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Automorphism groups of free groups vs MCG of surfaces (1)

(Outer) automorphism groups of free groups Fn (n ≥ 2)

1→ Fn → Aut Fn → OutFn → 1

Mapping class group of surfaces

Mg = π0 Diff+Σg

Σg : closed oriented surface of genus g (≥ 2)� �
Tg： Teichmüller space,Mg acts properly discontinuously

Mg = Tg/Mg ：Riemann moduli space

Xn： Culler-Vogtmann’s Outer Space

Gn = Xn/Out Fn ：moduli space of graphs� �
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Automorphism groups of free groups vs MCG of surfaces (2)

group extensions� �
1→ IAn

i→ AutFn
p→ GL(n, Z)→ 1

IA group

1→ Ig → Mg
ρ1→

action on H
Sp(2g, Z)→ 1

Torelli group Siegel modular group� �
H = H1(Σg; Z)
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Automorphism groups of free groups vs MCG of surfaces (3)

stable cohomology

.

Theorem (Galatius, triviality of the stable cohomology)

.

.

.

. ..

.

.

lim
n→∞

H∗(AutFn; Q) = lim
n→∞

H∗(Out Fn; Q) = Q

stabilize: Hatcher, Hatcher-Vogtmann

.

Theorem (Madsen-Weiss)

.

.

.

. ..

.

.

lim
g→∞

H∗(Mg; Q) = Q[MMM-tautological classes]

Harer stable cohomology
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Automorphism groups of free groups vs MCG of surfaces (4)

.

Theorem (Borel)

.

.

.

. ..

.

.

lim
n→∞

H∗(GL(n, Z); R) = ER〈β3, β5, β7, . . .〉

β2k+1 ∈ H4k+1(GL(n, Z); R): Borel regulator class

β2k+1 vanishes in H4k+1(OutFn; R) (proved first by Igusa)

.

Theorem (Borel)

.

.

.

. ..

.

.

lim
g→∞

H∗(Sp(2g, Z); Q) = Q[c1, c3, c5, . . .]

c2k−1 ∈ H4k−2(Sp(2g, Z); Q): Chern class

c2k−1 ∈ H2k(Sp(2g, Z); Q) ⇒ poly. on eodd ∈ H2k(Mg; Q)
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Symplectic derivation Lie algebra and graph homology (1)

HQ = H ⊗Q = H1(Σg; Q), Mg,1 = π0 Diff(Σg, D
2)

.

Theorem (Dehn-Nielsen-Zieschang)

.

.

.

. ..

.

.

• Mg
∼= Out+π1Σg (outer automorphism group)

• Mg,1
∼= {ϕ ∈ Autπ1Σg,1; ϕ(ζ) = ζ} ζ : boundary curve

Σg,1 = Σg \ IntD2

“differentiate” ⇒

Definition (symplectic derivation Lie algebra)� �
hg,1 = {symplectic derivation of the free Lie algebra L(HQ)}� �
greded Lie algebra, hg,1 ⊃ h+

g,1 : ideal of positive derivations
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Symplectic derivation Lie algebra and graph homology (2)

Mal’cev nilpotent completion of π1Σg,1:

· · · → Nd+1 → Nd → · · · → N1 = HQ → 0 (HQ = H1(Σg; Q))

⇒ obtain a series of representations ofMg,1:

ρ∞ = {ρd}d :Mg,1 → lim←−
d→∞

Aut0 Nd (ρd :Mg,1 → Aut0 Nd)

associated embedding of graded Lie algebras:� �
τ :

∞⊕
d=1

Mg,1(d)/Mg,1(d + 1)
small
⊂ h+

g,1

ideal
⊂ hg,1

� �
Mg,1(d) := Ker ρd Johnson filtration
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Symplectic derivation Lie algebra and graph homology (3)

Determination of Im τ : still open and very difficult

Many works about Coker τ
Hain= h+

g,1/〈∧3HQ〉:

Morita traces (generators , i.e. survives in H1(h+
g,1))

Galois images: Nakamura, Matsumoto (decomposable?)

Enomoto-Satoh traces (decomposable), Kawazumi-Kuno

New generators+others: Conant-Kassabov-Vogtmann

Conant (still more new generators)

Conant-Kassabov ...

Shigeyuki MORITA Cohomology of Automorphism Groups of Free Groups



.

.

Symplectic derivation Lie algebra and graph homology (4)

� �
Lie version of Kontsevich graph homology� �

.

Theorem (Kontsevich, Lie version)

.

.

.

. ..

.

.

There exists an isomorphism

PHk
c (ĥ∞,1)2n

∼= H2n−k(Out Fn+1; Q)

ĥ∞,1 : completion of h∞,1 = lim
g→∞

hg,1

⊕
n≥2

H∗(Out Fn; Q) ⇔ PH∗
c (ĥ∞,1)

equivalent!
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Symplectic derivation Lie algebra and graph homology (5)

⊕
n≥2

H2n−3(Out Fn; Q) ⇔ PH1
c (ĥ∞,1)

dual⇔ H1(h+
∞,1)Sp

Culler-Vogtmann: vcd(Out Fn) = 2n− 3

.

Problem

.

.

.

. ..

. .

What are the generators: H1(h+
∞,1) for the Lie algebra h+

∞,1?

⊕
n≥2

H2n−4(Out Fn; Q) ⇔ PH2
c (ĥ∞,1)

.

Problem

.

.

.

. ..

.

.

What is the second cohomology of the Lie algebra h∞,1?
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Symplectic derivation Lie algebra and graph homology (6)

Generators for h+
g,1 (= H1(h+

g,1)) :

∧3HQ = hg,1(1) Johnson

traces:
∞⊕

k=1

S2k+1HQ Morita

.

Theorem (Conant-Kassabov-Vogtmann)

.

.

.

. ..

.

.

H1(h+
g,1) ∼= ∧3HQ (Johnson, 0-loop)
⊕
(
⊕∞

k=1S
2k+1HQ

)
(M., trace maps: 1-loop)

⊕ (⊕∞
k=1[2k + 1, 1]Sp ⊕ other part) (2-loops)

⊕ non-trivial ? (3, 4, . . .-loops) ? : deep question

very recently, Conant: 3-loops non-trivial
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Symplectic derivation Lie algebra and graph homology (7)

Construction of elements of H2
c (ĥ∞,1)

trace maps : h+
g,1 →

∞⊕
k=1

S2k+1HQ, H2(S2k+1HQ)Sp ∼= Q⇒

t2k+1 ∈ H2
c (ĥ∞,1)4k+2

K.∼= H4k(Out F2k+2; Q)� �
µk ∈ H4k(Out F2k+2; Q) (k = 1, 2, . . .) Morita classes� �

.

Theorem (non-triviality of µk)

.

.

.

. ..

.

.

µ1 6= 0 ∈ H4(Out F4; Q) (M. 1999)

µ2 6= 0 ∈ H8(Out F6; Q) (Conant-Vogtmann 2004)

µ3 6= 0 ∈ H12(Out F8; Q) (Gray 2011)
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Symplectic derivation Lie algebra and graph homology (8)

H∗(Out Fn; Q) ∼= H∗(Gn; Q) characteristic classes of

moduli space of graphs (Culler-Vogtmann)

computed for n ≤ 6, only two non-trivial parts

H4(Out F4; Q) ∼= Q (Hatcher-Vogtmann)
H8(Out F6; Q) ∼= Q (Ohashi)

.

Conjecture (very difficult and important )

.

.

.

. ..

.

.

µk 6= 0 for all k
(
⇒ H2(h∞,1) ⊃ Q〈e1, t3, t5, · · · 〉

)
New approach (assembling homology classes) , in particular;

.

Theorem (Conant-Hatcher-Kassabov-Vogtmann)

.

.

.

. ..

.

.

The class µk is supported on certain subgroup Z4k ⊂ Out F2k+2

CKV new generators ⇒ more classes in H2
c (ĥ∞,1)
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Symplectic derivation Lie algebra and graph homology (9)

Many odd dimensional cohomology classes exist:

.

Theorem (Sakasai-Suzuki-M.)

.

.

.

. ..

.

.

The integral Euler characteristics of Out Fn is given by

e(Out Fn) = 1, 1, 2, 1, 2, 1, 1,−21,−124,−1202 (n = 2, 3, . . . , 11)

No explicit one is known

.

Problem

.

.

.

. ..

.

.

Construct non-trivial odd dim. homology classes of Out Fn
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Conjectural meaning of the Morita classes (1)

Conjectural geometric meaning of the classes

µk ∈ H4k(Out F2k+2; Q)

secondary classes associated with the difference between

two reasons for the vanishing of Borel regulator classes

β2k+1 ∈ H4k+1(GL(N, Z); R) (k = 1, 2, 3, . . .)

(1) β2k+1 = 0 ∈ H4k+1(Out FN ; R) (Igusa, Galatius)

(2) β2k+1 = 0 ∈ H4k+1(GL(N∗
k , Z); R) critical N∗

k
?= 2k + 2

yes: k = 1 (Lee-Szczarba), k = 2 (E.Vincent-Gangl-Soulé)

β2k+1 6= 0 ∈ H4k+1(GL(2k + 3, Z); R) (announced by Lee)

.

Theorem (Bismut-Lott, Lee, Franke)

.

.

.

. ..

.

.

β2k+1 = 0 ∈ H4k+1 (GL(2k + 1, Z); R)

Shigeyuki MORITA Cohomology of Automorphism Groups of Free Groups



.

.

Conjectural meaning of the Morita classes (2)

Strategy of a proof of the conjecture:

secondary classes associated with the difference between two
reasons for β2k+1 to vanish

b2k+1 ∈ Z4k+1(GL(N, Z); R) cocycle, e.g. Hamida’s cocycle

(1) p∗(b2k+1) = δz4k (z4k ∈ C4k(Aut FN ; R))

(2) i∗(b2k+1) = δz′4k (z′4k ∈ C4k(GL(2k + 2, Z); R))

.

Conjecture

.

.

.

. ..

.

.

〈i∗(z4k)− p∗(z′4k), µk〉 6= 0 (if yes ⇒ µk 6= 0)

“dual version” : 〈Hamida cocycle, certain 4k + 1 cycle〉 6= 0

planning computer computation
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Conjectural meaning of the Morita classes (3)

Comparison with the case of the Casson invariant

λ(M) ∈ Z (M : homology 3-sphere)

interpreted as a homomorphism

d1 : Kg → Z (Kg: Johnson kernel)

d1 ∈ H1(Kg; Z)Mg ∼= Z : generator

secondary classes associated with the difference between

two cocycles for the first MMM class ∈ H2(Mg; Z) ∼= Z

(1) Meyer’s cocycle for c1 ∈ H2(Sp(2g, Z); Q)

(2) “intersection cocycle” defined by using

k̃ ∈ H1(Mg;∧3H/H) ∼= Q (g ≥ 3)
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Conjectural meaning of the Morita classes (4)

Related secondary classes associated to the vanishing of the

Borel classes on OutFN , AutFN

p∗(b2k+1) = δz4k (z4k ∈ C4k(Aut FN ; R), C4k(Out FN ; R))

δi∗(z4k) = 0 ⇒ [i∗(z4k)] ∈ H4k(IAN ; R), H4k(IOutN ; R)

Galatius’ theorem⇒ in the stable range, this class well-defined

GL(N, Z)-invariant, because for any ϕ ∈ Aut FN , can show

ι∗ϕ(i∗(z4k))
cohomologous∼ i∗(z4k) (ιϕ: conjugation by ϕ)

.

Definition (stable secondary class)

.

.

.

. ..

.

.

Tβ2k+1 = [i∗(z4k)] ∈ H4k(IOutN or IAN , ; R)GL(N,Z)

.

Theorem

.

.

.

. ..

.

.

Tβ2k+1 =Igusa’s higher FR torsion class τ2k ∈ H4k(IOutN ; R)
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Conjectural meaning of the Morita classes (5)

If we consider the spectral sequence for

IOutN → Out FN → GL(N, Z)

β2k+1 ∈ H4k+1(GL(N, Z); R) = E4k+1,0
2 must be killed by

some of H4k−i(GL(N, Z); H i(IOutN ; R)) (i = 1, . . . , 4k) and

Tβ2k+1 ∈ H0(GL(N, Z); H4k(IOutN ; R)) = E0,4k
2

.

Theorem (Hain-Igusa-Penner)

.

.

.

. ..

.

.

The higher FR torsion of the Torelli group is a non-zero multiple
of the even MMM class

.

Conjecture (Church-Farb)

.

.

.

. ..

.

.

lim
N→∞

H̃∗(IAN ; Q)GL(N,Z) = 0
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Conjectural meaning of the Morita classes (6)

If yes ⇒ all the even MMM classes vanish on the Torelli group

We would like to propose another

(so to speak “opposite” and perhaps too optimistic?) possibility:

.

Conjecture

.

.

.

. ..

. .

lim
N→∞

H∗(IOutN ; R)GL(N,Z) ∼= R[τ2, τ4, · · · ]

Our conjecture on geometric meaning of µk can be interpreted

as the farmost unstable version of the above conjecture

these two conjectures are closely related but independent
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Prospects (1)

.

Conjecture

.

.

.

. ..

.

.

H1(h∞,1)
(
∼= H1(h+

∞,1)Sp

)
= 0

Yes Kontsevich⇔ H2n−3(Out Fn; Q) = 0 for any n ≥ 2

.

Theorem (Sakasai-Suzuki-M. associative case)

.

.

.

. ..

. .

H1(a+
∞) ∼= lim

g→∞
∧3HQ ⊕ S3HQ ⊕

(
∧2HQ/〈ω0〉

)
⇒ H1(a∞) = 0

.

Corollary (vanishing of the top cohomology)

.

.

.

. ..

.

.

H4g−5(Mg; Q) = 0 (g ≥ 2)

Harer (unpublished), another proof: Church-Farb-Putman
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Prospects (2)

Possible (but conjecturally no) contribution on H1(h+
∞,1)Sp� �

(I) Arithmetic mapping class group

(II) Group of H-cobordism classes of homology cylinders� �
(I) Arithmetic mapping class group� �

1 → M̂1
g → πalg

1

(
M1

g/Q
)
→ Gal(Q/Q) → 1� �

M̂1
g : profinite completion ofM1

g = π0 Diff+(Σg, ∗)

Grothendieck, Deligne, Ihara, Drinfel’d,...
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Prospects (3)

1980’s, Oda predicted: Gal(Q/Q) (Soulé p-adic regulators)

should “appear” in (Coker τ)Sp ⊗ Zp (p: prime)

Nakamura, Matsumoto: proof and related many works� �
precise description of the Galois images: unknown

important both in topology and number theory� �

.

Conjecture (around 1984)

.

.

.

. ..

.

.

The Galois images are decomposable and can be described
in terms of the M. traces

If yes⇒ Galois images do not survive in H1(h+
∞,1)Sp
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Prospects (4)

Fundamental Lie algebra f := Free Lie〈σ3, σ5, · · · 〉

f
⊂→ h

Sp
g,1 Nakamura, Matsumoto, ... , Brown

f
⊂→ h

Sp
1,1 Hain-Matsumoto, Pollack

.

Problem

.

.

.

. ..

. .

Describe the image of σk explicitly in each case

.

Theorem (Sakasai-Suzuki-M.)

.

.

.

. ..

.

.

We have determined the structure of hg,1(6) (3 σ3) completely

Recent progress by Hain (with Brown, Matsumoto)
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Prospects (5)

(II) Group of H-cobordism classes of homology cylinders

Garoufalidis-Levine (based on Goussarov and Habiro):

Hg,1 = {(homology Σg,1 × I, ϕ); ϕ : Σg,1
∼= Σg,1 × {1}}

/homology cobordism

two versions: smooth Hsmooth
g,1 and topological Htop

g,1

enlargement ofMg,1:

Mg,1 3 ϕ 7→ (Σg,1 × I, ϕ) ∈ Hsmooth
g,1 ,Htop

g,1
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Prospects (6)

.

Theorem (Garoufalidis-Levine, Habegger)

.

.

.

. ..

.

.

There exists a homomorphism

ρ̃∞ : Hg,1 → lim←−
d→∞

Aut0 Nd

which extends ρ∞, each finite factor ρ̃d : Hg,1 → Aut0 Nd is
surjective over Z for any d ≥ 1

Mg,1(d) τd−−−−−−−→
image small

hg,1(d)

∩
y ∥∥∥

Hg,1(d) τ̃d−−−−−→
surjective

hg,1(d)

hg,1 : too big as Lie algebra forMg,1, how about for Hg,1? No!
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Prospects (7)

Mg,1
ρ∞−−−−−→

injective
lim←−

d→∞
Aut0 Nd

∩
y ∥∥∥

Hsmooth
g,1

ρ̃∞−−−−−−−→
Not injective

lim←−
d→∞

Aut0 Nd

.

Theorem (Sakasai, Dehn-Nielsen type theorem for Hg,1)

.

.

.

. ..

.

.

Htop
g,1 → lim←−

d→∞
Aut0 Nd factors through

Halg
g,1 = Aut0 F acy

2g : Sakasai’s algebraic version

by using acyclic closure F acy
2g of Levine� �

works for Hg,1: survey by Sakasai and Habiro-Massuyeau� �
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Prospects (8)

Define a quotient group Hg,1 by the following central extension

0→ Θ3 = H0,1 → Hsmooth
g,1 → Hg,1 → 1

Θ3 := Homology cobordism group of homology 3-spheres

infinite rank by Furuta, Fintushel-Stern, also ρ̃∞(Θ3) = {1}

.

Problem

.

.

.

. ..

.

.

Study the Euler class

χ(Hsmooth
g,1 ) ∈ H2(Hg,1;Θ3)

Θ3 → Hsmooth
g,1 → Hg,1

Freedman−−−−−−→ Htop
g,1 → Aut0 F acy

2g → lim←−
d

Aut0 Nd

Sakasai
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Prospects (8)

Define a quotient group Hg,1 by the following central extension

0→ Θ3 = H0,1 → Hsmooth
g,1 → Hg,1 → 1

Θ3 := Homology cobordism group of homology 3-spheres

infinite rank by Furuta, Fintushel-Stern, also ρ̃∞(Θ3) = {1}

.

Problem

.

.

.

. ..

.

.

Study the Euler class

χ(Hsmooth
g,1 ) ∈ H2(Hg,1;Θ3)

Θ3 → Hsmooth
g,1 → Hg,1

Freedman−−−−−−→ Htop
g,1 → Aut0 F acy

2g → lim←−
d

Aut0 Nd

Sakasai
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Prospects (9)

One of the foundational results of Freedman:

.

Theorem (Freedman)

.

.

.

. ..

.

.

Any homology 3-sphere bounds a contractible topological
4-manifold so that Θ3(top) = 0

It follows that Hsmooth
g,1 → Htop

g,1 factors through Hg,1

.

Problem (about “Picard groups” )

.

.

.

. ..

.

.

Study the following homomorphisms

H2(Htop
g,1 )→ H2(Hg,1)→ H2(Hsmooth

g,1 )→ H2(Mg,1)
Harer∼= Z

∞-rank? ∞-rank? ∼= ?
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Prospects (10)

.

Problem

.

.

.

. ..

.

.

Determine whether H1(Hsmooth
g,1 ; Q) = 0 or not

.

Theorem (Cha-Friedl-Kim)

.

.

.

. ..

.

.

H1(Hsmooth
g,1 ) contains (Z/2)∞ as a direct summand

H2(Hsmooth
g,1 ) versus H2(Htop

g,1 ), mystery in dimension 4

.

Theorem (M., stable homomorphism w. Zariski dense image)

.

.

.

. ..

.

.

ρ̃ : Htop
g,1 −→

(
∧3HQ ×

∞∏
k=1

S2k+1HQ

)
o Sp(2g, Q)

Massuyeau-Sakasai
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Prospects (11)

ρ̃∗ on H∗ yields many stable cohomology classes of Htop
g,1

.

Corollary

.

.

.

. ..

.

.

The MMM-classes are defined already in H∗(Htop
g,1 , Q)

.

Definition (characteristic classes for homology cylinders)

.

.

.

. ..

.

.

t̃2k+1 ∈ H2(Hg,1; Q), H2(Htop
g,1 ; Q) (k = 1, 2, . . .)

most important classes coming from H2(S2k+1HQ)Sp ∼= Q

candidates for χ(Hsmooth
g,1 ) ∈ H2(Hg,1;Θ3), group version of

t2k+1 ∈ H2(hg,1; Q)4k+2
∼= H4k(Out F2k+2; Q) 3 µk
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Prospects (12)

geometrical meaning of the classes t̃2k+1 ∈ H2(Htop
g,1 ; Q):

Intersection numbers of higher and higher Massey products
(using works of Kitano, Garoufalidis-Levine)

.

Conjecture

.

.

.

. ..

.

.

In the central extension

0→ Θ3 → Hsmooth
g,1 → Hg,1 → 1

Θ3 “transgresses” to the classes t̃2k+1 ∈ H2(Hg,1; Q) ⇒

t̃2k+1 6= 0 ∈ H2(Hg,1; Q),H2(Htop
g,1 ; Q) and

t̃2k+1 = 0 ∈ H2(Hsmooth
g,1 ; Q)

If yes⇒ obtain homomorphisms νk : Θ3 → Z
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