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Introduction

Introduction

Mapping Class Group (MCG)

the group of isotopy classes of the orientation preserving homeomorphisms
of an oriented surface.

(w/ some variants)

A fundamental problem is its linearity.

A group is linear ⇔ it admits a faithful finite dimensional linear
representation over ∃ field.

A linear representation is faithful ⇔ it is injenctive as a
homomophism into the corresponding linear transformation group.

In particular, a group is said to be K -linear if it admits a faithful finite
dimensional linear representation over a field K .
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Introduction

The purpose of this talk is

to recall

the known results on the linearity problem on MCG of surfaces,
our previous visualization of linearity for MCG of 1-punctured surface,

to derive a new linearity condition for MCG of closed surface, (NOT
to claim the solution of the problem, unfortunately),

and as a byproduct, to discuss the geometric intersection in arbitrary
representation of MCG.
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Introduction Mapping Class Group and its linearity problem

Notation

Σg : a closed oriented surrface of genus g

Σg ,∗ : a pair of Σg and a fixed base point ∗ ∈ Σg

Σg ,n : a connected compact oriented surface of genus g with
n ≥ 0 boundary components

Mg : MCG of Σg

Mg ,∗ : MCG of Σg ,∗
(homeo and isotopy are assumed to fix ∗)

Mg ,n : MCG of Σg ,n

(homeo and isotopy are assumed to fix
the boundary pointwise)
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Introduction Known results

Known results on linearity

Classical. M1
∼= M1,∗ ∼= SL(2,Z).

Therefore, M1 and M1,∗ are Q-linear.

For the genus 2 case:

Korkmaz [’00], Bigelow–Budney [’01]

M2 is linear.

Proved by the combination of:

Artin’s braid group Bn is linear (Bigelow [’01], Krammer [’02])

the relation of Bn with MCG of n + 1st punctured S2,

relation between M2 and MCG of 6th punctured S2 (Birman–Hilden
theory)

(The same proof shows the hyperelliptic MCG of Σg for all g ≥ 3 is linear.)
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Introduction Known results

All the other cases are unknown.

The linearity of Mg for g ≥ 3 and also the linearity of Mg ,∗ for g ≥ 2
seem to remain open.
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Introduction Some Difficulty in higher genera

Some difficulties of the problem

Non-existence of the Lawrence representation for g ≥ 1:

H1(configuration space of Σg )
Mg is at most Z/2Z while the analogue for

a punctured disk is Z or Z⊕ Z.

Hard to construct a candidate of faithful linear representations

All the TQFT rep’s: the image of a Dehn twist is of finite order

Classification result of low dim. rep.’s over C
(Korkmaz) For genus g ≥ 3, there are no faithful linear rep over C in
dimensions ≤ 3g − 3.

Subtleness of the problem

Comparison with Aut (Fn)

Lattice in topological group vs Linearity
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Introduction Our previous result— visualization for 1-punctured case

Motivation for Visualization

Linearity problem seems quite subtle.

If an ad-hoc way is good enough, the problem might be solved even
today by somebody.

However, any systematic approach seems missing.

So, we tried to rephrase the linearity problem for MCG in terms of proper
MCG geometry/topology,

in the hope to find new interesting problems, and further hopefully a clue
to the linearity problem itself.
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Introduction Our previous result— visualization for 1-punctured case

Our previous result: a visualization of the linearity for Mg ,∗

Let g ≥ 2.

XGL(n,K) := Hom (π1(Σg , ∗),GL(n,K )) /GL(n,K ) with K a field

Mg ,∗ naturally acts on XGL(n,K), which descends to the action of
Mg via the Birman exact sequence

1 −→ π1(Σg , ∗) −→ Mg ,∗ −→ Mg −→ 1

Theorem (K.)

Mg ,∗ is K-linear if and only if there exists some n such that the action of
Mg on XGL(n,K) has a global fixed point represented by a faithful
representation of π1(Σg , ∗).
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Introduction Our previous result— visualization for 1-punctured case

Key for the proof

π1(Σg , ∗) ◁Mg ,∗

The conjugation action of Mg ,∗ on π1(Σg , ∗) coincides with the
natural action, which is faithful.

The proof does not work for closed surface since π1(Σg , ∗) is not
contained in Mg .

However, there is another geometric object contained in the MCG of a
compact surface such that

the conjugation action of the MCG coincides with the natural action
on it,

the natural action on it is (almost) faithful.

I.e., the set S of the isotopy classes of (essential) simple closed curves on
the underlying surface.

We can obtain another linearity condition for MCG in terms of S.
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Visualization with simple closed curves

Setting for compact surface case:

Σg ,n : the compact connected oriented surface of genus g ≥ 1
and n ≥ 0 boundary components.

Mg ,n : MCG of Σg ,n (id on ∂)

S = Sg ,n : the set of isotopy classes of essential (unoriented) simple
closed curves (SCC) on Σg ,n

Here, essential means: not homotopic to a point nor parallel to any
boudary component.

Note: Mg ,n naturally acts on S.
12 / 31



Visualization with simple closed curves

Dehn twist

For C ∈ S, tC denotes the (right-handed) Dehn twist ∈ Mg ,n:

Definition

We define a set mapping

ι : S → Mg ,n by ι(C ) := tC for C ∈ S.

Fact

ι is injective.

For f ∈ Mg ,n, f · tC · f −1 = tf (C), i.e.,

ι(f (C )) = f · ι(C ) · f −1.
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Visualization with simple closed curves

Starting Lemma:

Lemma (K.)

For any group homomorphism φ : Mg ,n → G,

Kerφ ⊂ Z (Mg ,n) ⇔ φ ◦ ι is injective

where Z denotes the center of the group.

Proof.

f · tC · f −1 = tf (C) (f ∈ Mg ,n)

Ker (Mg ,n → Aut (S)) = Z (Mg ,n)

The action on S can detect S.

By making use of this lemma, we can ”visualize” the linearity of Mg ,n, up
to center.

To explain this, we introduce the following.
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Visualization with simple closed curves

Module of curves

K [S] : the vector space over K with basis S

Definition (K.)

A module of curves (of type S) is defnied as the pair of

an Mg ,n-module M (over K ),

an Mg ,n-equivariant surjective homomorphism p : K [S] → M.

If p is clear, we will simply refer to M as a module of curves.

15 / 31



Visualization with simple closed curves

Module of curves (2)

We say a module of curves is of finite dimension if its dimension over K is
finite.

A module of curves is nothing but K [S] divided by skein type
relations, i.e., some formal finite sums of finite numbers of SCCs.

There is only one example of finite dimensional module of curves
given, in terms of skein type relations (Luo[’97]).

N.B. Not all Mg ,n-modules admit the structure of module of curves.

E.g., any Mg -equivariant homomorphism K [S] → H1(Σg ;K ) must be
zero, if char(K ) ̸= 2.
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Visualization with simple closed curves

Any linear rep. of Mg ,n induces a module of curves.

V : a finite dimensional vector space over K
ρ : Mg ,n → GL(V ): a given linear representation

End (V ) is naturally an Mg ,n-module by

f∗X = ρ(f )Xρ(f )−1 (f ∈ Mg ,n, X ∈ End (V )).

Definition

Let Mρ := SpannK (ρ ◦ ι(S)) ⊂ End (V ).

Mρ is preserved under the Mg ,n-action(
∵ f∗(ρ ◦ ι(C )) = ρ(f )ρ(tC )ρ(f )

−1 = ρ(ftC f
−1)

= ρ(tf (C)) = ρ ◦ ι(f (C ))

)

Mρ receives a structure of fin. dim. module of curves with

pρ : K [S] → Mρ, pρ(C ) := ρ ◦ ι(C ).
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Visualization with simple closed curves

Visualization for closed surface

The construction of the module of curves associated to a linear
representation, together with the Starting Lemma, implies:

Theorem (K.)

Let g ≥ 1 and n ≥ 0. Then Mg ,n admits a finite dimensional linear
representation over K with kernel ⊂ Z (Mg ,n) if and only if it has a finite
dimensional module of curves p : K [S] → M such that p|S is an injection.

Since Z (Mg ,n) = 1 for g ≥ 3 and n = 0, we have

Corollary (K.)

For g ≥ 3, Mg is K-linear if and only if it admits a finite dimensional
module of curves p : K [S] → M such that p|S is injective.
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Visualization with simple closed curves

Problems

For a module of curves
p : K [S] → M,

When does M have finite dimensions over K?

When is Ker p finitely generated as an Mg ,n-module?
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Geometric intersection in representations of MCG

Geometric intersection in some representations (Recall)

As for some linear representations of MCG such as Burau rep.,
Lawrence–Krammer rep., and the Magnus rep. of Torelli group,

Faithfulness critetia known (up to center):

whether or not the MCG-invariant Blanchfield type pairing of the
representation space detects the geometric intersenction among certain
types of curves in the underlying surface.

Merit: each curve corresponds directly to a point in rep. space; (⇒ rather
easy to check the criterion).

seems to depend on the explicit descriptions of representation.
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Geometric intersection in representations of MCG

We show here that

we may use our Starting Lemma

to obtain a faithfulness criterion which is rather indirect but
applicable for any group hom. of MCG

by replacing the Blanchfield type pairing with commutator of Dehn twists
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Geometric intersection in representations of MCG

Geometric intersection (definition)

Σg ,n : the compact connected oriented surface of genus g ≥ 1
and n ≥ 0 boundary components.

Mg ,n : MCG of Σg ,n (id on ∂)

S : the set of isotopy classes of essential SCC on Σg ,n

Definition

igeom : S × S → Z≥0 is defined for a, b ∈ S by

igeom(a, b) = min # |α ∩ β|

where α and β vary the representing curves of a and b, respectively.

We say a and b has geometric intersection if igeom(a, b) ̸= 0.
Note: any a ∈ S does not have geometric intersection with itself.
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Geometric intersection in representations of MCG

Basic fact (e.g., Farb–Margalit’s book)

For c1, c2 ∈ S,

igeom(c1, c2) = 0 ⇔ [tc1 , tc2 ] = 1.

Proof.

(⇒) Trivial.

(⇐) Suppose [tc1 , tc2 ] = 1.

Since ftc f
−1 = tf (c) in general, [tc1 , tc2 ] = ttc1 (c2) · t

−1
c2 = 1, i.e.,

ttc1 (c2) = tc2

⇒ tc1(c2) = c2 (∵ ι : S → Mg ,n is injective)

⇒ igeom(c1, c2) = 0 ( ∵ igeom(tc1(c2), c2) = igeom(c1, c2)
2 )

In view of this, we have
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Geometric intersection in representations of MCG

Theorem (K.)

For any ρ : Mg ,n → G,

(ρ detects the geometric intersection in S) ⇔ Ker ρ ⊂ Z (Mg ,n)

Proof

(⇒) Suppose [tc1 , tc2 ] = 1 for those satisfying ρ([tc1 , tc2 ]) = 1.

For c1 ̸= c2, ∃d ∈ S s.t.

igeom(c1, d) = 0 & igeom(c2, d) ̸= 0.

Then, ρ([tc1 , tc2 ]) = 1 while ρ([tc1 , tc2 ]) ̸= 1 ⇒ ρ(tc1) ̸= ρ(tc2),
I.e., ι ◦ ρ : S → G is injective.

⇒ Starting Lemma implies Ker ρ ⊂ Z (Mg ,n).
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Geometric intersection in representations of MCG

Proof (cont’)

(⇐) Suppose Ker ρ ⊂ Z (Mg ,n).

If ρ([tc1 , tc2 ]) = 1,

ttc1 (c2) · t
−1
c2 = [tc1 , tc2 ] ∈ Ker ρ ⊂ Z (Mg ,n)

Since Z (Mg ,n) = Ker (Mg ,n → Aut (S)),

(ttc1 (c2))∗ = (tc2)∗ on S.

⇒ tc1(c2) = c2 in S.

⇒ [tc1 , tc2 ] = tc1(c2) · t−1
c2 = 1.

I.e., ρ detects the geometric intersection in S.
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Geometric intersection in representations of MCG

Refinement

After Brendle–Margalit: Ker (Mg ,n → Aut (Ssep)) = Z (Mg ,n)

For c1 ̸= c2 ∈ S, ∃d ∈ S s.t. igeom(ci , d) = δi ,2; Furthermore,

if c1, c2 ∈ Snonsep, d can be also chosen in Snonsep;
if c1, c2 ∈ Ssep, d can be also chosen in Ssep.

These imply that the previous theorem holds true
w/ S replaced by S nonsep/Ssep.

In particular, we have
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Geometric intersection in representations of MCG

Theorem (K.)

Let Ssep ̸= ϕ, i.e., n ≥ 4− 2g;
H < Mg ,n: a subgp containing ι(Ssep);
ρ : H → G arbitrary group homomorphism.

Then

(ρ detects geometric intersection in Ssep) ⇔ Ker ρ ⊂ Z (Mg ,n).

Remark

1) This theorem seems to explain partially the significance of the work by
Suzuki on a constuction of non-trivial kernel of the Magnus representation
of the Torelli subgroup of Mg ,1 associated to the abelianization
π1(Σg ,1) → H1(Σg ,1;Z).

2) This theorem is true for g = 0 (the proof is easier).
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Geometric intersection in representations of MCG

The Johnson filtration (notation)

Let g ≥ 1 and n = 1 (for simplicity).

Γ := π1(Σg ,1, ∗) with ∗ ∈ ∂Σg ,1 fixed.

{Γk}k≥1: the lower central series of Γ,
defined by Γ1 = Γ and Γk+1 = [Γk , Γ] for k ≥ 1.

Nk := Γ/Γk+1

ρk : Mg ,1 → Aut (Nk)

M(k) := Ker ρk ; (M(1): Torelli gp,
M(2): the Johnson kernel, . . . )

{M(k)}k≥1: the Johnson filtration of Mg ,1.

Fact∩∞
k=1M(k) = {1} (Johnson)

M(k) ̸⊂ Z (Mg ,n) for ∀k ≥ 1 (easy to check)

This implies the following:
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Geometric intersection in representations of MCG

Geometric intersection in Johnson filtration

Corollary (K.)

For ∀k ≥ 1, ρk does not detect the geometric intersection in
S/S nonsep/Ssep, while the totality of {ρk}k≥1 does.

⇒ one may consider:
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Geometric intersection in representations of MCG

Geometric intersection in Johnson filtration (Cont’)

Definition

For c1, c2 ∈ S,

iJF(c1, c2) :=


1 if [tc1 , tc2 ] /∈ M(1);

k + 1 if [tc1 , tc2 ] ∈ M(k) and [tc1 , tc2 ] /∈ M(k + 1);

0 if [tc1 , tc2 ] ∈ M(k) for all k ≥ 1.

Remark

iJF is unbounded.

iJF(c1, c2) = 0 ⇔ igeom(c1, c2) = 0

iJF(c1, c2) ≥ 2 ⇐⇒ igeom(c1, c2) ̸= 0 & ⟨c⃗1, c⃗2⟩ = 0.
In particular, if ⟨c⃗1, c⃗2⟩ ̸= 0, then iJF(c1, c2) = 1.

Problem

Study further properties of iJF.
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Summary

Summary

Mg is K -linear if and only if there exists a finite dimensional module
of curves

p : K [S] → M

such that p|S is injective.(
When is a module of curves finite dimensional, or has
a finite MCG-generators, in general?

)

Focusing on igeom(c1, c2) = 0 ⇔ [tc1 , tc2 ] = 1, the injectivity
condition can be obtained for any homomorphism of Mg ,n in terms
of detection of geometric intersection.(

Geometric intersection in Johnson filtration
—how quantitive?

)
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