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Outline
S : ori. surface with x(S) <0

X(S) ={p: m1(S) = PSLoC}/{~ conjugation} (character variety)
U

AH(S) = {[p] € X(S) | p : faithful, discrete}

By the celebrated Ending Lamination Theorem, AH(S) is completely
classified (3 explicit parametrization).

But the shape of AH(S) in X(S) is complicated (cf. bumping phenomena,
non-local connectivity).

AH(S) (shaded) in some slice of X(S)
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AH(S) (shaded) in some slice of X(S)

Aim of this talk

@ Try to understand the shape AH(S) in X(S) by taking slices.

@ In particular, in terms of exotic projective structures.
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Quick overview of Kleinian surface groups

H3 : 3-dim hyperbolic space
PSL,C is isomorphic to the ori. pres. isometry group of H3.
For a surface S with x(S) <0, let
X(S) ={p: m(S) = PSLC}/{~ conj. by PSLoC} (character variety)
U
AH(S) = {[p] € X(S) | faithful, p(71(S)) is discrete}
(If S has punctures, we assume that reps are ‘type-preserving’.)
If p € AH(S), H3/p(71(S)) is a hyp 3-mfd homotopy equiv. to S.

(Moreover, H3/p(71(S)) is homeo to S x (—1,1) (Bonahon).)

Simple example : p: 71(S) Sr< PSL>(R) (T : Fuchsian group)



Quick overview of Kleinian surface groups

Simple example : p : m1(S) Sr< PSL(R) (T : Fuchsian group)

In this case, the limit set

A = {accumulation pts of p(m1(S)) - p at oo} € CP*  (for some p € H3)
is a round circle.

p € AH(S) is called quasi-Fuchsian if the limit set A is homeo to a circle.
QF(S) = {p € AH(S) | quasi-Fuchsian}
Anyway, known that
QF(S) = Int(AH(S)).
. 7 %, Moreover,
S~ vy S QF(S) = AH(S)
| o (Density Theorem).



Quick overview of Kleinian surface groups

By Ahlfors-Bers theorem,
QF(S)=T(S) x T(S)
where T(S) is the Teichmiiller space of S.

In particular, QF(S) is homeo to R2(66—6) if S is closed, genus g.

X(S) ={p:m(S) — PSLoC}/{~ conj. by PSL>C}
U
AH(S) = {[p] € X(S) | faithful, p(71(S)) is discrete}
U open, dense
QF(S) = {[p] € AH(S) | quasi-Fuchsian}
2l

T(S) x T(S) = RACE)
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Complex projective structures
S : surface (x(S) < 0)

Definition in CP@
A complex projective structure or

CP'-structure on S is a geometric structure PSL(2 C)
locally modelled on CP! with transition @

functions in PSL>C.

(If S has punctures, assume some boundary conditions.)
By analytic continuation, we have a pair of maps
D : S — CP' (developing map), p: m1(S) — PSLoC (holonomy)

st. D(y-x) = p(7) - D(x) (v € m1(S), x € S).

P U

W

Conversely, the pair determines the CP!-str (mod ( ~ (gD, gpg™1)).
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Complex projective structures

Example (Fuchsian uniformization)

A hyperbolic str on S gives an identification S = H2. Since H? c CP?,
this gives a CP-str.

Similarly as Teichmiiller space, we can define
P(S) = {marked CP!-structures on S}.

Two important maps :

@ The holonomy gives a map
hol : P(S) — X(S) = Hom(m1(S), PSL2C)/conj. : (D, p) — p
@ Since M&bius transformations are holomorphic, a CP!-str defines a
hol str (and the hyp. str. conformally equiv. to that).
P(S) — T(S) = Teichmiiller space
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Bers slice

Each fiber of P(S) — T(S) is parametrized by
H°(X,K%) = {hol. quad. differentials}
via Schwarzian derivatives. In particular, if S is closed, genus g,
dimg P(S) = dimg T(S) + dimg H°(X, K%) = 2(6g — 6)
The set of CP!-strs with g-F holonomy in HO(X, K%) is open.

e 0 € HY(X, K%) corresponds to the
Fuchsian uniformization of X.

@ The comp > 0 parametrizes T(S).
(This gives T x T = QF.)

5
Image by Y. Yamashita

But there are many other components : exotic components.

We are interested in similar phenomena in another slice.



Goldman’s classification
Let

Qo = {CP-strs with g-F holonomy with inj. dev. map } C P(S).
Qo is a conn. comp. of hol™}(QF(S)) = {TP*-strs with g-F holonomy}.
2m-grafting
c C S : asimple closed curve B
For (D, p) € Qo, we can change D : S — CP?! by inserting CP* along
each lift of c. This dose not change the holonomy p.

Qc = {2m-grafting of (D, p) € Q} C P(S)
MLz(S) = {disjoint union of scc’s with Z>( weight}

The above operation can be generalized for i € MLz(S).

Theorem (Goldman (1987))

hol M(QF(S))= || Qu (Qo: standard, Q, (n +#0): exotic)
HEMLz(S)



More on 2m-grafting

We have defined 27-grafting for Qg. This gives
QO i Qy,

We can also define 2m-grafting for Q, along 5 (o, B € MLz(S)).

But if the intersection number i(«, 3) # 0, it depends on the choice of 3
in its isotopy class.

Qaioaﬂ)n or Qaﬂ)b

%Tf

(Kentaro lto (2007), Calsamiglia-Deroin-Francaviglia (2014))
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Linear slice
For v € m1(S) and p € X(S), p(7) € PSLoC acts on H3.

Define the complex length X(S) — C/2m/—1Z by

Ay(p) = (translation length of p(7)) + v/ —1 (rotation angle of p(7)).

This is characterized by

tlp() = 2cosh (224,

From now on, we assume that S is a once
punctured torus.

For convenience, fix a, 5 € m1(S) as in the
figure.

In this case, dim¢ X(S) = 2. For £ > 0, define the linear slice by
X() =1{p e X(5) [ Xalp) =}

Then dimc X(¢) = 1, so easy to visualize.
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Complex Fenchel-Nielsen coordinates
The complex Fenchel-Nielsen coordinates give a parametrization

{reC|—m<Im(r) <7} — X(0)

QF(S) in the linear slice X(18.0).

Geometrically speaking, if we let 7 = t + 1/—1b, the representation is
obtained by twisting distance t and bending with angle b along .
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Linear slices of QF(S)

For each £ > 0, we are interested in the shape of

QF(¢) := QF(S)N X(¢) C X(¢¥)

QF(2.0)

3 4 2 0 2 4 6

@ The Dehn twist along « acts on X(¢) as
T+ 7+ £. (translation)

@ The real line {7 | Im(7) = 0} corresponds to the Fuchsian
representations satisfying A\, = £.

e By McMullen's disk convexity of QF(S),
QF (¢) is a union of (open) disks.
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Linear slices of QF(S)

For each £ > 0, we are interested in the shape of

QF(¢) := QF(S)N X(¢) C X(¢¥)

QF (6.0)

@ The Dehn twist along « acts on X(¢) as
T+ 7+ £. (translation)

@ The real line {7 | Im(7) = 0} corresponds to the Fuchsian
representations satisfying A\, = £.

e By McMullen's disk convexity of QF(S),
QF (¢) is a union of (open) disks.
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Linear slices of QF(S)

For any £ > 0, there exists a unique standard component containing
Fuchsian representations. As pictures suggest;

Theorem (Komori-Yamashita, 2012)

QF (¢) has only one component if ¢ is sufficiently small,
has more than one component if ¢ is sufficiently large.

Gk A o e W

£ P 2 2 7 5

QF(;O) o .QF(6.0)

We will give another proof for the latter part. In fact, we characterize
other components in terms of Goldman’s classification.

We lift the slice X(¢) C X(S) to P(S) by complex earthquake.
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Grafting

(Remark : “grafting” here is similar but different from 27-grafting before.

In fact, “grafting” here changes the holonomy.)

We can construct another CP-str from a Fuchsian uniformization.
X :ahypstronS, « C X : asimple closed geodesic.

Let Grp.o(X) be the CPl-str obtained from X by b@
inserting a height b annulus along «. o,

In the universal cover X, the local picture looks like:

Rl
S

(By construction, Grar.o(X) is obtained from X by 2w-grafting along «.)

16
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Grafting

The grafting operation Grp. : T(S) — P(S) can be generalized for
measured laminations. Let ML(S) be the set of measured laminations.

Theorem (Thurston, Kamishima-Tan)
Gr: ML(S) x T(S) — P(S)
(1X) = Gr(X)

is a homeomorphism (Thurston coordinates).
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Complex Earthquake

Let H={r=t++/-1beC|b>0}. Fixl>0.

Let twea(Xy) = ( O sy

Define Eq : H — P(S) by
Eq(t + vV —1b) = Grp.o(twr.o(Xr)) € P(S)
By Thurston coordinates, we can regard H C P(S).

Simply denote the image of H by Eq(¥¢).
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Complex Earthquake

By construction, hol is the natural projection:

hol

P(S) — X(S)
U U
Eq(¢) — X(¢)
Il I
{7 | Im(7) > 0} {r| -7 <Im(r) < 7}
w
T — 7 mod 2my/—1

We are interested in
QF (L) := QF(S)N X(¢) < X(¢),
so consider
hol"Y(QF (£)) = hol~}(X(¢) N QF(S))
= Eq(¢) N hol"X(QF(S)).
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hol 1 (QF(S)) in Eq(¢)

By Goldman's Theorem, we have

Eq(/)nhol Y (QF(S)) = || Ea(H)n Q..

HEML7(S)

Eq(6.0)
Q2a

Each component
belongs to some
Q-

Qa
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Complex Earthquake

hol maps each component of Eq(¢) N Q, ™ 2\, NN

into a comp of QF(¢). Thus if e ' N

Eq(f) N Q, # 0 Jooans N

for some p ¢ {0, 0, 2cv,- -+ }, QF () has a GM

comp other than the standard one. . | 1
Moreover, 2. . 7

0 6 2 4 6 8

Prop (K.)

Eq(¢) N hol~*(std comp) |_| Eq(¢) N Qx.a
k>0

for any ¢ > 0.
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Existence of exotic components in Eq(¢)

We need to find 1 ¢ {0, ¢, 2ar, - - - } s.t. Eq(£) N Q,, # 0 for sufficiently
large ¢ > 0. Consider the case u = §.

Let Dg be the Dehn twist along . Fix X € T(S).
Consider a sequence in P(S) =2 ML(S) x T(S)

<2;ng(0¢), x>

which converges to (273, X) € Qg as n — oc.
Thus (Q%Dg(a), X) € Qg for large n.

Apply D3 ", then (2Za, D;"(X)) € Qp for large n.

But if we let £ = (o (D5 "(X)), (Za, D;"(X)) € Eq(¢).



Final Remarks

o (o(D5"(X)) is getting longer as n — oo, but £5(D;"(X)) is
constant. Thus the Fenchel-Nielsen twist of D "(X) w.r.t. o is
relatively small. So Qg is near the origin (probably with ‘bumping’).

e For k € N, we can show Eq(¢) N Qx.5 # 0 similarly for large ¢ by
considering

n—o0

<27;kog(a), x) "2 (kB X) € Qup.

¢ =10.0

[ TN N O

@ Moreover we can use u € ML(S)z instead of 3 provided i(u, ) # 0.
If 4= po+ 3, Qpa+pg is near (—pl,0) by the above argument.

23 /25



Final Remarks
16
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Final Remarks
165
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Final Remarks
The intersection Eq(¢) N @, may consist of more than one component.

Moreover, the non-local connectivity of AH(S) (Bromberg) implies there
may be infinitely many.
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