deck transformations and $\mathbb{Z}[\pi]$ acts on $R\left[t^{ \pm 1}\right] \otimes R^{n}=R^{n}\left[t^{ \pm 1}\right]$ as follows:

$$
g \cdot(p(t) \otimes v)=t^{\phi(g)} \underset{\sim}{p}(t) \otimes \alpha(g) v
$$

Consider $\quad C_{*}^{\alpha}\left(X ; R^{n}\left[t^{ \pm 1}\right]\right):=C_{*}(\tilde{X}) \otimes_{\mathbb{Z}[\pi]} R^{n}\left[t^{ \pm 1}\right]$ (this is a chain complex over the ring $R\left[t^{ \pm 1}\right]$)

Twisted Alexander polynomials: homological definition

Let $K \subset S^{3}$ and $\alpha: \pi=\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G L(n, R)$ a representation over a UFD Denote the epimorphism $\pi \rightarrow \mathbb{Z}$ by ϕ and the universal cover of $X=S^{3} \backslash K$ by $\tilde{X} . \mathbb{Z}[\pi]$ acts on $C_{*}(\tilde{X})$ by deck transformations and $\mathbb{Z}[\pi]$ acts on $R\left[t^{ \pm 1}\right] \otimes R^{n}=R^{n}\left[t^{ \pm 1}\right]$ as follows:

$$
g \cdot(p(t) \otimes v)=t^{\phi(g)} \underset{\sim}{p}(t) \otimes \alpha(g) v
$$

Consider $\quad C_{*}^{\alpha}\left(X ; R^{n}\left[t^{ \pm 1}\right]\right):=C_{*}(\tilde{X}) \otimes_{\mathbb{Z}[\pi]} R^{n}\left[t^{ \pm 1}\right]$ (this is a chain complex over the ring $R\left[t^{ \pm 1}\right]$) and its homology $H_{*}^{\alpha}\left(X ; R^{n}\left[t^{ \pm 1}\right]\right)$.

Twisted Alexander polynomials: homological definition

Let $K \subset S^{3}$ and $\alpha: \pi=\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G L(n, R)$ a representation over a UFD Denote the epimorphism $\pi \rightarrow \mathbb{Z}$ by ϕ and the universal cover of $X=S^{3} \backslash K$ by $\tilde{X} . \mathbb{Z}[\pi]$ acts on $C_{*}(\tilde{X})$ by deck transformations and $\mathbb{Z}[\pi]$ acts on $R\left[t^{ \pm 1}\right] \otimes R^{n}=R^{n}\left[t^{ \pm 1}\right]$ as follows:

$$
g \cdot(p(t) \otimes v)=t^{\phi(g)} \underset{\sim}{p}(t) \otimes \alpha(g) v
$$

Consider $\quad C_{*}^{\alpha}\left(X ; R^{n}\left[t^{ \pm 1}\right]\right):=C_{*}(\tilde{X}) \otimes_{\mathbb{Z}[\pi]} R^{n}\left[t^{ \pm 1}\right]$ (this is a chain complex over the ring $R\left[t^{ \pm 1}\right]$) and its homology $H_{*}^{\alpha}\left(X ; R^{n}\left[t^{ \pm 1}\right]\right)$. Pick a resolution

$$
R^{n}\left[t^{ \pm 1}\right]^{k} \xrightarrow{D} R^{n}\left[t^{ \pm 1}\right]^{\prime} \rightarrow H_{*}^{\alpha}\left(X ; R^{n}\left[t^{ \pm 1}\right]\right) \rightarrow 0
$$

Twisted Alexander polynomials: homological definition

Let $K \subset S^{3}$ and $\alpha: \pi=\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G L(n, R)$ a representation over a UFD Denote the epimorphism $\pi \rightarrow \mathbb{Z}$ by ϕ and the universal cover of $X=S^{3} \backslash K$ by $\tilde{X} . \mathbb{Z}[\pi]$ acts on $C_{*}(\tilde{X})$ by deck transformations and $\mathbb{Z}[\pi]$ acts on $R\left[t^{ \pm 1}\right] \otimes R^{n}=R^{n}\left[t^{ \pm 1}\right]$ as follows:

$$
g \cdot(p(t) \otimes v)=t^{\phi(g)} p(t) \otimes \alpha(g) v
$$

Consider $\quad C_{*}^{\alpha}\left(X ; R^{n}\left[t^{ \pm 1}\right]\right):=C_{*}(\tilde{X}) \otimes_{\mathbb{Z}[\pi]} R^{n}\left[t^{ \pm 1}\right]$ (this is a chain complex over the ring $R\left[t^{ \pm 1}\right]$) and its homology $H_{*}^{\alpha}\left(X ; R^{n}\left[t^{ \pm 1}\right]\right)$. Pick a resolution

$$
R^{n}\left[t^{ \pm 1}\right]^{k} \xrightarrow{D} R^{n}\left[t^{ \pm 1}\right]^{\prime} \rightarrow H_{*}^{\alpha}\left(X ; R^{n}\left[t^{ \pm 1}\right]\right) \rightarrow 0
$$

and define

$$
\Delta_{K}^{\alpha}(t)=\operatorname{gcd} \text { of } I \times I \text {-minors of } D
$$

Twisted Alexander polynomials: homological definition

Let $K \subset S^{3}$ and $\alpha: \pi=\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G L(n, R)$ a representation over a UFD Denote the epimorphism $\pi \rightarrow \mathbb{Z}$ by ϕ and the universal cover of $X=S^{3} \backslash K$ by $\tilde{X} . \mathbb{Z}[\pi]$ acts on $C_{*}(\tilde{X})$ by deck transformations and $\mathbb{Z}[\pi]$ acts on $R\left[t^{ \pm 1}\right] \otimes R^{n}=R^{n}\left[t^{ \pm 1}\right]$ as follows:

$$
g \cdot(p(t) \otimes v)=t^{\phi(g)} \underset{\sim}{p}(t) \otimes \alpha(g) v
$$

Consider $\quad C_{*}^{\alpha}\left(X ; R^{n}\left[t^{ \pm 1}\right]\right):=C_{*}(\tilde{X}) \otimes_{\mathbb{Z}[\pi]} R^{n}\left[t^{ \pm 1}\right]$ (this is a chain complex over the ring $R\left[t^{ \pm 1}\right]$) and its homology $H_{*}^{\alpha}\left(X ; R^{n}\left[t^{ \pm 1}\right]\right)$. Pick a resolution

$$
R^{n}\left[t^{ \pm 1}\right]^{k} \xrightarrow{D} R^{n}\left[t^{ \pm 1}\right]^{\prime} \rightarrow H_{*}^{\alpha}\left(X ; R^{n}\left[t^{ \pm 1}\right]\right) \rightarrow 0
$$

and define

$$
\Delta_{K}^{\alpha}(t)=\operatorname{gcd} \text { of } I \times I \text {-minors of } D
$$

This is twisted Alexander polynomial (TAP) of the pair (K, α).

Twisted Alexander polynomials: homological definition

Let $K \subset S^{3}$ and $\alpha: \pi=\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G L(n, R)$ a representation over a UFD Denote the epimorphism $\pi \rightarrow \mathbb{Z}$ by ϕ and the universal cover of $X=S^{3} \backslash K$ by $\tilde{X} . \mathbb{Z}[\pi]$ acts on $C_{*}(\tilde{X})$ by deck transformations and $\mathbb{Z}[\pi]$ acts on $R\left[t^{ \pm 1}\right] \otimes R^{n}=R^{n}\left[t^{ \pm 1}\right]$ as follows:

$$
g \cdot(p(t) \otimes v)=t^{\phi(g)} p(t) \otimes \alpha(g) v
$$

Consider $\quad C_{*}^{\alpha}\left(X ; R^{n}\left[t^{ \pm 1}\right]\right):=C_{*}(\tilde{X}) \otimes_{\mathbb{Z}[\pi]} R^{n}\left[t^{ \pm 1}\right]$ (this is a chain complex over the ring $R\left[t^{ \pm 1}\right]$) and its homology $H_{*}^{\alpha}\left(X ; R^{n}\left[t^{ \pm 1}\right]\right)$. Pick a resolution

$$
R^{n}\left[t^{ \pm 1}\right]^{k} \xrightarrow{D} R^{n}\left[t^{ \pm 1}\right]^{\prime} \rightarrow H_{*}^{\alpha}\left(X ; R^{n}\left[t^{ \pm 1}\right]\right) \rightarrow 0
$$

and define

$$
\Delta_{K}^{\alpha}(t)=\operatorname{gcd} \text { of } I \times I \text {-minors of } D
$$

This is twisted Alexander polynomial (TAP) of the pair (K, α). The definition is due to Lin 1991, Wada 1994, Jiang-Wang 1993, Kitano 1996 and Kirk-Livingston 1996

Twisted Alexander polynomials (TAP): properties

Let $\alpha: \pi=\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G L(n, R)$ a representation.

Twisted Alexander polynomials (TAP): properties

Let $\alpha: \pi=\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G L(n, R)$ a representation.
(1) Δ_{K}^{α} lies in $R\left[t^{ \pm 1}\right]$ and is well-defined up to a unit in $R\left[t^{ \pm 1}\right]$.

Twisted Alexander polynomials (TAP): properties

Let $\alpha: \pi=\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G L(n, R)$ a representation.
(1) Δ_{K}^{α} lies in $R\left[t^{ \pm 1}\right]$ and is well-defined up to a unit in $R\left[t^{ \pm 1}\right]$.
(There are more refined definitions with smaller indeterminacy.)

Twisted Alexander polynomials (TAP): properties

Let $\alpha: \pi=\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G L(n, R)$ a representation. (1) Δ_{K}^{α} lies in $R\left[t^{ \pm 1}\right]$ and is well-defined up to a unit in $R\left[t^{ \pm 1}\right]$.
(2) TAP can be computed from Fox calculus or Reidemeister torsion

Twisted Alexander polynomials (TAP): properties

Let $\alpha: \pi=\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G L(n, R)$ a representation.
(1) Δ_{K}^{α} lies in $R\left[t^{ \pm 1}\right]$ and is well-defined up to a unit in $R\left[t^{ \pm 1}\right]$.
(2) TAP can be computed from Fox calculus or torsion (shown by Wada 1994, Kitano 1996 and Kirk-Livingston 1996)

Twisted Alexander polynomials (TAP): properties

Let $\alpha: \pi=\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G L(n, R)$ a representation.
(1) Δ_{K}^{α} lies in $R\left[t^{ \pm 1}\right]$ and is well-defined up to a unit in $R\left[t^{ \pm 1}\right]$.
(2) TAP can be computed from Fox calculus or torsion
(3) The twisted Alexander polynomial (TAP) is one for the unknot

Twisted Alexander polynomials (TAP): properties

Let $\alpha: \pi=\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G L(n, R)$ a representation.
(1) Δ_{K}^{α} lies in $R\left[t^{ \pm 1}\right]$ and is well-defined up to a unit in $R\left[t^{ \pm 1}\right]$.
(2) TAP can be computed from Fox calculus or torsion
(3) The twisted Alexander polynomial (TAP) is one for the unknot
(4) Any non-trivial knot admits a representation with $\Delta_{K}^{\alpha} \neq 1$
(this was shown by Silver-Williams 2005 and F-Vidussi 2005)

Twisted Alexander polynomials (TAP): properties

Let $\alpha: \pi=\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G L(n, R)$ a representation.
(1) Δ_{K}^{α} lies in $R\left[t^{ \pm 1}\right]$ and is well-defined up to a unit in $R\left[t^{ \pm 1}\right]$.
(2) TAP can be computed from Fox calculus or torsion
(3) The twisted Alexander polynomial (TAP) is one for the unknot
(4) Any non-trivial knot admits a representation with $\Delta_{K}^{\alpha} \neq 1$
(5a) The TAP can detect mutation

Twisted Alexander polynomials (TAP): properties

Let $\alpha: \pi=\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G L(n, R)$ a representation.
(1) Δ_{K}^{α} lies in $R\left[t^{ \pm 1}\right]$ and is well-defined up to a unit in $R\left[t^{ \pm 1}\right]$.
(2) TAP can be computed from Fox calculus or torsion
(3) The twisted Alexander polynomial (TAP) is one for the unknot
(4) Any non-trivial knot admits a representation with $\Delta_{K}^{\alpha} \neq 1$
(5a) The TAP can detect mutation
(e.g. it distinguishes the Conway knot from the Kinoshita-Terasaka knot, Lin 1991)

Twisted Alexander polynomials (TAP): properties

Let $\alpha: \pi=\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G L(n, R)$ a representation.
(1) Δ_{K}^{α} lies in $R\left[t^{ \pm 1}\right]$ and is well-defined up to a unit in $R\left[t^{ \pm 1}\right]$.
(2) TAP can be computed from Fox calculus or torsion
(3) The twisted Alexander polynomial (TAP) is one for the unknot
(4) Any non-trivial knot admits a representation with $\Delta_{K}^{\alpha} \neq 1$
(5a) The TAP can detect mutation
(e.g. it distinguishes the Conway knot from the Kinoshita-Terasaka knot, Lin 1991)
(5b) A refinement of TAPs can detect mirror images
(examples are given by Kirk-Livingston 1996)

Twisted Alexander polynomials (TAP): properties

Let $\alpha: \pi=\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G L(n, R)$ a representation.
(1) Δ_{K}^{α} lies in $R\left[t^{ \pm 1}\right]$ and is well-defined up to a unit in $R\left[t^{ \pm 1}\right]$.
(2) TAP can be computed from Fox calculus or torsion
(3) The twisted Alexander polynomial (TAP) is one for the unknot
(4) Any non-trivial knot admits a representation with $\Delta_{K}^{\alpha} \neq 1$
(5) TAPs detect mutation and chirality
(6) If the representation is unitary, then the TAP is symmetric
(a consequence of Poincaré duality, shown by Kitano 1996)

Twisted Alexander polynomials (TAP): properties

Let $\alpha: \pi=\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G L(n, R)$ a representation.
(1) Δ_{K}^{α} lies in $R\left[t^{ \pm 1}\right]$ and is well-defined up to a unit in $R\left[t^{ \pm 1}\right]$.
(2) TAP can be computed from Fox calculus or torsion
(3) The twisted Alexander polynomial (TAP) is one for the unknot
(4) Any non-trivial knot admits a representation with $\Delta_{K}^{\alpha} \neq 1$
(5) TAPs detect mutation and chirality
(6) If the representation is unitary, then the TAP is symmetric (7a) TAP gives lower bounds on the genus which are often sharp (shown by F-Kim 2006)

Twisted Alexander polynomials (TAP): properties

Let $\alpha: \pi=\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G L(n, R)$ a representation.
(1) Δ_{K}^{α} lies in $R\left[t^{ \pm 1}\right]$ and is well-defined up to a unit in $R\left[t^{ \pm 1}\right]$.
(2) TAP can be computed from Fox calculus or torsion
(3) The twisted Alexander polynomial (TAP) is one for the unknot
(4) Any non-trivial knot admits a representation with $\Delta_{K}^{\alpha} \neq 1$
(5) TAPs detect mutation and chirality
(6) If the representation is unitary, then the TAP is symmetric
(7a) TAP gives lower bounds on the genus which are often sharp
(shown by F-Kim 2006)
(7b) A version of the TAP gives a lower bound on the free genus (shown by Kitayama in 2008)

Twisted Alexander polynomials (TAP): properties

Let $\alpha: \pi=\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G L(n, R)$ a representation.
(1) Δ_{K}^{α} lies in $R\left[t^{ \pm 1}\right]$ and is well-defined up to a unit in $R\left[t^{ \pm 1}\right]$.
(2) TAP can be computed from Fox calculus or torsion
(3) The twisted Alexander polynomial (TAP) is one for the unknot
(4) Any non-trivial knot admits a representation with $\Delta_{K}^{\alpha} \neq 1$
(5) TAPs detect mutation and chirality
(6) If the representation is unitary, then the TAP is symmetric
(7) TAP gives lower bounds on the genus and free genus
(8) The TAP of a fibered knot is monic

Twisted Alexander polynomials (TAP): properties

Let $\alpha: \pi=\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G L(n, R)$ a representation.
(1) Δ_{K}^{α} lies in $R\left[t^{ \pm 1}\right]$ and is well-defined up to a unit in $R\left[t^{ \pm 1}\right]$.
(2) TAP can be computed from Fox calculus or torsion
(3) The twisted Alexander polynomial (TAP) is one for the unknot
(4) Any non-trivial knot admits a representation with $\Delta_{K}^{\alpha} \neq 1$
(5) TAPs detect mutation and chirality
(6) If the representation is unitary, then the TAP is symmetric
(7) TAP gives lower bounds on the genus and free genus
(8) The TAP of a fibered knot is monic
(shown by Cha 2001, Goda-Kitano-Morifuji 2001, F-Kim 2004)

Twisted Alexander polynomials (TAP): properties

Let $\alpha: \pi=\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G L(n, R)$ a representation.
(1) Δ_{K}^{α} lies in $R\left[t^{ \pm 1}\right]$ and is well-defined up to a unit in $R\left[t^{ \pm 1}\right]$.
(2) TAP can be computed from Fox calculus or torsion
(3) The twisted Alexander polynomial (TAP) is one for the unknot
(4) Any non-trivial knot admits a representation with $\Delta_{K}^{\alpha} \neq 1$
(5) TAPs detect mutation and chirality
(6) If the representation is unitary, then the TAP is symmetric
(7) TAP gives lower bounds on the genus and free genus
(8) The TAP of a fibered knot is monic
(9) The TAPs for all reps determine whether a knot is fibered (shown by F-Vidussi in 2008)

Twisted Alexander polynomials (TAP): properties

Let $\alpha: \pi=\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G L(n, R)$ a representation.
(1) Δ_{K}^{α} lies in $R\left[t^{ \pm 1}\right]$ and is well-defined up to a unit in $R\left[t^{ \pm 1}\right]$.
(2) TAP can be computed from Fox calculus or torsion
(3) The twisted Alexander polynomial (TAP) is one for the unknot
(4) Any non-trivial knot admits a representation with $\Delta_{K}^{\alpha} \neq 1$
(5) TAPs detect mutation and chirality
(6) If the representation is unitary, then the TAP is symmetric
(7) TAP gives lower bounds on the genus and free genus
(8) The TAP of a fibered knot is monic
(9) The TAPs for all reps determine whether a knot is fibered
(10) The TAPs corresponding to appropriate representations give sliceness obstructions for knots and links

Twisted Alexander polynomials (TAP): properties

Let $\alpha: \pi=\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G L(n, R)$ a representation.
(1) Δ_{K}^{α} lies in $R\left[t^{ \pm 1}\right]$ and is well-defined up to a unit in $R\left[t^{ \pm 1}\right]$.
(2) TAP can be computed from Fox calculus or torsion
(3) The twisted Alexander polynomial (TAP) is one for the unknot
(4) Any non-trivial knot admits a representation with $\Delta_{K}^{\alpha} \neq 1$
(5) TAPs detect mutation and chirality
(6) If the representation is unitary, then the TAP is symmetric
(7) TAP gives lower bounds on the genus and free genus
(8) The TAP of a fibered knot is monic
(9) The TAPs for all reps determine whether a knot is fibered
(10) The TAPs corresponding to appropriate representations give sliceness obstructions for knots and links
(shown by Kirk-Livingston 1996 and Herald-Kirk-Livingston 2008 for knots and Cha-F 2010 for links)

Twisted Alexander polynomials (TAP): properties

Let $\alpha: \pi=\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G L(n, R)$ a representation.
(1) Δ_{K}^{α} lies in $R\left[t^{ \pm 1}\right]$ and is well-defined up to a unit in $R\left[t^{ \pm 1}\right]$.
(2) TAP can be computed from Fox calculus or torsion
(3) The twisted Alexander polynomial (TAP) is one for the unknot
(4) Any non-trivial knot admits a representation with $\Delta_{K}^{\alpha} \neq 1$
(5) TAPs detect mutation and chirality
(6) If the representation is unitary, then the TAP is symmetric
(7) TAP gives lower bounds on the genus and free genus
(8) The TAP of a fibered knot is monic
(9) The TAPs for all reps determine whether a knot is fibered
(11) TAPs give sliceness obstructions for knots and links

Twisted Alexander polynomials (TAP): properties

Let $\alpha: \pi=\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G L(n, R)$ a representation.
(1) Δ_{K}^{α} lies in $R\left[t^{ \pm 1}\right]$ and is well-defined up to a unit in $R\left[t^{ \pm 1}\right]$.
(2) TAP can be computed from Fox calculus or torsion
(3) The twisted Alexander polynomial (TAP) is one for the unknot
(4) Any non-trivial knot admits a representation with $\Delta_{K}^{\alpha} \neq 1$
(5) TAPs detect mutation and chirality
(6) If the representation is unitary, then the TAP is symmetric
(7) TAP gives lower bounds on the genus and free genus
(8) The TAP of a fibered knot is monic
(9) The TAPs for all reps determine whether a knot is fibered
(11) TAPs give sliceness obstructions for knots and links
(13) The TAP of periodic knots has a particular form
(shown by Hillman-Livingston-Naik 2005)

Twisted Alexander polynomials (TAP): properties

Let $\alpha: \pi=\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G L(n, R)$ a representation.
(1) Δ_{K}^{α} lies in $R\left[t^{ \pm 1}\right]$ and is well-defined up to a unit in $R\left[t^{ \pm 1}\right]$.
(2) TAP can be computed from Fox calculus or torsion
(3) The twisted Alexander polynomial (TAP) is one for the unknot
(4) Any non-trivial knot admits a representation with $\Delta_{K}^{\alpha} \neq 1$
(5) TAPs detect mutation and chirality
(6) If the representation is unitary, then the TAP is symmetric
(7) TAP gives lower bounds on the genus and free genus
(8) The TAP of a fibered knot is monic
(9) The TAPs for all reps determine whether a knot is fibered
(11) TAPs give sliceness obstructions for knots and links
(13) The TAP of periodic knots has a particular form
(14) If $K_{1} \geq K_{2}$ and α a representation for K_{2}, then the TAP of
K_{2} divides the TAP of K_{1} for a corresponding representation (shown by Kitano-Suzuki 2005)

Twisted Alexander polynomials (TAP): properties

Let $\alpha: \pi=\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G L(n, R)$ a representation.
(1) Δ_{K}^{α} lies in $R\left[t^{ \pm 1}\right]$ and is well-defined up to a unit in $R\left[t^{ \pm 1}\right]$.
(2) TAP can be computed from Fox calculus or torsion
(3) The twisted Alexander polynomial (TAP) is one for the unknot
(4) Any non-trivial knot admits a representation with $\Delta_{K}^{\alpha} \neq 1$
(5) TAPs detect mutation and chirality
(6) If the representation is unitary, then the TAP is symmetric
(7) TAP gives lower bounds on the genus and free genus
(8) The TAP of a fibered knot is monic
(9) The TAPs for all reps determine whether a knot is fibered
(11) TAPs give sliceness obstructions for knots and links
(13) The TAP of periodic knots has a particular form
(14) TAPs give obstructions to $K_{1} \geq K_{2}$.
(15) More work done by:

Twisted Alexander polynomials (TAP): properties

Let $\alpha: \pi=\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G L(n, R)$ a representation.
(1) Δ_{K}^{α} lies in $R\left[t^{ \pm 1}\right]$ and is well-defined up to a unit in $R\left[t^{ \pm 1}\right]$.
(2) TAP can be computed from Fox calculus or torsion
(3) The twisted Alexander polynomial (TAP) is one for the unknot
(4) Any non-trivial knot admits a representation with $\Delta_{K}^{\alpha} \neq 1$
(5) TAPs detect mutation and chirality
(6) If the representation is unitary, then the TAP is symmetric
(7) TAP gives lower bounds on the genus and free genus
(8) The TAP of a fibered knot is monic
(9) The TAPs for all reps determine whether a knot is fibered
(11) TAPs give sliceness obstructions for knots and links
(13) The TAP of periodic knots has a particular form
(14) TAPs give obstructions to $K_{1} \geq K_{2}$.
(15) More work done by: Cochran, Cogolludo, Dubois, Florens, Harvey, Hirasawa, Horie, Huynh, Le, Matsumoto, Murasugi,
Pajitnov, Tamulis, Turaev, Yamaguchi.

Main reasons to study twisted Alexander polynomials

(1) TAPs are easily computable and contain more information than the ordinary Alexander polynomial

Main reasons to study twisted Alexander polynomials

(1) TAPs are easily computable and contain more information than the ordinary Alexander polynomial
(2) TAPs relate the ordinary Alexander polynomial with the representation theory of knots, which is an extremely interesting and active field.

Main reasons to study twisted Alexander polynomials

(1) TAPs are easily computable and contain more information than the ordinary Alexander polynomial
(2) TAPs relate the ordinary Alexander polynomial with the representation theory of knots, which is an extremely interesting and active field.
(3) The Alexander polynomial of a knot or 3-manifold corresponds to Seiberg-Witten invariants,

Main reasons to study twisted Alexander polynomials

(1) TAPs are easily computable and contain more information than the ordinary Alexander polynomial
(2) TAPs relate the ordinary Alexander polynomial with the representation theory of knots, which is an extremely interesting and active field.
(3) The Alexander polynomial of a knot or 3-manifold corresponds to Seiberg-Witten invariants, and TAPs corresponding to regular representations correspond to Seiberg-Witten invariants of finite covers.

