Infinitely many corks with shadow complexity one

Hironobu Naoe (Tohoku University)

October 28, 2015
Topology and Geometry of Low-dimensional Manifolds

The plan of talk

1 4-manifolds and exotic pairs

- Kirby diagram

■ Corks
2 Polyhedron and reconstruction of 4-manifold

- Polyhedron
- Shadows and 4-manifolds

3 Main result
※ In this talk we assume that manifolds are smooth.

§1 4-manifolds and exotic pairs

-Kirby diagram

.Corks

Handle decomposition

Definition

X : a compact n-dimensional manifold w / ∂
An (n-dimensional) k-handle is a copy of $D^{k} \times D^{n-k}$, attached to ∂X along $\partial D^{k} \times D^{n-k}$ by an embedding $f: \partial D^{k} \times D^{n-k} \rightarrow \partial X$.

Handle decomposition

Definition

X : a compact n-dimensional manifold w / ∂
An (n-dimensional) k-handle is a copy of $D^{k} \times D^{n-k}$, attached to ∂X along $\partial D^{k} \times D^{n-k}$ by an embedding $f: \partial D^{k} \times D^{n-k} \rightarrow \partial X$.

Kirby diagram(0- and 2-handle)

A Kirby diagram is a description of a handle decomposition of a 4-manifold by a knot/link diagram in \mathbb{R}^{3}.

- $\partial(0$-handle $) \cong S^{3}=\mathbb{R}^{3} \cup\{\infty\}$.

■ An attaching region of a 2-handle is $S^{1} \times D^{2}$.

Two 2-handles with framing coefficients m and n.

Kirby diagram(1-handle)

- An attaching region of a 1-handle is $D^{3} \amalg D^{3}$.

1-handle.

Kirby diagram(1-handle)

- An attaching region of a 1-handle is $D^{3} \amalg D^{3}$.

1- and 2-handles.
The 2-handles are attached along the 1-handle.

Kirby diagram(1-handle)

- An attaching region of a 1-handle is $D^{3} \amalg D^{3}$.

1 - and 2-handles.
The 2-handles are attached along the 1-handle.

Definition

Two manifolds X and Y are said to be exotic if they are homeomorphic but not diffeomorphic.

Theorem (Akbulut-Matveyev, '98)

For any exotic pair (X, Y) of 1-connected closed 4-manifolds, Y is obtained from X by removing a contractible submanifold of codimension 0 and gluing it via an involution on the boundary.

Definition

Two manifolds X and Y are said to be exotic if they are homeomorphic but not diffeomorphic.

Theorem (Akbulut-Matveyev, '98)

For any exotic pair (X, Y) of 1-connected closed 4-manifolds, Y is obtained from X by removing a contractible submanifold of codimension 0 and gluing it via an involution on the boundary.

Definition

Two manifolds X and Y are said to be exotic if they are homeomorphic but not diffeomorphic.

Theorem (Akbulut-Matveyev, '98)

For any exotic pair (X, Y) of 1-connected closed 4-manifolds, Y is obtained from X by removing a contractible submanifold of codimension 0 and gluing it via an involution on the boundary.

Definition

Two manifolds X and Y are said to be exotic if they are homeomorphic but not diffeomorphic.

Theorem (Akbulut-Matveyev, '98)

For any exotic pair (X, Y) of 1-connected closed 4-manifolds, Y is obtained from X by removing a contractible submanifold of codimension 0 and gluing it via an involution on the boundary.

Definition

Two manifolds X and Y are said to be exotic if they are homeomorphic but not diffeomorphic.

Theorem (Akbulut-Matveyev, '98)

For any exotic pair (X, Y) of 1-connected closed 4-manifolds, Y is obtained from X by removing a contractible submanifold of codimension 0 and gluing it via an involution on the boundary.

Definition

A pair (C, f) of a contractible compact Stein surface C and an involution $f: \partial C \rightarrow \partial C$ is called a cork if f can extend to a self-homeomorphism of C but can not extend to any self-diffeomorphism of C.

A real 4-dimensional manifold X is called a compact Stein surface $\stackrel{\text { def }}{\Longleftrightarrow}$ There exist a complex manifold W, a plurisubharmonic function $\varphi: W \rightarrow \mathbb{R}_{\geq 0}$ and its regular value r s.t. $\varphi^{-1}([0, r])$ is diffeomorphic to X.

Examples of corks

Theorem (Akbulut-Yasui, '08)

Let W_{n} and $\overline{W_{n}}$ be 4-manifolds given by the following Kirby diagrams. They are corks for $n \geq 1$.

Application ... Construction of exotic elliptic surfaces. Counterexamples to Akbulut-Kirby conjecture.

§2 Polyhedron and reconstruction of 4-manifold

-Polyhedron

.Shadows and 4-manifolds

■ An almost-special polyhedron is a compact topological space P s.t. a neighborhood of each point of P is one of the following :

(i)

(ii)

(iii)

- A point of type (iii) is called a true vertex.

■ Each connected component of the set of points of type (i) is called a region.
If any regions of P are 2-disks and P has at least 1 true vertex, then P is called a special polyhedron.

Example: Abalone

shadow

Definition

W : a compact oriented 4-manifold w/ ∂
$P \subset W$: an almost special polyhedron
We assume that W has a strongly deformation retraction onto P and P is proper and locally flat in W. Then we call P a shadow of W.

gleam

Let P be a special polyhedron and R be a region of P.

The band B is an imm. annulus or an imm. Möbius band in P s.t. its core is ∂R.

Definition

For each region R, we choose a (half) integer $g l(R)$ s.t.

$$
g l(R) \in \begin{cases}\mathbb{Z} & \text { if } B \text { is an imm. annulus. } \\ \mathbb{Z}+\frac{1}{2} & \text { if } B \text { is an imm. Möbius band. }\end{cases}
$$

We call this value a gleam.

Turaev's reconstruction

Theorem (Turaev's reconstruction, '90s)

A 4-manifold W is reconstructed from a special polyhedron P and gleams on its regions in a unique way.

Turaev's reconstruction

Theorem (Turaev's reconstruction, '90s)

A 4-manifold W is reconstructed from a special polyhedron P and gleams on its regions in a unique way.

Turaev's reconstruction

Theorem (Turaev's reconstruction, '90s)

A 4-manifold W is reconstructed from a special polyhedron P and gleams on its regions in a unique way.

Turaev's reconstruction

Theorem (Turaev's reconstruction, '90s)

A 4-manifold W is reconstructed from a special polyhedron P and gleams on its regions in a unique way.

14/26

Turaev's reconstruction

Theorem (Turaev's reconstruction, '90s)

A 4-manifold W is reconstructed from a special polyhedron P and gleams on its regions in a unique way.

(true vertex) $\longleftrightarrow 0$-handle

(edge) \longleftrightarrow 1-handle(attached along $D^{3} \amalg D^{3}$)

(region) \longleftrightarrow 2-handle(attached along $S^{1} \times D^{2}$)

contractible special polyhedra

We want to construct corks from special polyhedra(shadows).

- no true vertex There is no such a polyhedron.
- one true vertex There are just 2 special polyhedra A and \widetilde{A} shown in the following[lkeda, '71] :

A

\widetilde{A}

- two true vertices
e.g. Bing's house

contractible special polyhedra

We want to construct corks from special polyhedra(shadows).

- no true vertex There is no such a polyhedron.
- one true vertex There are just 2 special polyhedra A and \widetilde{A} shown in the following[lkeda, '71] :

A
\widetilde{A}

- two true vertices
e.g. Bing's house

4-manifolds from A and \widetilde{A}

$g l\left(e_{1}\right)=m, \quad q l\left(e_{2}\right)=n$

$g l\left(\tilde{e}_{1}\right)=m, g l\left(\tilde{e}_{2}\right)=n-\frac{1}{2}$
\downarrow Turaev's reconstruction \downarrow $A(m, n)$

$$
\widetilde{A}\left(m, n-\frac{1}{2}\right)
$$

$\oint 3$ Main result

Main theorem

Definition

W : a compact oriented 4-manifold w/ ∂
The special shadow complexity $s c^{s p}(W)$ of W is defined by

$$
s c^{s p}(W)=\min _{\substack{P \text { is a special } \\ \text { shadow of } W .}} \sharp\{\text { true vertices of } P\}
$$

Theorem (N.)

Consider the family $\left\{\widetilde{A}\left(m,-\frac{3}{2}\right)\right\}_{m<0}$ of 4-manifolds. Then the following hold :
(1) $s c^{s p}\left(\widetilde{A}\left(m,-\frac{3}{2}\right)\right)=1$.
(2) They are mutually not homeomorphic.
(3) They are corks.

We prove by the following two lemmas.

Lemma A

Let m and n be integers.
(1) $\lambda(\partial A(m, n))=-2 m$. Therefore $A(m, n)$ and $A\left(m^{\prime}, n\right)$ are not homeomorphic unless $m=m^{\prime}$.
(2) $\lambda\left(\partial \widetilde{A}\left(m, n-\frac{1}{2}\right)\right)=2 m$. Therefore $\widetilde{A}\left(m, n-\frac{1}{2}\right)$ and $\widetilde{A}\left(m^{\prime}, n-\frac{1}{2}\right)$ are not homeomorphic unless $m=m^{\prime}$.

Recall.

■ $\lambda:\left\{\mathbb{Z} \mathrm{HS}^{3}\right\} \rightarrow \mathbb{Z}:$ Casson invariant is a topological invariant.
■ Any contractible manifold is bounded by a homology sphere.

Lemma B

The manifold $\widetilde{A}\left(m,-\frac{3}{2}\right)$ is a cork if $m<0$.

Reconstruction of $(A, g l)$

First we describe Kirby diagrams of $A(m, n)$ and $\widetilde{A}\left(m, n-\frac{1}{2}\right)$.

Reconstruction of $(A, g l)$

First we describe Kirby diagrams of $A(m, n)$ and $\widetilde{A}\left(m, n-\frac{1}{2}\right)$.

$A \backslash\{$ region parts $\}$.

Reconstruction of $(A, g l)$

First we describe Kirby diagrams of $A(m, n)$ and $\widetilde{A}\left(m, n-\frac{1}{2}\right)$.

A subpolyhedron consisting of one true vertex and two edges.

Reconstruction of $(A, g l)$

First we describe Kirby diagrams of $A(m, n)$ and $\widetilde{A}\left(m, n-\frac{1}{2}\right)$.

true vertex \longleftrightarrow 0-handle edge \longleftrightarrow 1-handle

Reconstruction of $(A, g l)$

First we describe Kirby diagrams of $A(m, n)$ and $\widetilde{A}\left(m, n-\frac{1}{2}\right)$.

> true vertex \longleftrightarrow 0-handle edge \longleftrightarrow 1-handle region $\longleftrightarrow 2$-handle

Reconstruction of $(A, g l)$

First we describe Kirby diagrams of $A(m, n)$ and $\widetilde{A}\left(m, n-\frac{1}{2}\right)$.

Reconstruction of $(A, g l)$

First we describe Kirby diagrams of $A(m, n)$ and $\widetilde{A}\left(m, n-\frac{1}{2}\right)$.

Reconstruction of $(A, g l)$

First we describe Kirby diagrams of $A(m, n)$ and $\widetilde{A}\left(m, n-\frac{1}{2}\right)$.

Reconstruction of $(A, g l)$

First we describe Kirby diagrams of $A(m, n)$ and $\widetilde{A}\left(m, n-\frac{1}{2}\right)$.

Reconstruction of $(A, g l)$

First we describe Kirby diagrams of $A(m, n)$ and $\widetilde{A}\left(m, n-\frac{1}{2}\right)$.

Reconstruction of $(A, g l)$

First we describe Kirby diagrams of $A(m, n)$ and $\widetilde{A}\left(m, n-\frac{1}{2}\right)$.

Reconstruction of $(A, g l)$

First we describe Kirby diagrams of $A(m, n)$ and $\widetilde{A}\left(m, n-\frac{1}{2}\right)$.

Lemma A (again)

Let m and n be integers.
(1) $\lambda(\partial A(m, n))=-2 m$. Therefore $A(m, n)$ and $A\left(m^{\prime}, n\right)$ are not homeomorphic unless $m=m^{\prime}$.
(2) $\lambda\left(\partial \widetilde{A}\left(m, n-\frac{1}{2}\right)\right)=2 m$. Therefore $\widetilde{A}\left(m, n-\frac{1}{2}\right)$ and $\widetilde{A}\left(m^{\prime}, n-\frac{1}{2}\right)$ are not homeomorphic unless $m=m^{\prime}$.

Proof: We describe surgery diagrams of $\partial A(m, n)$ and $\widetilde{A}\left(m^{\prime}, n-\frac{1}{2}\right)$ and calculate their Casson invariants by using the surgery formula.

Theorem (Casson)

For any integer-homology sphere Σ and knot $K \subset \Sigma$, the following holds

$$
\lambda\left(\Sigma+\frac{1}{m} \cdot K\right)=\lambda(\Sigma)+\frac{m}{2} \Delta_{K \subset \Sigma}^{\prime \prime}(1) .
$$

Proof(1/2) A surgery diagram of $\partial A(m, n)$

$\operatorname{Proof}(1 / 2)$ A surgery diagram of $\partial A(m, n)$

This knot is a ribbon knot. Calculate its Alexander polynomial by using the way in [1].

$$
\Delta_{K}(t)=t^{m+1}-t^{m}-t+3-t^{-1}-t^{-m}+t^{-m-1}
$$

[1] H. Terasaka, On null-equivalent knots, Osaka Math. J. 11 (1959), 95-113.

証明 (2/2) Calculate the Casson invariant

By the Surgery formula :

$$
\begin{aligned}
\lambda(\partial A(m, n)) & =\lambda\left(S^{3}\right)+\frac{-1}{2} \Delta_{K}^{\prime \prime}(1) \\
& =0-\frac{1}{2} \cdot 4 m \\
& =-2 m
\end{aligned}
$$

We can prove (2) similarly to (1).

Lemma B (again)

The manifold $\widetilde{A}\left(m,-\frac{3}{2}\right)$ is a cork if $m<0$.

Theorem (Akbulut-Karakurt '12)

Let C be a compact oriented 4-manifold w/ ∂ whose Kirby diagram is given by a dotted circle K_{1} and a 0 -framed unknot K_{2}. C is a cork if the following hold :
(1) K_{1} and K_{2} are symmetric.
(2) $l k\left(K_{1}, K_{2}\right)= \pm 1$.
(3) The diagram satisfies the condition of Stein handlebody.

Remark.

Gomph showed a necessary and sufficient condition for that a 4-dimensional handlebody is a compact Stein surface.

Proof : (1)symmetry and (2)linking number

A Kirby diagram of $\widetilde{A}\left(m,-\frac{3}{2}\right)$

Proof : (1)symmetry and (2)linking number

Proof : (1)symmetry and (2)linking number

\square

Summary

[^0]
[^0]: 26/26

