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Introduction Background

History of “LMO”

1. Kontsevich [Kon93] constructed the Kontsevich invariant ZK of
(unframed) oriented links in S3, which was extended to an
invariant of (framed) q-tangles.

ZK(unknot) = − 1

24
+ (deg ≥ 3) ∈ A(	)/FI.

2. Using ZK, Le, Murakami and Ohtsuki [LMO98] introduced the
LMO invariant of connected, oriented, closed 3-manifolds.

ZLMO(L(p, 1)) = ∅− p

2

(p − 1)(p − 2)

24p
+ · · · ∈ A(∅).
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Introduction Background

3. Cheptea, Habiro and Massuyeau [CHM08] constructed the LMO
functor (defined on a certain category of cobordisms) by using
formal Gaussian integrals.

logt Z̃ (ψ•,•) =
1+

2−
+

2+

1−
− 1

2

1+ 2+

2− 1−
+ (i-deg > 2),

where ψ•,• := .

M : a QHS  M \ Int[−1, 1]3 is regarded as a cobordism
between disks [−1, 1]2 × 1 and [−1, 1]2 × (−1). Then

ZLMO(M) = Z̃ (M \ Int[−1, 1]3).
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Introduction Background

What kind of extension?

Roughly speaking, the objects and morphisms of the domain are
extended as follows:

Σg ,1  Σg ,1+n (n ≥ 0) and  .

Namely, we allow a cobordim to have vertical tubes.

logt Z̃ (ψ•,◦) =
1+

1−
+

1

2

1+

1−

10+
1

8

1+

1−

10

10
+ (i-deg > 2).
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Introduction Background

Remarks

Convention

Notation and terminology are almost the same as in [CHM08], but
their definitions are extended. The main differences will be
emphasized in red (e.g. Σg ,1+n).

Remark

Related researches are found in [ABMP10], [Kat14]. (References are
listed at the end.)
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Introduction Aim of today’s talk

More precisely, the LMO functor is defined as a tensor-preserving
functor

Z̃ : LCobq → tsA

between the monoidal categories [CHM08]. Z̃ has important
properties:

I Z̃ (M) = expt(Lk(M)/2) t Z̃Y (M) for ∀M = (M , σ,m).

I Z̃ is universal among rational-valued finite-type invariants of
certain 3-manifolds.

I Z̃ is related with Milnor invariants of string links.

Aim of today’s talk

Construct an extension of Z̃ with the above properties.
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Definitions and results Domain and codomain of Z̃

Notation

I Mon(•, ◦) := (free monoid generated by letters • and ◦).
I w ∈ Mon(•, ◦). The compact surface Fw is defined as follows:

F•◦•◦ = ⊂ R3.

I w± ∈ Mon(•, ◦) (|w ◦
+| = |w ◦

−| =: n), σ ∈ Sn.
The closed surface Rw+

w−,σ is defined as follows:

R•◦◦•
◦•◦,σ =

10 20

10

10

20

20
1+

_1

2+

σ(1) σ(2)0 0

/
10, 20.
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Definitions and results Domain and codomain of Z̃

Domain of Z̃

Definition (cobordism)

A cobordism from Fw+ to Fw− (|w ◦
+| = |w ◦

−| =: n) is an equivalence
class of triples (M , σ,m), where

I M is a connected, oriented, compact 3-manifold s.t.
∂M ∼= Σ|w•

+|+|w•
−|+n,

I σ ∈ Sn,

I m : Rw+
w−,σ → ∂M is an orientation-preserving homeomorphism,

I (M , σ,m) ∼ (N , τ, n) if σ = τ and there is an ori.-pres. homeo.

f : M → N s.t. M f // N

Rw+
w−,σ

m

bb

	
n

<< .
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Definitions and results Domain and codomain of Z̃

Definition (strict monoidal category Cob)
I Obj(Cob) := Mon(•, ◦).
I Cob(w+,w−) := {cobordisms from Fw+ to Fw−} (or ∅).
I (M , σ,m) ◦ (N , τ, n) := (M ∪m+◦n−1

−
N , στ,m− ∪ n+).

I Idw := (Fw × [−1, 1], IdS|w◦| , “Id”).

I (M , σ,m)⊗ (N , τ, n) := (horizontal juxtaposition of M and N).

m± is the restriction of m to the top/bottom of the surface Rw+
w−,σ.

For a technical reason, we only consider Lagrangian cobordisms that
satisfy almost the same homological conditions as in [CHM08].
 The strict monoidal subcategory LCob.
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Definitions and results Domain and codomain of Z̃

Bottom-top tangles

Translating cobordisms into “bottom-top tangles” is necessary to
define Z̃ . In fact, there is a 1-1 correspondence by digging a
bottom-top tangle (B , γ) along its framed oriented tangle γ.

dig pull up

rotate	

by −π/2

Figure : (B, γ)
1:1←→ (M, σ,m) ∈ Cob(•◦, •◦)
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Definitions and results Domain and codomain of Z̃

Under the previous correspondence, (M , σ,m) is Lagrangian iff
H∗(B) ∼= H∗([−1, 1]3) & LkB(γ

+) = O. Here,

LkB(γ) := LkB̂(γ̂)− Og++g− ⊕ σ−1 · Cr(β) ∈ 1
2
Symπ0γ

(Z),
where LkB̂(γ̂) is the usual linking matrix of the (framed) link

γ̂ := γ ∪ (arcs and braid in S3 \ Int[−1, 1]3)

in the homology sphere B̂ := B ∪ (S3 \ Int[−1, 1]3).

…

…

…

…
…

β(B, γ)

∪

Figure : The union of (B, γ) and additions, that is, (B̂, γ̂)
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Definitions and results Domain and codomain of Z̃

In the case of B = [−1, 1]3, it suffices to count the crossings of a
projection of γ.

Example ((B , γ) = ([−1, 1]3, figure below))

1

2+

_

01 1 0 
1+ 1− 10 20

0 1 1 0
1 0 0 0
1 0 0 1/2
0 0 1/2 −1


Moreover, (the corresponding cobordism of) (B , γ) is Lagrangian
since LkB(γ

+) = (0).
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Definitions and results Domain and codomain of Z̃

Codomain of Z̃

Definition (space of Jacobi diagrams)

X : an oriented compact 1-manifold, C : a finite set.
A(X ,C ) := Q{Jacobi diagrams based on (X ,C )}/AS, IHX, STU.

1

2

3 22
Figure : X =y↑, C = {1, 2, 3}, deg = 12/2 = 6

Remark

Take the degree completion of A(X ,C ) and denote it by A(X ,C )
again.
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Definitions and results Domain and codomain of Z̃

The graded Q-linear map χS : A(X ,C ∪ S)→ A(X ↓S ,C ) is defined
as follows.

1
2

1

c

21

c

3 21

c

3

+2! 1! 0!
1χS

Figure : X =	, c ∈ C , S = {1, 2, 3}

χS is an isomorphism and plays an important role when dealing with
Jacobi diagrams.
Moreover, we need a graded Q-linear map
χS,S ′ : A(X ,C ∪ S ∪ S ′)→ A(X ↓S ,C ), where S ′ is a copy of S .
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Definitions and results Domain and codomain of Z̃

Definition (strict monoidal category tsA)
I Obj(tsA) := Z2

≥0.

I tsA((g , n), (f , n)) := {x ∈ A(∅, bge+ ∪ bf e− ∪ bne0) |
x is a series of top-substantial Jacobi diagrams}.

I x ◦ y := χ−1
bne0χbne0,bne0′

〈
(x/i+ 7→ i∗), (y/i− 7→ i∗, i0 7→ i0

′
)
〉
bge∗ .

I Id(g ,n) := expt

(
g∑

i=1

i+

i−

)
.

I x ⊗ y := x t y .

bke∗ := {1∗, 2∗, . . . , k∗}.
A Jacobi diagram is top-substantial if it contains no strut

i+

j+
.

(x , y) ∈ tsA((g , n), (f , n))× tsA((h, n), (g , n))
〈−,−〉bge∗−−−−−−→

A(∅, h+∪f −∪n0∪n0′)
χ
n0,n0

′

−−−−→ A(↓n0 , h+∪f −)
χ−1

n0−−→ A(∅, h+∪f −∪n0).

Y. Nozaki (The Univ. of Tokyo) Ext. of the LMO functor & Milnor inv’s October 27, 2015 17 / 31



Definitions and results Domain and codomain of Z̃

Example (f = g = n = 1)

(

1+ 1+

1−

10 ,

1+

1− 1−

10 )

1
2

+ + 1
2

+

+

χ

0'1

_
1

+1

01

0'1

_
1

+1

01

01

01

_
1

+1

_
1

+1

_
1

+1

_
1

+1

_
1

+1

_
1

+1

01

01_1
01 01

+

10

χ1010, '

where the last step follows from

=
01

01

_
1

+1

_
1

+1

_
1

+1

+1
2!

_
1

+1

_
1

+1

1
2

_χ10
.

Y. Nozaki (The Univ. of Tokyo) Ext. of the LMO functor & Milnor inv’s October 27, 2015 18 / 31



Definitions and results Main result

Before stating the main result...

Remark

The Kontsevich invariant of tangles depends on a “parenthesizing” of
their boundaries. (In other words, it depends on the choice of an
“associator”.) Therefore, we have to refine as follows.

until now from now on

Mon(•, ◦) Mag(•, ◦)
Cob Cobq
LCob LCobq

There is a canonical surjection Mon(•, ◦) forget←−−− Mag(•, ◦), e.g.,
• ◦ ◦ • 7→• (◦(◦•)).
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Definitions and results Main result

Let (M , σ,m) ∈ LCobq(w+,w−) and g = |w •
+|, f = |w •

−|, n = |w ◦
+|.

Definition (extension of the LMO functor)

Z̃ (M , σ,m) := χ−1
π0γ

ZK-LMO(B , γ) ◦tsA Tg ∈ tsA((g , n), (f , n)).

(M , σ,m) //
OO

1:1

��

Z̃ (M , σ,m)
OO

Tg

(B , γ)

surgery
presentation

B∼=[−1,1]3L

// (L, γ) ZK
// ZK(Lν ∪ γ)

∫
π0L // ZK-LMO(B , γ)

I
∫
π0L

is the formal Gaussian integral along π0L introduced in
[BNGRT02a, BNGRT02b, BNGRT04].

I ZK-LMO(B , γ) ∈ A(↓γ, ∅) ∼= A(∅, π0γ).
I Tg ∈ A(∅, bge+ ∪ bge−) is the same as defined in [CHM08].
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Definitions and results Main result

Theorem (N. ’15)

Z̃ : LCobq → tsA is a tensor-preserving functor that splits as

Z̃ (M , σ,m) = expt(LkB(γ)/2) t Z̃Y (M , σ,m).

Advantage

The above Z̃ is a non-trivial extension of the LMO functor, indeed, Z̃
reflects interaction between the top/bottom components and the
vertical components:

logt Z̃


 =

1+

1−
+

1

2

1+

1−

10+
1

8

1+

1−

10

10
+ (i-deg > 2).
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Relation with Milnor invariants of string links Review of Milnor invariants

String links

A string link (B , σ) on ` strands is, for example, the figure in the
middle.

MJ

1

2 31

1 1

1 2 3

closure

+

−

0

* **

Figure : A bottom-top tangle, the corresponding string link and its
closure. Here, MJ•◦ is an extension of the “Milnor-Johnson
correspondence” defined in [CHM08].

S` := {string link (B , σ) on ` strands | H∗(B) = H∗([−1, 1]3)}.
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Relation with Milnor invariants of string links Review of Milnor invariants

Milnor invariants

(B , σ)  S := B \ N(σ) and s : ∂(D` × [−1, 1])
∼=−→ ∂S ↪→ S .

D` :=
x1 xl

.
$ := π1(D`, ∗),
$1 = $, $k = [$k−1, $].

The monoid anti-homomorphism Ak : S` → Aut($/$k+1) defined by
Ak(B , σ) := s−1

+,∗ ◦ s−,∗ is called the kth Artin representation (k ≥ 1).

Definition (Milnor invariant)

The kth Milnor invariant is the monoid homomorphism
µk : S`[k](:= KerAk)→ $/$2 ⊗Z $k/$k+1 defined by

µk(B , σ) :=
∑̀
i=1

xi ⊗ s−1
+,∗(λi),

where λi is the longitude of σ.
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Relation with Milnor invariants of string links Review of Milnor invariants

µk(B , σ) (k ≥ 2) is regarded as a linear combination µA
k (B , σ) of

connected tree Jacobi diagrams via the following commutative
diagram.

S`[k]
µk //

µA
k
��

($/$2 ⊗$k/$k+1)⊗Q
∼=
��

0 // At,c
k−1(b`e∗)

ηk−1 // Qb`e∗ ⊗Q Liek(b`e∗)
[−,−] // Liek+1(b`e∗) // 0

ηk−1(D) :=
∑

v (color of v)⊗ comm(Dv ), where v runs over all
external (i.e., trivalent) vertices in D and

comm


c

v

1 ccc 32 4
 := [c1, [[c2, c3], c4]].
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Relation with Milnor invariants of string links Result and example of calculation

Previous studies and our extension

1. Habegger and Masbaum [HM00] proved that the first
non-vanishing Milnor invariant of ([−1, 1]3, σ) is determined by
the first non-trivial term of (χ−1

π0(σ)
ZK(σ))Y ,t , and vice versa.

2. Moffatt [Mof06] showed that the same holds for
(χ−1

π0(σ)
ZK-LMO(B , σ))Y ,t .

3. The same is true for Z̃Y ,t(MJ−1(B , σ)) [CHM08].

Let Rw : A(X , bge+ ∪ bge− ∪ bne0)
∼=−→ A(X , b`e∗) be a

“color-replacement” map for w ∈ Mag(•, ◦).

Theorem (N. ’15)

If (B , σ) ∈ S`[k], then Z̃Y ,t
<k (MJ−1

w (B , σ)) = ∅+ R−1
w (µA

k (B , σ)).

Conversely, if Z̃Y ,t
<k (MJ−1

w (B , σ)) is written as ∅+ x
(i-deg x = k − 1), then µA

k (B , σ) = Rw (x).
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Relation with Milnor invariants of string links Result and example of calculation

Example (` = 3, k = 2, σ = (example in p. 23))

Check MJ−1
•◦ (σ) = ψ◦,• ◦ ψ•,◦. Using the functoriality of Z̃ and

Z̃Y ( ) = Z̃Y ( ) = expt

(
1

2

1+

1−

10+ (i-deg > 2)

)
,

we have

Z̃Y (MJ−1
•◦ (σ)) = χ−1

10 χ10,10′

(
∅+

1

2

1+

1−

10+
1

2

1+

1−

10
′

+ (i-deg > 1)

)
= ∅+

1+

1−

10+ (i-deg > 1).

By the previous theorem, µA
2 (σ) =

2∗

1∗

3∗.
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Relation with Milnor invariants of string links Result and example of calculation

Continuation of the previous example

Using the previous result µA
2 (σ) =

2∗

1∗

3∗, we have

σ � µ2 //
_

µA
2

��

x1 ⊗ [x2, x3] + · · ·OO

∼=
_2∗

1∗

3∗ � η1 // 1∗ ⊗ [2∗, 3∗] + · · · � [−,−] // [1∗, [2∗, 3∗]] + · · · = 0

where “· · · ” denotes the cyclic permutations. It follows that

µ2(σ) = x1 ⊗ [x2, x3] + x2 ⊗ [x3, x1] + x3 ⊗ [x1, x2]

∈ ($/$2 ⊗$2/$3)⊗Q.
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Relation with Milnor invariants of string links Result and example of calculation

The Milnor µ-invariants (of length 3) of the closure of σ is computed
as follows:

1. The Magnus expansion of µ2(σ) ∈ $2/$3 is

x1 ⊗ (X2X3 − X3X2 + (deg > 2)) + (cyclic permutations).

2. Reading the coefficient of x1 ⊗ X2X3 etc.,

µσ̂(j1, j2; i) =

{
sgn(j1 j2 i) if {j1, j2, i} = {1, 2, 3},
0 otherwise.

MJ

1

2 31

1 1

1 2 3

closure

+

−

0

* **

Z̃<2(MJ−1
•◦ (σ)) µ2(σ) µσ̂(j1, j2; i)
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Relation with Milnor invariants of string links Result and example of calculation

Future research

I would like to investigate the functor Z̃ and find some applications
for it.
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Relation with Milnor invariants of string links Result and example of calculation
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Relation with Milnor invariants of string links Result and example of calculation

MJw

Figure : An extension of the Milnor-Johnson correspondence
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