An extension of the LMO functor and Milnor invariants

Yuta Nozaki

The University of Tokyo
October 27, 2015

Topology and Geometry of Low-dimensional Manifolds

Contents

(1) Introduction

- Background
- Aim of today's talk
(2) Definitions and results
- Domain and codomain of \tilde{Z}
- Main result
(3) Relation with Milnor invariants of string links
- Review of Milnor invariants
- Result and example of calculation

History of "LMO"

1. Kontsevich [Kon93] constructed the Kontsevich invariant Z^{K} of (unframed) oriented links in S^{3}, which was extended to an invariant of (framed) q-tangles.

$$
z^{\mathrm{K}}(\text { unknot })=\square-\frac{1}{24}+(\operatorname{deg} \geq 3) \in \mathcal{A}(\circlearrowleft) / \mathrm{FI} .
$$

2. Using Z^{K}, Le, Murakami and Ohtsuki [LMO98] introduced the LMO invariant of connected, oriented, closed 3-manifolds.

$$
Z^{\mathrm{LMO}}(L(p, 1))=\varnothing-\frac{p}{2} \frac{(p-1)(p-2)}{24 p}
$$

3. Cheptea, Habiro and Massuyeau [CHM08] constructed the LMO functor (defined on a certain category of cobordisms) by using formal Gaussian integrals.

$$
\log _{\sqcup} \tilde{Z}\left(\psi_{\bullet, \bullet}\right)={2^{-}}_{1^{+}}+{1^{-}}_{2^{+}}-\frac{1}{2}{ }_{2^{-}}^{1^{+}}:_{1^{-}}^{2^{+}}+(\mathrm{i}-\mathrm{deg}>2),
$$

where $\psi_{\bullet,}:=$

$M:$ a $\mathbb{Q H S} \rightsquigarrow M \backslash \operatorname{Int}[-1,1]^{3}$ is regarded as a cobordism between disks $[-1,1]^{2} \times 1$ and $[-1,1]^{2} \times(-1)$. Then

$$
Z^{\mathrm{LMO}}(M)=\tilde{Z}\left(M \backslash \operatorname{Int}[-1,1]^{3}\right) .
$$

What kind of extension?

Roughly speaking, the objects and morphisms of the domain are extended as follows:

$$
\Sigma_{g, 1} \rightsquigarrow \Sigma_{g, 1+n}(n \geq 0) \quad \text { and }
$$

Namely, we allow a cobordim to have vertical tubes.

$$
\log _{\sqcup} \tilde{Z}\left(\psi_{\bullet, \circ}\right)=1_{1^{-}}^{1^{+}}+\frac{1}{2}:_{1^{-}}^{1^{+}{ }^{0}}+\frac{1}{8}:_{1^{-}}^{1^{+}} 1^{1^{0}}+(\mathrm{i}-\operatorname{deg}>2)
$$

Remarks

Convention

Notation and terminology are almost the same as in [CHM08], but their definitions are extended. The main differences will be emphasized in red (e.g. $\Sigma_{g, 1+n}$).

Remark

Related researches are found in [ABMP10], [Kat14]. (References are listed at the end.)

More precisely, the LMO functor is defined as a tensor-preserving functor

$$
\tilde{Z}: \mathcal{L C o b}{ }_{q} \rightarrow{ }^{t s} \mathcal{A}
$$

between the monoidal categories [CHM08]. \tilde{Z} has important properties:

- $\tilde{Z}(M)=\exp _{\sqcup}(\operatorname{Lk}(M) / 2) \sqcup \tilde{Z}^{Y}(M)$ for $\forall M=(M, \sigma, m)$.
- \tilde{Z} is universal among rational-valued finite-type invariants of certain 3-manifolds.
- \tilde{Z} is related with Milnor invariants of string links.

Aim of today's talk
Construct an extension of \tilde{Z} with the above properties.

Contents

(1) Introduction

- Background
- Aim of today's talk
(2) Definitions and results
- Domain and codomain of \tilde{Z}
- Main result
(3) Relation with Milnor invariants of string links
- Review of Milnor invariants
- Result and example of calculation

Notation

- $\operatorname{Mon}(\bullet, \circ):=($ free monoid generated by letters \bullet and \circ).
- $w \in \operatorname{Mon}(\bullet, \circ)$. The compact surface F_{w} is defined as follows:

- $w_{ \pm} \in \operatorname{Mon}(\bullet, \circ)\left(\left|w_{+}^{\circ}\right|=\left|w_{-}^{\circ}\right|=: n\right), \sigma \in \mathfrak{S}_{n}$. The closed surface $R_{w_{-}, \sigma}^{w_{+}}$is defined as follows:

Domain of \tilde{Z}

Definition (cobordism)
A cobordism from $F_{w_{+}}$to $F_{w_{-}}\left(\left|w_{+}^{\circ}\right|=\left|w_{-}^{0}\right|=: n\right)$ is an equivalence class of triples (M, σ, m), where

- M is a connected, oriented, compact 3-manifold st. $\partial M \cong \Sigma_{\left|w_{+}^{\bullet}\right|+\left|w_{-}\right|+n}$,
- $\sigma \in \mathfrak{S}_{n}$,
- $m: R_{w_{-}, \sigma}^{w_{+}} \rightarrow \partial M$ is an orientation-preserving homeomorphism,
- (M, $\sigma, m) \sim(N, \tau, n)$ if $\sigma=\tau$ and there is an ori.-pres. homeo. $f: M \rightarrow N$ st.

Definition (strict monoidal category \mathcal{C} ob)

- $\operatorname{Obj}(\mathcal{C o b}):=\operatorname{Mon}(\bullet, \circ)$.
- $\mathcal{C o b}\left(w_{+}, w_{-}\right):=\left\{\right.$cobordisms from $F_{w_{+}}$to $\left.F_{w_{-}}\right\}$(or \emptyset).
- $(M, \sigma, m) \circ(N, \tau, n):=\left(M \cup_{m_{+} \circ 0_{-}^{-1}} N, \sigma \tau, m_{-} \cup n_{+}\right)$.
- $\operatorname{Id}_{w}:=\left(F_{w} \times[-1,1], \operatorname{Id}_{\tilde{\mathfrak{G}}_{|w|} \mid}\right.$, "Id").
- $(M, \sigma, m) \otimes(N, \tau, n):=($ horizontal juxtaposition of M and $N)$.
$m_{ \pm}$is the restriction of m to the top/bottom of the surface $R_{w_{-}, \sigma}^{w_{+}}$.
For a technical reason, we only consider Lagrangian cobordisms that satisfy almost the same homological conditions as in [CHM08]. \rightsquigarrow The strict monoidal subcategory $\mathcal{L C o b}$.

Bottom-top tangles

Translating cobordisms into "bottom-top tangles" is necessary to define \widetilde{Z}. In fact, there is a 1-1 correspondence by digging a bottom-top tangle (B, γ) along its framed oriented tangle γ.

Figure : $(B, \gamma) \stackrel{1: 1}{\longleftrightarrow}(M, \sigma, m) \in \operatorname{Cob}(\bullet \circ, \bullet \circ)$

Under the previous correspondence, (M, σ, m) is Lagrangian iff $H_{*}(B) \cong H_{*}\left([-1,1]^{3}\right) \& \operatorname{Lk}_{B}\left(\gamma^{+}\right)=O$. Here,

$$
\operatorname{Lk}_{B}(\gamma):=\operatorname{Lk}_{\widehat{B}}(\widehat{\gamma})-O_{g_{+}+g_{-}} \oplus \sigma^{-1} \cdot \operatorname{Cr}(\beta) \in \frac{1}{2} \operatorname{Sym}_{\pi_{0} \gamma}(\mathbb{Z}),
$$

where $L k_{\widehat{B}}(\widehat{\gamma})$ is the usual linking matrix of the (framed) link

$$
\widehat{\gamma}:=\gamma \cup\left(\text { arcs and braid in } S^{3} \backslash \operatorname{lnt}[-1,1]^{3}\right)
$$

in the homology sphere $\widehat{B}:=B \cup\left(S^{3} \backslash \operatorname{Int}[-1,1]^{3}\right)$.

In the case of $B=[-1,1]^{3}$, it suffices to count the crossings of a projection of γ.

Example $\left((B, \gamma)=\left([-1,1]^{3}\right.\right.$, figure below $\left.)\right)$

Moreover, (the corresponding cobordism of) (B, γ) is Lagrangian since $\mathrm{Lk}_{B}\left(\gamma^{+}\right)=(0)$.

Codomain of \tilde{Z}

Definition (space of Jacobi diagrams)
X : an oriented compact 1-manifold, C : a finite set.
$\mathcal{A}(X, C):=\mathbb{Q}\{$ Jacobi diagrams based on $(X, C)\} / \mathrm{AS}, \mathrm{IHX}$, STU.

Figure : $X=\curvearrowright \uparrow, C=\{1,2,3\}$, deg $=12 / 2=6$

Remark

Take the degree completion of $\mathcal{A}(X, C)$ and denote it by $\mathcal{A}(X, C)$ again.

The graded \mathbb{Q}-linear map $\chi_{s}: \mathcal{A}(X, C \cup S) \rightarrow \mathcal{A}\left(X \downarrow^{s}, C\right)$ is defined as follows.

Figure : $X=\circlearrowleft, c \in C, S=\{1,2,3\}$
χ_{S} is an isomorphism and plays an important role when dealing with Jacobi diagrams.
Moreover, we need a graded \mathbb{Q}-linear map $\chi_{s, S^{\prime}}: \mathcal{A}\left(X, C \cup S \cup S^{\prime}\right) \rightarrow \mathcal{A}\left(X \downarrow^{S}, C\right)$, where S^{\prime} is a copy of S.

Definition (strict monoidal category ${ }^{t s} \mathcal{A}$)

- $\operatorname{Obj}\left({ }^{t s} \mathcal{A}\right):=\mathbb{Z}_{\geq 0}^{2}$.
- ${ }^{t s} \mathcal{A}((g, n),(f, n)):=\left\{x \in \mathcal{A}\left(\emptyset,\lfloor g\rceil^{+} \cup\lfloor f\rceil^{-} \cup\lfloor n\rceil^{0}\right) \mid\right.$ x is a series of top-substantial Jacobi diagrams $\}$.
- $x \circ y:=\chi_{\lfloor n\rceil^{0}}^{-1} \chi_{\lfloor n\rceil^{0},\lfloor n]^{0^{\prime}}}\left\langle\left(x / i^{+} \mapsto i^{*}\right),\left(y / i^{-} \mapsto i^{*}, i^{0} \mapsto i^{0^{\prime}}\right)\right\rangle_{\lfloor g\rceil^{*}}$.
- $\operatorname{Id}_{(g, n)}:=\exp _{\sqcup}\left(\sum_{i=1}^{g} i_{i^{-}}^{i^{+}}\right)$.
- $x \otimes y:=x \sqcup y$.
$\lfloor k\rceil^{*}:=\left\{1^{*}, 2^{*}, \ldots, k^{*}\right\}$.
A Jacobi diagram is top-substantial if it contains no strut $(x, y) \in{ }^{t s} \mathcal{A}((g, n),(f, n)) \times{ }^{t s} \mathcal{A}((h, n),(g, n)) \xrightarrow{\langle-,-\rangle_{\lfloor g\rangle^{*}}}$
$\mathcal{A}\left(\emptyset, h^{+} \cup f^{-} \cup n^{0} \cup n^{0^{\prime}}\right) \xrightarrow{\chi_{n^{0}, n^{\prime}}} \mathcal{A}\left(\downarrow^{n^{0}}, h^{+} \cup f^{-}\right) \xrightarrow{\chi_{n^{0}}^{-1}} \mathcal{A}\left(\emptyset, h^{+} \cup f^{-} \cup n^{0}\right)$.

Example ($f=g=n=1$)

where the last step follows from

Before stating the main result...

Remark

The Kontsevich invariant of tangles depends on a "parenthesizing" of their boundaries. (In other words, it depends on the choice of an "associator".) Therefore, we have to refine as follows.

until now	from now on
$\operatorname{Mon}(\bullet, \circ)$	$\operatorname{Mag}(\bullet, \circ)$
$\mathcal{C} o b$	$\mathcal{C} o b_{q}$
$\mathcal{L C} o b$	$\mathcal{L C} o b_{q}$

There is a canonical surjection $\operatorname{Mon}(\bullet, \circ) \stackrel{\text { forget }}{\longleftarrow} \operatorname{Mag}(\bullet, \circ)$, e.g.,

- ○ ○ • ↔ • (○(○•)).

Let $(M, \sigma, m) \in \mathcal{L C o b}{ }_{q}\left(w_{+}, w_{-}\right)$and $g=\left|w_{+}^{\bullet}\right|, f=\left|w_{-}^{\bullet}\right|, n=\left|w_{+}^{\circ}\right|$.
Definition (extension of the LMO functor)
$\widetilde{Z}(M, \sigma, m):=\chi_{\pi_{0} \gamma}^{-1} Z^{\mathrm{K}-\mathrm{LMO}}(B, \gamma){ }^{\mathrm{t}_{5} \mathcal{A}} \mathrm{~T}_{g} \in{ }^{\mathrm{ts}} \mathcal{A}((g, n),(f, n))$.

- $\int_{\pi_{0} L}$ is the formal Gaussian integral along $\pi_{0} L$ introduced in [BNGRT02a, BNGRT02b, BNGRT04].
- $Z^{\text {K-LMO }}(B, \gamma) \in \mathcal{A}\left(\downarrow^{\gamma}, \emptyset\right) \cong \mathcal{A}\left(\emptyset, \pi_{0} \gamma\right)$.
- $\mathrm{T}_{g} \in \mathcal{A}\left(\emptyset,\lfloor g\rceil^{+} \cup\lfloor g\rceil^{-}\right)$is the same as defined in [CHM08].

Theorem (N. '15)
$\tilde{Z}:{\mathcal{L C} O b_{q}} \rightarrow{ }^{\text {ts }} \mathcal{A}$ is a tensor-preserving functor that splits as

$$
\widetilde{Z}(M, \sigma, m)=\exp _{\sqcup}\left(\operatorname{Lk}_{B}(\gamma) / 2\right) \sqcup \widetilde{Z}^{Y}(M, \sigma, m)
$$

Advantage
The above \widetilde{Z} is a non-trivial extension of the LMO functor, indeed, \widetilde{Z} reflects interaction between the top/bottom components and the vertical components:

Contents

(1) Introduction

- Background
- Aim of today's talk
(2) Definitions and results
- Domain and codomain of \tilde{Z}
- Main result
(3) Relation with Milnor invariants of string links
- Review of Milnor invariants
- Result and example of calculation

String links

A string link (B, σ) on ℓ strands is, for example, the figure in the middle.

Figure : A bottom-top tangle, the corresponding string link and its closure. Here, MJ.o is an extension of the "Milnor-Johnson correspondence" defined in [CHM08].
$\mathcal{S}_{\ell}:=\left\{\right.$ string link (B, σ) on ℓ strands $\left.\mid H_{*}(B)=H_{*}\left([-1,1]^{3}\right)\right\}$.

Milnor invariants

$(B, \sigma) \rightsquigarrow S:=\overline{B \backslash N(\sigma)}$ and $s: \partial\left(D_{\ell} \times[-1,1]\right) \xrightarrow{\cong} \partial S \hookrightarrow S$.

$$
\begin{aligned}
& \varpi:=\pi_{1}\left(D_{\ell}, *\right), \\
& \varpi_{1}=\varpi, \varpi_{k}=\left[\varpi_{k-1}, \varpi\right] .
\end{aligned}
$$

The monoid anti-homomorphism $A_{k}: \mathcal{S}_{\ell} \rightarrow \operatorname{Aut}\left(\varpi / \varpi_{k+1}\right)$ defined by $A_{k}(B, \sigma):=s_{+, *}^{-1} \circ s_{-, *}$ is called the k th Artin representation $(k \geq 1)$.

Definition (Milnor invariant)
The k th Milnor invariant is the monoid homomorphism
$\mu_{k}: \mathcal{S}_{\ell}[k]\left(:=\operatorname{Ker} A_{k}\right) \rightarrow \varpi / \varpi_{2} \otimes_{\mathbb{Z}} \varpi_{k} / \varpi_{k+1}$ defined by

$$
\mu_{k}(B, \sigma):=\sum_{i=1}^{\ell} x_{i} \otimes s_{+, *}^{-1}\left(\lambda_{i}\right),
$$

where λ_{i} is the longitude of σ.
$\mu_{k}(B, \sigma)(k \geq 2)$ is regarded as a linear combination $\mu_{k}^{\mathcal{A}}(B, \sigma)$ of connected tree Jacobi diagrams via the following commutative diagram.

$$
\begin{aligned}
& \mathcal{S}_{\ell}[k] \xrightarrow{\mu_{k}}\left(\varpi / \varpi_{2} \otimes \varpi_{k} / \varpi_{k+1}\right) \otimes \mathbb{Q}
\end{aligned}
$$

$\eta_{k-1}(D):=\sum_{v}($ color of $v) \otimes \operatorname{comm}\left(D_{v}\right)$, where v runs over all external (i.e., trivalent) vertices in D and

Previous studies and our extension

1. Habegger and Masbaum [HM00] proved that the first non-vanishing Milnor invariant of $\left([-1,1]^{3}, \sigma\right)$ is determined by the first non-trivial term of $\left(\chi_{\pi_{0}(\sigma)}^{-1} Z^{K}(\sigma)\right)^{Y, t}$, and vice versa.
2. Moffatt [Mof06] showed that the same holds for $\left(\chi_{\pi_{0}(\sigma)}^{-1} Z^{\mathrm{K}-\mathrm{LMO}}(B, \sigma)\right)^{Y, t}$.
3. The same is true for $\widetilde{Z}^{Y, t}\left(\mathrm{MJ}^{-1}(B, \sigma)\right)$ [CHM08].

Let $R_{w}: \mathcal{A}\left(X,\lfloor g\rceil^{+} \cup\lfloor g\rceil^{-} \cup\lfloor n\rceil^{0}\right) \xrightarrow{\cong} \mathcal{A}\left(X,\lfloor\ell\rceil^{*}\right)$ be a
"color-replacement" map for $w \in \operatorname{Mag}(\bullet, \circ)$.
Theorem (N. '15)
If $(B, \sigma) \in \mathcal{S}_{\ell}[k]$, then $\widetilde{Z}_{<k}^{Y, t}\left(\mathrm{MJ}_{w}^{-1}(B, \sigma)\right)=\varnothing+R_{w}^{-1}\left(\mu_{k}^{\mathcal{A}}(B, \sigma)\right)$.
Conversely, if $\widetilde{Z}_{<k}^{Y, t}\left(\mathrm{MJ}_{w}^{-1}(B, \sigma)\right)$ is written as $\varnothing+x$
(i-deg $x=k-1$), then $\mu_{k}^{\mathcal{A}}(B, \sigma)=R_{w}(x)$.

Example $(\ell=3, k=2, \sigma=($ example in p .23$))$
Check $\mathrm{MJ}_{\bullet 0}^{-1}(\sigma)=\psi_{0, \bullet} \circ \psi_{\bullet, 0}$. Using the functoriality of \widetilde{Z} and

$$
\tilde{z}^{Y}(\overbrace{}^{Y})=\tilde{z}^{Y}(\underset{\sim}{V})=\exp \left(\frac{1}{2}:_{1^{-}}^{1^{+}{ }^{0}}+(\mathrm{i}-\operatorname{deg}>2)\right),
$$

we have

$$
\left.\left.\begin{array}{rl}
\tilde{Z}^{Y}\left(\mathrm{MJ}_{\bullet 0}^{-1}(\sigma)\right) & =\chi_{1^{0}}^{-1} \chi_{1^{0}, 1^{0^{\prime}}}\left(\varnothing+\left.\frac{1}{2}{\left.\right|_{1^{-}} ^{1^{+}} 1^{0}}^{1} \frac{1}{2}\right|_{1^{-}} ^{1^{+}} 1^{0^{\prime}}\right.
\end{array}\right)(\mathrm{i}-\operatorname{deg}>1)\right) .
$$

By the previous theorem, $\mu_{2}^{\mathcal{A}}(\sigma)=\frac{2^{*} 3^{*}}{1^{*}}$.

Continuation of the previous example

Using the previous result $\mu_{2}^{\mathcal{A}}(\sigma)={\stackrel{1^{2^{*}}}{3^{*}}, \text { we have }, ~}_{\text {3 }}$,

$$
\begin{aligned}
& \underset{\longmapsto}{ } \stackrel{\mu_{2}}{\longrightarrow} x_{1} \otimes\left[x_{2}, x_{3}\right]+\cdots
\end{aligned}
$$

where "..." denotes the cyclic permutations. It follows that

$$
\begin{aligned}
\mu_{2}(\sigma)=x_{1} \otimes\left[x_{2}, x_{3}\right]+x_{2} & \otimes\left[x_{3}, x_{1}\right]+x_{3} \otimes\left[x_{1}, x_{2}\right] \\
& \in\left(\varpi / \varpi_{2} \otimes \varpi_{2} / \varpi_{3}\right) \otimes \mathbb{Q} .
\end{aligned}
$$

The Milnor $\bar{\mu}$-invariants (of length 3) of the closure of σ is computed as follows:

1. The Magnus expansion of $\mu_{2}(\sigma) \in \varpi_{2} / \varpi_{3}$ is

$$
x_{1} \otimes\left(X_{2} X_{3}-X_{3} X_{2}+(\operatorname{deg}>2)\right)+(\text { cyclic permutations }) .
$$

2. Reading the coefficient of $x_{1} \otimes X_{2} X_{3}$ etc.,

$$
\bar{\mu}_{\widetilde{\sigma}}\left(j_{1}, j_{2} ; i\right)= \begin{cases}\operatorname{sgn}\left(j_{1} j_{2} i\right) & \text { if }\left\{j_{1}, j_{2}, i\right\}=\{1,2,3\}, \\ 0 & \text { otherwise. }\end{cases}
$$

Future research
 I would like to investigate the functor \widetilde{Z} and find some applications for it.

(1) Introduction

- Background
- Aim of today's talk
(2) Definitions and results
- Domain and codomain of \tilde{Z}
- Main result
(3) Relation with Milnor invariants of string links
- Review of Milnor invariants
- Result and example of calculation
[ABMP10] Jørgen Ellegaard Andersen, Alex James Bene, Jean-Baptiste Meilhan, and R. C. Penner.
Finite type invariants and fatgraphs.
Adv. Math., 225(4):2117-2161, 2010.
[BNGRT02a] Dror Bar-Natan, Stavros Garoufalidis, Lev Rozansky, and Dylan P. Thurston. The århus integral of rational homology 3-spheres. I. A highly non trivial flat connection on S^{3}.
Selecta Math. (N.S.), 8(3):315-339, 2002.
[BNGRT02b] Dror Bar-Natan, Stavros Garoufalidis, Lev Rozansky, and Dylan P. Thurston. The århus integral of rational homology 3 -spheres. II. Invariance and universality. Selecta Math. (N.S.), 8(3):341-371, 2002.
[BNGRT04] Dror Bar-Natan, Stavros Garoufalidis, Lev Rozansky, and Dylan P. Thurston. The århus integral of rational homology 3-spheres. III. Relation with the Le-Murakami-Ohtsuki invariant.
Selecta Math. (N.S.), 10(3):305-324, 2004.
[CHM08] Dorin Cheptea, Kazuo Habiro, and Gwénaël Massuyeau.
A functorial LMO invariant for Lagrangian cobordisms.
Geom. Topol., 12(2):1091-1170, 2008.
[HM00] Nathan Habegger and Gregor Masbaum.
The Kontsevich integral and Milnor's invariants.
Topology, 39(6):1253-1289, 2000.

[Kat14]	Ronen Katz. Elliptic associators and the LMO functor. arXiv:math.GT/1412.7848v2, 2014.
[Kon93]	Maxim Kontsevich. Vassiliev's knot invariants. In I. M. Gel' fand Seminar, volume 16 of Adv. Soviet Math., pages 137-150. Amer. Math. Soc., Providence, RI, 1993.
[LMO98]	Thang T. Q. Le, Jun Murakami, and Tomotada Ohtsuki. On a universal perturbative invariant of 3-manifolds.
Topology, 37(3):539-574, 1998.	

Figure: An extension of the Milnor-Johnson correspondence

