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@ Motivic Lie algebra f

© Appearance of § in Johnson cokernel

© Appearance of f in H*(M,) (moduli space of curves)
© Kontsevich graph homology

© Disproof of a conjecture of Kontsevich

O Morita classes and their conjectural relation with f

@ Bird’s eye view

Shigeyuki MORITA Motivic Lie algebra and cohomology of moduli spaces



Motivic Lie algebra (1)

Motivic Lie algebra (or fundamental Lie algebra)
f = FreeLie(os, 05,07, --) (Soulé elements)
plays important roles in number theory
oor+1 ~ HY(Gal(Q/Q), Zp(2k + 1)) 2 Z,  (p: prime)

Soulé p-adic regulator

Recently, it also appears in many branches of mathematics
related to number theory, such as topology,

mathematical physics,...
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Appearance of § in Johnson cokernel (1)

The mapping class group of 3, ; relative to the boundary

Theorem (Dehn-Nielsen-Zieschang)

Mgi1={p e AutmE,1;9(C) =C(} (¢ : boundary

“differentiate” = “Lie algebra” of M, ;
[hg,l = {symplectic derivation of FreeLie (H)} ]

defined over Z, but here we consider it over QQ
introduced by Johnson in his beautiful works on the Torelli

group during (1979 ~1985)
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Appearance of § in Johnson cokernel (2)

The action of M, ; on the lower central series of 713, 1
= Johnson filtration { M, 1(k)}

= embedding of Lie algebras (Johnson homomorphism)

Determination of Im 7 C f):{,li very important problem,

fundamental results :

Im7(1) =2 A®H (Johnson)
Im7®Q=(N"H®Q)Chl®Q (Hain)
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Appearance of {f in Johnson cokernel (3)

Johnson cokernel = b, /Im 7
Determination of Im7 C b, =
determination of Johnson cokernel

First, around the end of 1980’s, a surjective homomorphism

o
trace : b;rl —» EBS%HH@
k=1

was constructed such that it vanishes on Im 7 (M.)

| have (too optimistically) conjectured that A® Hg and the trace

components 5?1 Hy, will generate the Lie algebra b,
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Appearance of § in Johnson cokernel (4)

It turned out that, this is not the case due to remarkable works

of Conant-Kassabov-Vogtmann (hairy graphs) and Bartholdi

On the other hand, as for the Johnson cokernel, a series of
results starting from the works of Nakamura as well as
Matsumoto proving a certain conjecture of Oda:

arithmetic mapping class group:

1 — M} — =3 (ML/Q) — Gal@/Q) — 1
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Appearance of {f in Johnson cokernel (5)

“Gal(Q/Q) should appear in the Sp-invariant part
of the Johnson cokernel”
until the definitive work of Brown in 2010, it is now known that

there exists an embedding

f C Johnson cokernel : (h /Im )"
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Appearance of {f in Johnson cokernel (6)

These results are based on the fundamental theories of
Grothendieck, Drinfeld, Ihara, Deligne
After this, there appeared many important results about the
Johnson cokernel:
Enomoto-Satoh map (at present, the best result)
Conant-Kassabov (Hopf algebra)
Sakasai-Suzuki-M. : general theory for the structure of

(hy,1)SP+canonical metric on the space of Sp-invariant
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Appearance of § in Johnson cokernel (7)

tensors = determined Im 7 ® Q completely up to degree 6

Kawazumi-Kuno (Lie bialgebra)

However, both the problems of determining
Johnson cokernel and a system of generators for b;1

remain completely open (despite of many known results...)
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Appearance of f in H*(M,) (moduli space of curves) (1)

Theorem (Chan-Galatius-Payne)
There exists a surjection

H'Y~%(My; Q) — grt(29) D §(29)
= H*% 5M,;Q) #0 forg=3,50rg >7and
dim H*9~%(M,; Q) > 39 + constant forany 3 < S
where By = 1.3247 ... is the real root of t> —t — 1 = 0

all the above cohomology classes are unstable classes
(beyond Harer stable range) and before this result,

only the following two unstable classes were known:

Shigeyuki MORITA Motivic Lie algebra and cohomology of moduli spaces



Appearance of § in *(M,) (moduli space of curves) (2)

Looijenga: H%(Ms3; Q) = Q and Tommasi: H5(M4;Q) = Q

On the other hand

Theorem (Harer)
Forany g > 2

ved(My) =49 —5 = H*(M,;Q) =0 forallk > 4g — 5

Theorem (Sakasai-Suzuki-M., Church-Farb-Putman)

HY97P (M Q) = 0
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Appearance of § in *(M,) (moduli space of curves) (3)

Problem

Construct explicit cocycles for the classes in H*~5(Mg; Q)

guaranteed by the above result of Chan-Galatius-Payne
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Kontsevich graph homology (1)

C Lie version of Kontsevich graph homology )

Theorem (Kontsevich, Lie version)

There exists an isomorphism

PH?(/[)\OO,I)QTL = H2n—k(out Fn—H; Q) (TL Z 1)

Doo,1 : CcOmMpletion of b 1 = ggrgobg,l

P H.(Owt F,;Q) 4 PH(hoo1)

n>2

equivalent!
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Kontsevich graph homology (2)

[ associative version of Kontsevich graph homology ]

Theorem (Kontsevich, associative version)

There exists an isomorphism

PHf(aoo)Zn = @ H2n7k(M;n; Q)Gm (TL > 1)
2g—2+m=n,m>0

do : completion of  a, = lim a4
g—©

H2n7k(M;n;Q)6m < PH:<aOO)
2g—2+m=n,m>0

equivalent!
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Kontsevich graph homology (3)

[ associative version of Kontsevich graph homology ]

Theorem (Kontsevich, associative version)

There exists an isomorphism

PHp(ax)m = @ E™FMZ5QS" (n>1)
2g—2+m=n,m>0

P HY (M QO" < PH(ax)
g>0,m>0

equivalent!
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Disproof of a conjecture of Kontsevich (1)

Theorem [Chan-Galatius-Payne] +
Theorem [Kontsevich, associative] =
dim Hs(as) = 00
This disproves (!) the associative case of the following

conjecture

Conjecture (Kontsevich)

For any k, the k-th homology group of each of the infinite
dimensional Lie algebras

(o, 0oy loo (COmmutative, associative, lie)

is finite dimensional.
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Disproof of a conjecture of Kontsevich (2)

Kontsevich mentioned that
dim Ha(cs) =1
On the other hand, | have constructed a series of elements
tors1 € H2(hg1)arse (F=1,2,...)
by making use of the trace map

trace : hg1 — S%HH@

and conjectured that all of these classes are non-trivial
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Disproof of a conjecture of Kontsevich (3)

Since

hoo1 = [ (the LHS appeared before the RHS),

the above conjecture (non-triviality of the classes tox1) implies

dim Hy(ls) = 00

which would disprove the lie version of Kontsevich’s conjecture
Since the structure of [, seems much richer that that of a.,
Theorem [Chan-Galatius-Payne] should be a strong supporting

evidence for the non-trivialities of the following classes
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Disproof of a conjecture of Kontsevich (4)

H?(hoo1)akr2 3 topr1 © pix € Hap(OutFoyio; Q)

Morita classes

At present, only the first three classes

M1, 42, 43

are known to be non-trivial

due to M., Conant-Vogtmann, Gray:
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Disproof of a conjecture of Kontsevich (5)

Theorem (non-triviality of 1)
wa # 0 € Hg(Out Fgs; Q)  (Conant-Vogtmann 2004)
us # 0 € Hi2(Out Fy; Q)  (Gray 2011)

very interesting general property of the classes py:

Theorem (Conant-Hatcher-Kassabov-Vogtmann, 2015)

The class . can be represented by the fundamental cycle

of a certain abelian subgroup Z** c Out Fao

Shigeyuki MORITA Motivic Lie algebra and cohomology of moduli spaces



Morita classes and their conjectural relation with § (1)

It is now known that

there exists an embedding
f C Johnson cokernel : (b /Im7)%"

| thought first that the Galois image might serve as new

generators for f);v namely they will survive in the abelianization

Hl(h;:l)
but soon | became to conjecture that they should be

represented by brackets of the trace components:
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Morita classes and their conjectural relation with f (2)

bg.1(2k + 1) D (unique by Nakamura)S?*+1 Hg —— S%*+1[

trace

(N2SHHLHG)P =2 Q5 1 Lol oo | € hg1(4k+2) Galois image ?

unsolved, but Hain told that he has some progress concerning

the above conjecture in his joint work with Brown
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Morita classes and their conjectural relation with § (3)

Conjecture

The bracket operation
Zhg, i) ® bg1(4k +2 — 1) L. bg1(4k +2)

hits the element o, € by 1(4k + 2)

If this conjecture is true = tor 1 #0 = up #0
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Morita classes and their conjectural relation with { (4)

If the above two conjectures are true,
then we can say that the Galois images C (b1 /Im 7)5P

and the classes . are very closely related
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2k +1 1 3 )
weight (4k + 2) 2 6 10
generators of b, 1,v/Galois | AH/H | S°H S°H
period () | B | o)
Soulé (Galois image) 03 o3
H?(Doo,1)akt2 e1 t3 ts5
Hyj,(Out Fop0) 0 p2
H¥ (Mo 41) HO(M;) | H™ (M)

hg1(2k +1) D ST Hg (trace component)

(A28 )0 = @ L 6toP ey (4k + 2) Galois image ?
= bkt € H2(0g1)akt2 =2 ik € Hap(Out Fopyo)

x 2 top 2 smooth
= topp1 € HO(H, 1 )ak+e — H7(HZR"")ak+2
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