An extension of the LMO functor and Milnor invariants

Yuta Nozaki

The University of Tokyo

October 27, 2015

Topology and Geometry of Low-dimensional Manifolds

Contents

Introduction

- Background
- Aim of today's talk
- Definitions and results
 Domain and codomain of *Z*
 - Main result

3 Relation with Milnor invariants of string links

- Review of Milnor invariants
- Result and example of calculation

History of "LMO"

1. Kontsevich [Kon93] constructed the Kontsevich invariant Z^{K} of (unframed) oriented links in S^{3} , which was extended to an invariant of (framed) *q*-tangles.

$$Z^{\mathrm{K}}(\mathsf{unknot}) = \bigcirc -\frac{1}{24} \bigotimes + (\mathsf{deg} \ge 3) \in \mathcal{A}(\circlearrowleft)/\mathsf{Fl}.$$

 Using Z^K, Le, Murakami and Ohtsuki [LMO98] introduced the LMO invariant of connected, oriented, closed 3-manifolds.

$$Z^{\mathrm{LMO}}(L(p,1)) = arnothing - rac{p}{2} rac{(p-1)(p-2)}{24p} + \cdots \in \mathcal{A}(\emptyset).$$

Introduction Background

 Cheptea, Habiro and Massuyeau [CHM08] constructed the LMO functor (defined on a certain category of cobordisms) by using formal Gaussian integrals.

$$\log_{\sqcup} \widetilde{Z}(\psi_{\bullet,\bullet}) = \left\langle \begin{array}{c} 1^{+} \\ 2^{-} \end{array} + \left\langle \begin{array}{c} 2^{+} \\ 1^{-} \end{array} - \frac{1}{2} \begin{array}{c} 1^{+} \\ 2^{-} \end{array} \right|^{2^{+}} + (\mathsf{i}\text{-deg} > 2),$$

where $\psi_{\bullet,\bullet} := \overbrace{\rule{0mm}{0mm}}^{\bullet}$.

M: a QHS $\rightsquigarrow M \setminus \text{Int}[-1, 1]^3$ is regarded as a cobordism between disks $[-1, 1]^2 \times 1$ and $[-1, 1]^2 \times (-1)$. Then

$$Z^{\mathrm{LMO}}(M) = \widetilde{Z}(M \setminus \mathrm{Int}[-1,1]^3).$$

What kind of extension?

Roughly speaking, the objects and morphisms of the domain are extended as follows:

$$\Sigma_{g,1} \rightsquigarrow \Sigma_{g,1+n} \ (n \geq 0)$$
 and

Namely, we allow a cobordim to have vertical tubes.

$$\log_{\sqcup} \widetilde{Z}(\psi_{\bullet,\circ}) = \binom{1^{+}}{1^{-}} + \frac{1}{2} |_{1^{-}}^{1^{+}} + \frac{1}{8} |_{1^{-}}^{1^{+}} + \frac{1}{8} |_{1^{-}}^{1^{+}} + (\mathsf{i-deg} > 2).$$

.

Remarks

Convention

Notation and terminology are almost the same as in [CHM08], but their definitions are extended. The main differences will be emphasized in red (e.g. $\Sigma_{g,1+n}$).

Remark

Related researches are found in [ABMP10], [Kat14]. (References are listed at the end.)

More precisely, the LMO functor is defined as a tensor-preserving functor

$$\widetilde{\mathsf{Z}}\colon \mathcal{LC}ob_q o {}^{ts}\!\mathcal{A}$$

between the monoidal categories [CHM08]. Z has important properties:

- $\widetilde{Z}(M) = \exp_{\cup}(\operatorname{Lk}(M)/2) \sqcup \widetilde{Z}^{Y}(M)$ for $\forall M = (M, \sigma, m)$.
- \widetilde{Z} is universal among rational-valued finite-type invariants of certain 3-manifolds
- Z is related with Milnor invariants of string links.

Aim of today's talk

Construct an extension of \widetilde{Z} with the above properties.

Contents

Introduction

- Background
- Aim of today's talk
- Definitions and results
 Domain and codomain of *Z̃*Main result

3 Relation with Milnor invariants of string links

- Review of Milnor invariants
- Result and example of calculation

Notation

- $Mon(\bullet, \circ) := (free monoid generated by letters \bullet and \circ).$
- $w \in Mon(\bullet, \circ)$. The compact surface F_w is defined as follows:

 w_± ∈ Mon(●, ∘) (|w₊°| = |w₋°| =: n), σ ∈ 𝔅_n. The closed surface R^{w₊}_{w₋,σ} is defined as follows:

Domain of \widetilde{Z}

Definition (cobordism)

A cobordism from F_{w_+} to F_{w_-} ($|w_+^{\circ}| = |w_-^{\circ}| =: n$) is an equivalence class of triples (M, σ, m) , where

► *M* is a connected, oriented, compact 3-manifold s.t. $\partial M \cong \Sigma_{|w^{\bullet}_{+}|+|w^{\bullet}_{-}|+n}$

•
$$\sigma \in \mathfrak{S}_n$$

- ▶ $m: R^{w_+}_{w_-,\sigma} \to \partial M$ is an orientation-preserving homeomorphism,
- $(M, \sigma, m) \sim (N, \tau, n)$ if $\sigma = \tau$ and there is an ori.-pres. homeo. $f: M \to N$ s.t. $M \xrightarrow{f} N$.

Definition (strict monoidal category Cob)

•
$$\operatorname{Obj}(\mathcal{C}ob) := \operatorname{Mon}(\bullet, \circ).$$

• $Cob(w_+, w_-) := \{ \text{cobordisms from } F_{w_+} \text{ to } F_{w_-} \} \text{ (or } \emptyset).$

$$\blacktriangleright (M, \sigma, m) \circ (N, \tau, n) := (M \cup_{m_+ \circ n_-^{-1}} N, \sigma\tau, m_- \cup n_+).$$

►
$$\operatorname{Id}_{w} := (F_{w} \times [-1, 1], \operatorname{Id}_{\mathfrak{S}_{|w^{\circ}|}}, \operatorname{``Id''}).$$

•
$$(M, \sigma, m) \otimes (N, \tau, n) :=$$
 (horizontal juxtaposition of M and N).

 m_{\pm} is the restriction of m to the top/bottom of the surface $R^{w_+}_{w_-,\sigma}$.

For a technical reason, we only consider *Lagrangian* cobordisms that satisfy almost the same homological conditions as in [CHM08]. \rightsquigarrow The strict monoidal subcategory *LCob*.

Bottom-top tangles

Translating cobordisms into "bottom-top tangles" is necessary to define \widetilde{Z} . In fact, there is a 1-1 correspondence by digging a bottom-top tangle (B, γ) along its framed oriented tangle γ .

Under the previous correspondence, (M, σ, m) is Lagrangian iff $H_*(B) \cong H_*([-1, 1]^3)$ & Lk_B $(\gamma^+) = O$. Here,

$$\mathsf{Lk}_{\mathcal{B}}(\gamma) := \mathsf{Lk}_{\widehat{\mathcal{B}}}(\widehat{\gamma}) - \mathcal{O}_{g_{+}+g_{-}} \oplus \sigma^{-1} \cdot \mathsf{Cr}(\beta) \in \frac{1}{2} \operatorname{Sym}_{\pi_{0}\gamma}(\mathbb{Z}),$$

where $\mathsf{Lk}_{\widehat{B}}(\widehat{\gamma})$ is the usual linking matrix of the (framed) link

$$\widehat{\gamma} := \gamma \cup (\mathsf{arcs} \; \mathsf{and} \; \mathsf{braid} \; \mathsf{in} \; S^3 \setminus \mathsf{Int}[-1,1]^3)$$

in the homology sphere $\widehat{B} := B \cup (S^3 \setminus \operatorname{Int}[-1,1]^3).$

In the case of $B = [-1, 1]^3$, it suffices to count the crossings of a projection of γ .

Example $((B, \gamma) = ([-1, 1]^3, \text{figure below}))$

Moreover, (the corresponding cobordism of) (B, γ) is Lagrangian since $Lk_B(\gamma^+) = (0)$.

Codomain of \widetilde{Z}

Definition (space of Jacobi diagrams)

X: an oriented compact 1-manifold, C: a finite set. $\mathcal{A}(X, C) := \mathbb{Q}\{\text{Jacobi diagrams based on } (X, C)\}/\text{AS, IHX, STU.}$

Remark

Take the degree completion of $\mathcal{A}(X, C)$ and denote it by $\mathcal{A}(X, C)$ again.

The graded Q-linear map $\chi_S \colon \mathcal{A}(X, C \cup S) \to \mathcal{A}(X \downarrow^S, C)$ is defined as follows.

Figure : $X = \emptyset$, $c \in C$, $S = \{1, 2, 3\}$

 $\chi_{\rm S}$ is an isomorphism and plays an important role when dealing with Jacobi diagrams.

Moreover, we need a graded \mathbb{Q} -linear map $\chi_{S,S'} : \mathcal{A}(X, C \cup S \cup S') \to \mathcal{A}(X \downarrow^{S}, C)$, where S' is a copy of S.

Definition (strict monoidal category ${}^{ts}\mathcal{A}$)

•
$$\operatorname{Obj}({}^{ts}\mathcal{A}) := \mathbb{Z}_{\geq 0}^{2}$$
.
• ${}^{ts}\mathcal{A}((g, n), (f, n)) := \{x \in \mathcal{A}(\emptyset, \lfloor g \rceil^{+} \cup \lfloor f \rceil^{-} \cup \lfloor n \rceil^{0}) \mid x \text{ is a series of top-substantial Jacobi diagrams} \}.$
• $x \circ y := \chi_{\lfloor n \rceil^{0}}^{-1} \chi_{\lfloor n \rceil^{0}, \lfloor n \rceil^{0'}} \langle (x/i^{+} \mapsto i^{*}), (y/i^{-} \mapsto i^{*}, i^{0} \mapsto i^{0'}) \rangle_{\lfloor g \rceil^{*}}.$
• $\operatorname{Id}_{(g,n)} := \exp_{\sqcup} \left(\sum_{i=1}^{g} {i^{+} \choose i^{-}} \right).$
• $x \otimes y := x \sqcup y.$

$$\lfloor k \rceil^* := \{1^*, 2^*, \dots, k^*\}.$$

A Jacobi diagram is *top-substantial* if it contains *no* strut $\begin{pmatrix} i^+ \\ i^+ \end{pmatrix}$.

$$(x,y) \in {}^{ts}\mathcal{A}((g,n),(f,n)) imes {}^{ts}\mathcal{A}((h,n),(g,n)) \xrightarrow{\langle -,-
angle_{\lfloor g
ceil}*} \mathcal{A}(\emptyset,h^+ \cup f^- \cup n^0 \cup n^{0'}) \xrightarrow{\chi_{n^0,n^{0'}}} \mathcal{A}(\downarrow^{n^0},h^+ \cup f^-) \xrightarrow{\chi_{n^0}^{-1}} \mathcal{A}(\emptyset,h^+ \cup f^- \cup n^0).$$

Example (f = g = n = 1)

where the last step follows from

Before stating the main result...

Remark

The Kontsevich invariant of tangles depends on a "parenthesizing" of their boundaries. (In other words, it depends on the choice of an "associator".) Therefore, we have to refine as follows.

until now	from now on
$\operatorname{Mon}(\bullet, \circ)$	$\operatorname{Mag}(\bullet, \circ)$
Cob	$\mathcal{C}ob_q$
LCob	$\mathcal{LC}ob_q$

There is a canonical surjection $Mon(\bullet, \circ) \xleftarrow{forget} Mag(\bullet, \circ)$, e.g., $\bullet \circ \circ \bullet \leftrightarrow \bullet (\circ(\circ \bullet))$. Let $(M, \sigma, m) \in \mathcal{LCob}_q(w_+, w_-)$ and $g = |w_+^{\bullet}|$, $f = |w_-^{\bullet}|$, $n = |w_+^{\circ}|$. Definition (extension of the LMO functor) $\widetilde{Z}(M, \sigma, m) := \chi_{\pi_0 \gamma}^{-1} Z^{\text{K-LMO}}(B, \gamma) \circ_{^{ts}\!\mathcal{A}} \mathsf{T}_g \in {}^{ts}\mathcal{A}((g, n), (f, n)).$

 ∫_{π₀L} is the formal Gaussian integral along π₀L introduced in [BNGRT02a, BNGRT02b, BNGRT04].

$$\triangleright \ Z^{\text{K-LMO}}(B,\gamma) \in \mathcal{A}(\downarrow^{\gamma}, \emptyset) \cong \mathcal{A}(\emptyset, \pi_0 \gamma).$$

• $\mathsf{T}_g \in \mathcal{A}(\emptyset, \lfloor g \rceil^+ \cup \lfloor g \rceil^-)$ is the same as defined in [CHM08].

Theorem (N. '15) $\widetilde{Z}: \mathcal{LC}ob_q \to {}^{ts}\mathcal{A}$ is a tensor-preserving functor that splits as $\widetilde{Z}(M, \sigma, m) = \exp_{\sqcup}(Lk_B(\gamma)/2) \sqcup \widetilde{Z}^{Y}(M, \sigma, m).$

Advantage

The above \widetilde{Z} is a non-trivial extension of the LMO functor, indeed, \widetilde{Z} reflects interaction between the top/bottom components and the vertical components:

$$\log_{\sqcup} \widetilde{Z} \left(\underbrace{\overbrace{}}^{1^{+}}_{1^{-}} + \frac{1}{2} \left| \underbrace{\begin{smallmatrix} 1^{+} \\ 1^{-} \end{smallmatrix}^{1}}_{1^{-}} + \frac{1}{8} \left| \underbrace{\begin{smallmatrix} 1^{+} \\ 1^{-} \end{smallmatrix}^{1^{0}}_{1^{-}} + (\mathsf{i-deg} > 2). \right| \right)$$

Contents

- Background
- Aim of today's talk
- Domain and codomain of $\widetilde{7}$
 - Main result
- Relation with Milnor invariants of string links
 - Review of Milnor invariants
 - Result and example of calculation

String links

A string link (B, σ) on ℓ strands is, for example, the figure in the middle.

Figure : A bottom-top tangle, the corresponding string link and its closure. Here, $MJ_{\bullet\circ}$ is an extension of the "Milnor-Johnson correspondence" defined in [CHM08].

 $\mathcal{S}_{\ell} := \{ \text{string link } (B, \sigma) \text{ on } \ell \text{ strands } | H_*(B) = H_*([-1, 1]^3) \}.$

Milnor invariants

$$(B,\sigma) \rightsquigarrow S := \overline{B \setminus N(\sigma)} \text{ and } s \colon \partial(D_\ell \times [-1,1]) \xrightarrow{\cong} \partial S \hookrightarrow S.$$

The monoid anti-homomorphism $A_k : S_\ell \to \operatorname{Aut}(\varpi/\varpi_{k+1})$ defined by $A_k(B, \sigma) := s_{+,*}^{-1} \circ s_{-,*}$ is called the *k*th *Artin representation* $(k \ge 1)$.

Definition (Milnor invariant)

The *k*th *Milnor invariant* is the monoid homomorphism $\mu_k : S_\ell[k](:= \operatorname{Ker} A_k) \to \varpi/\varpi_2 \otimes_{\mathbb{Z}} \varpi_k/\varpi_{k+1}$ defined by $\mu_k(B, \sigma) := \sum_{i=1}^\ell x_i \otimes s_{+,*}^{-1}(\lambda_i),$

where λ_i is the longitude of σ .

 $\mu_k(B,\sigma)$ $(k \ge 2)$ is regarded as a linear combination $\mu_k^A(B,\sigma)$ of connected tree Jacobi diagrams via the following commutative diagram.

 $\eta_{k-1}(D) := \sum_{\nu} (\text{color of } \nu) \otimes \text{comm}(D_{\nu}), \text{ where } \nu \text{ runs over all external (i.e., trivalent) vertices in } D \text{ and }$

Previous studies and our extension

- 1. Habegger and Masbaum [HM00] proved that the first non-vanishing Milnor invariant of $([-1, 1]^3, \sigma)$ is determined by the first non-trivial term of $(\chi_{\pi_0(\sigma)}^{-1} Z^{\mathsf{K}}(\sigma))^{\mathsf{Y},t}$, and vice versa.
- 2. Moffatt [Mof06] showed that the same holds for $(\chi_{\pi_0(\sigma)}^{-1} Z^{\text{K-LMO}}(B, \sigma))^{Y,t}$.
- 3. The same is true for $\widetilde{Z}^{Y,t}(MJ^{-1}(B,\sigma))$ [CHM08].
- Let $R_w : \mathcal{A}(X, \lfloor g \rceil^+ \cup \lfloor g \rceil^- \cup \lfloor n \rceil^0) \xrightarrow{\cong} \mathcal{A}(X, \lfloor \ell \rceil^*)$ be a "color-replacement" map for $w \in Mag(\bullet, \circ)$.

Theorem (N. '15)

If
$$(B, \sigma) \in S_{\ell}[k]$$
, then $\widetilde{Z}_{.
Conversely, if $\widetilde{Z}_{ is written as $\varnothing + x$
(i-deg $x = k - 1$), then $\mu_{k}^{\mathcal{A}}(B, \sigma) = R_{w}(x)$.$$

Example ($\ell = 3$, k = 2, $\sigma =$ (example in p. 23)) Check $MJ_{\bullet\circ}^{-1}(\sigma) = \psi_{\circ,\bullet} \circ \psi_{\bullet,\circ}$. Using the functoriality of \widetilde{Z} and

$$\widetilde{Z}^{\mathsf{Y}}(\overbrace{)}^{\mathsf{Y}}) = \widetilde{Z}^{\mathsf{Y}}(\overbrace{)}^{\mathsf{Y}}) = \exp_{\sqcup}\left(\frac{1}{2} | \underbrace{\frac{1^{+}_{1^{0}}}{1^{-}}}_{1^{-}} + (\mathsf{i-deg} > 2)\right),$$

we have

$$\begin{split} \widetilde{Z}^{Y}(\mathsf{MJ}_{\bullet\circ}^{-1}(\sigma)) &= \chi_{1^{0}}^{-1}\chi_{1^{0},1^{0'}}\left(\varnothing + \frac{1}{2} \left| \frac{1^{+}_{1^{-1}}}{1^{-}} + \frac{1}{2} \left| \frac{1^{+}_{1^{-1}}}{1^{-}} + (\mathsf{i}\text{-deg} > 1) \right. \right. \\ &= \varnothing + \left| \frac{1^{+}_{1^{-1}}}{1^{-}} + (\mathsf{i}\text{-deg} > 1) \right. \\ \text{By the previous theorem, } \mu_{2}^{\mathcal{A}}(\sigma) &= \left| \frac{2^{*}_{1^{*}}}{1^{*}} \right|^{2^{*}} \end{split}$$

Continuation of the previous example

Using the previous result $\mu_2^{\mathcal{A}}(\sigma) = \begin{bmatrix} 2^* & 3^* \\ 1^* & 1 \end{bmatrix}$, we have

where $"\!\cdots\!"$ denotes the cyclic permutations. It follows that

$$\mu_2(\sigma) = x_1 \otimes [x_2, x_3] + x_2 \otimes [x_3, x_1] + x_3 \otimes [x_1, x_2]$$

$$\in (\varpi/\varpi_2 \otimes \varpi_2/\varpi_3) \otimes \mathbb{Q}$$

The Milnor $\overline{\mu}$ -invariants (of length 3) of the closure of σ is computed as follows:

1. The Magnus expansion of $\mu_2(\sigma)\in arpi_2/arpi_3$ is

 $x_1 \otimes (X_2X_3 - X_3X_2 + (deg > 2)) + (cyclic permutations).$

2. Reading the coefficient of $x_1 \otimes X_2 X_3$ etc.,

$$\overline{\mu}_{\widehat{\sigma}}(j_1,j_2;i) = egin{cases} \mathrm{sgn}(j_1\ j_2\ i) & ext{if } \{j_1,j_2,i\} = \{1,2,3\}, \ 0 & ext{otherwise}. \end{cases}$$

Future research

I would like to investigate the functor \widetilde{Z} and find some applications for it.

Result and example of calculation

 [ABMP10] Jørgen Ellegaard Andersen, Alex James Bene, Jean-Baptiste Meilhan, and R. C. Penner.
 Finite type invariants and fatgraphs. Adv. Math., 225(4):2117–2161, 2010.

[BNGRT02a] Dror Bar-Natan, Stavros Garoufalidis, Lev Rozansky, and Dylan P. Thurston. The århus integral of rational homology 3-spheres. I. A highly non trivial flat connection on S³. Selecta Math. (N.S.), 8(3):315–339, 2002.

- [BNGRT02b] Dror Bar-Natan, Stavros Garoufalidis, Lev Rozansky, and Dylan P. Thurston. The århus integral of rational homology 3-spheres. II. Invariance and universality. Selecta Math. (N.S.), 8(3):341–371, 2002.
- [BNGRT04] Dror Bar-Natan, Stavros Garoufalidis, Lev Rozansky, and Dylan P. Thurston. The århus integral of rational homology 3-spheres. III. Relation with the Le-Murakami-Ohtsuki invariant. Selecta Math. (N.S.), 10(3):305–324, 2004.
- [CHM08] Dorin Cheptea, Kazuo Habiro, and Gwénaël Massuyeau. A functorial LMO invariant for Lagrangian cobordisms. *Geom. Topol.*, 12(2):1091–1170, 2008.
- [HM00] Nathan Habegger and Gregor Masbaum. The Kontsevich integral and Milnor's invariants. *Topology*, 39(6):1253–1289, 2000.

[Kat14] Ronen Katz. Elliptic associators and the LMO functor. arXiv:math.GT/1412.7848v2, 2014. [Kon93] Maxim Kontsevich Vassiliev's knot invariants. In I. M. Gel' fand Seminar, volume 16 of Adv. Soviet Math., pages 137–150. Amer. Math. Soc., Providence, RI, 1993. [LMO98] Thang T. Q. Le, Jun Murakami, and Tomotada Ohtsuki. On a universal perturbative invariant of 3-manifolds. Topology, 37(3):539-574, 1998. [Mof06] lain Moffatt. The arrhus integral and the μ -invariants. J. Knot Theory Ramifications, 15(3):361-377, 2006. Yuta Nozaki. [Noz15] An extension of the LMO functor. arXiv:math.GT/1505.02545, 2015.

Figure : An extension of the Milnor-Johnson correspondence