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Outline
S : ori. surface with χ(S) < 0

X (S) = {ρ : π1(S) → PSL2C}/{∼ conjugation} (character variety)

∪
AH(S) = {[ρ] ∈ X (S) | ρ : faithful, discrete}

By the celebrated Ending Lamination Theorem, AH(S) is completely
classified (∃ explicit parametrization).

But the shape of AH(S) in X (S) is complicated (cf. bumping phenomena,
non-local connectivity).

AH(S) (shaded) in some slice of X (S)
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Outline

AH(S) (shaded) in some slice of X (S)

Aim of this talk

Try to understand the shape AH(S) in X (S) by taking slices.

In particular, in terms of exotic projective structures.
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Quick overview of Kleinian surface groups

H3 : 3-dim hyperbolic space

PSL2C is isomorphic to the ori. pres. isometry group of H3.

For a surface S with χ(S) < 0, let

X (S) = {ρ : π1(S) → PSL2C}/{∼ conj. by PSL2C} (character variety)

∪
AH(S) = {[ρ] ∈ X (S) | faithful, ρ(π1(S)) is discrete}
(If S has punctures, we assume that reps are ‘type-preserving’.)

If ρ ∈ AH(S), H3/ρ(π1(S)) is a hyp 3-mfd homotopy equiv. to S .

(Moreover, H3/ρ(π1(S)) is homeo to S × (−1, 1) (Bonahon).)

Simple example : ρ : π1(S)
∼=−→ Γ < PSL2(R) (Γ : Fuchsian group)
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Quick overview of Kleinian surface groups

Simple example : ρ : π1(S)
∼=−→ Γ < PSL2(R) (Γ : Fuchsian group)

In this case, the limit set

Λ = {accumulation pts of ρ(π1(S)) · p at ∞} ⊂ CP1 (for some p ∈ H3)

is a round circle.

ρ ∈ AH(S) is called quasi-Fuchsian if the limit set Λ is homeo to a circle.

QF (S) = {ρ ∈ AH(S) | quasi-Fuchsian}
Anyway, known that

QF (S) = Int(AH(S)).

Moreover,

QF (S) = AH(S)

(Density Theorem).
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Quick overview of Kleinian surface groups

By Ahlfors-Bers theorem,

QF (S) ∼= T (S)× T (S)

where T (S) is the Teichmüller space of S .

In particular, QF (S) is homeo to R2(6g−6) if S is closed, genus g .

X (S) = {ρ : π1(S) → PSL2C}/{∼ conj. by PSL2C}
∪

AH(S) = {[ρ] ∈ X (S) | faithful, ρ(π1(S)) is discrete}
∪ open, dense

QF (S) = {[ρ] ∈ AH(S) | quasi-Fuchsian}

∼ =

T (S)× T (S) ∼= R2(6g−6)
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Complex projective structures
S : surface (χ(S) < 0)

Definition
A complex projective structure or
CP1-structure on S is a geometric structure
locally modelled on CP1 with transition
functions in PSL2C.

in CP

PSL(2,C)

1

S

(If S has punctures, assume some boundary conditions.)

By analytic continuation, we have a pair of maps

D : S̃ → CP1 (developing map), ρ : π1(S) → PSL2C (holonomy)

s.t. D(γ · x) = ρ(γ) · D(x) (γ ∈ π1(S), x ∈ S̃).

γ U ρ(γ)U

γ∼

Conversely, the pair determines the CP1-str (mod (D, ρ) ∼ (gD, gρg−1)).
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Complex projective structures

Example (Fuchsian uniformization)

A hyperbolic str on S gives an identification S̃ ∼= H2. Since H2 ⊂ CP1,
this gives a CP1-str.

Similarly as Teichmüller space, we can define

P(S) = {marked CP1-structures on S}.
Two important maps :

The holonomy gives a map

hol : P(S) → X (S) = Hom(π1(S),PSL2C)/conj. : (D, ρ) *→ ρ

Since Möbius transformations are holomorphic, a CP1-str defines a
hol str (and the hyp. str. conformally equiv. to that).

P(S) → T (S) = Teichmüller space
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Bers slice

Each fiber of P(S) → T (S) is parametrized by

H0(X ,K 2
X ) = {hol. quad. differentials}

via Schwarzian derivatives. In particular, if S is closed, genus g ,

dimR P(S) = dimR T (S) + dimRH0(X ,K 2
X ) = 2(6g − 6)

The set of CP1-strs with q-F holonomy in H0(X ,K 2
X ) is open.

Image by Y. Yamashita

0 ∈ H0(X ,K 2
X ) corresponds to the

Fuchsian uniformization of X .

The comp ∋ 0 parametrizes T (S).
(This gives T × T ∼= QF .)

But there are many other components : exotic components.

We are interested in similar phenomena in another slice.
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Goldman’s classification
Let

Q0 = {CP1-strs with q-F holonomy with inj. dev. map } ⊂ P(S).

Q0 is a conn. comp. of hol−1(QF (S)) = {CP1-strs with q-F holonomy}.

2π-grafting

c ⊂ S : a simple closed curve
For (D, ρ) ∈ Q0, we can change D : S̃ → CP1 by inserting CP1 along
each lift of c. This dose not change the holonomy ρ.

Qc = {2π-grafting of (D, ρ) ∈ Q0} ⊂ P(S)

MLZ(S) = {disjoint union of scc’s with Z≥0 weight}
The above operation can be generalized for µ ∈ MLZ(S).

Theorem (Goldman (1987))

hol−1(QF (S)) =
⊔

µ∈MLZ(S)

Qµ (Q0: standard, Qµ (µ ̸= 0): exotic)
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More on 2π-grafting

We have defined 2π-grafting for Q0. This gives

Q0
∼=−→ Qµ

We can also define 2π-grafting for Qα along β (α,β ∈ MLZ(S)).

But if the intersection number i(α,β) ̸= 0, it depends on the choice of β
in its isotopy class.

Qα
∼=−→ Q(α,β)♯ or Q(α,β)♭

β

α

(Kentaro Ito (2007), Calsamiglia-Deroin-Francaviglia (2014))
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Linear slice
For γ ∈ π1(S) and ρ ∈ X (S), ρ(γ) ∈ PSL2C acts on H3.

Define the complex length X (S) → C/2π
√
−1Z by

λγ(ρ) = (translation length of ρ(γ)) +
√
−1 (rotation angle of ρ(γ)).

This is characterized by

tr(ρ(γ)) = 2 cosh

(
λγ(ρ)

2

)
.

From now on, we assume that S is a once
punctured torus.
For convenience, fix α,β ∈ π1(S) as in the
figure.

β

S
α

In this case, dimC X (S) = 2. For ℓ > 0, define the linear slice by

X (ℓ) = {ρ ∈ X (S) | λα(ρ) ≡ ℓ}
Then dimC X (ℓ) = 1, so easy to visualize.
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Complex Fenchel-Nielsen coordinates
The complex Fenchel-Nielsen coordinates give a parametrization

{τ ∈ C | −π < Im(τ) ≤ π}
∼=−−→ X (ℓ)

QF (S) in the linear slice X (18.0).

Geometrically speaking, if we let τ = t +
√
−1b, the representation is

obtained by twisting distance t and bending with angle b along α.

t
α β

b
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Linear slices of QF (S)
For each ℓ > 0, we are interested in the shape of

QF (ℓ) := QF (S) ∩ X (ℓ) ⊂ X (ℓ)

QF (2.0)

The Dehn twist along α acts on X (ℓ) as

τ *→ τ + ℓ. (translation)

The real line {τ | Im(τ) = 0} corresponds to the Fuchsian
representations satisfying λα = ℓ.

By McMullen’s disk convexity of QF (S),
QF (ℓ) is a union of (open) disks.
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QF (ℓ) := QF (S) ∩ X (ℓ) ⊂ X (ℓ)

QF (6.0)

The Dehn twist along α acts on X (ℓ) as
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Linear slices of QF (S)
For any ℓ > 0, there exists a unique standard component containing
Fuchsian representations. As pictures suggest;

Theorem (Komori-Yamashita, 2012)

QF (ℓ) has only one component if ℓ is sufficiently small,
has more than one component if ℓ is sufficiently large.

QF (2.0) QF (6.0)

We will give another proof for the latter part. In fact, we characterize
other components in terms of Goldman’s classification.

We lift the slice X (ℓ) ⊂ X (S) to P(S) by complex earthquake.
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Grafting
(Remark : “grafting” here is similar but different from 2π-grafting before.
In fact, “grafting” here changes the holonomy.)

We can construct another CP1-str from a Fuchsian uniformization.

X : a hyp str on S , α ⊂ X : a simple closed geodesic.

Let Grb·α(X ) be the CP1-str obtained from X by
inserting a height b annulus along α.

α

In the universal cover X̃ , the local picture looks like:

bα~

(By construction, Gr2π·α(X ) is obtained from X by 2π-grafting along α.)
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Grafting

The grafting operation Grb·α : T (S) → P(S) can be generalized for
measured laminations. Let ML(S) be the set of measured laminations.

Theorem (Thurston, Kamishima-Tan)

Gr : ML(S)× T (S) → P(S)

(µ,X ) *→ Grµ(X )

is a homeomorphism (Thurston coordinates).
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Complex Earthquake

Let H = {τ = t +
√
−1b ∈ C | b ≥ 0}. Fix ℓ > 0.

Let twt·α(Xℓ) =

(

t

α β )
∈ T (S).

Define Eq : H → P(S) by

Eq(t +
√
−1b) = Grb·α(twt·α(Xℓ)) ∈ P(S)

By Thurston coordinates, we can regard H ⊂ P(S).

Simply denote the image of H by Eq(ℓ).
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Complex Earthquake
By construction, hol is the natural projection:

P(S)
hol−−→ X (S)

⊂ ⊂

Eq(ℓ) → X (ℓ)

= =

{τ | Im(τ) ≥ 0} {τ | −π < Im(τ) ≤ π}
∈ ∈

τ *→ τ mod 2π
√
−1

We are interested in

QF (ℓ) := QF (S) ∩ X (ℓ) ⊂ X (ℓ),

so consider

hol−1(QF (ℓ)) = hol−1(X (ℓ) ∩ QF (S))

= Eq(ℓ) ∩ hol−1(QF (S)).
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hol−1(QF (S)) in Eq(ℓ)
By Goldman’s Theorem, we have

Eq(ℓ) ∩ hol−1(QF (S)) =
⊔

µ∈MLZ(S)

Eq(ℓ) ∩ Qµ.

Q2α

Qα

Q0

Eq(6.0)

Each component
belongs to some
Qµ.
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Complex Earthquake

hol maps each component of Eq(ℓ) ∩ Qµ

into a comp of QF (ℓ). Thus if

Eq(ℓ) ∩ Qµ ̸= ∅
for some µ /∈ {0,α, 2α, · · · }, QF (ℓ) has a
comp other than the standard one.
Moreover,

Prop (K.)

Eq(ℓ) ∩ hol−1(std comp) =
⊔

k≥0

Eq(ℓ) ∩ Qk·α

for any ℓ > 0.
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Existence of exotic components in Eq(ℓ)

We need to find µ /∈ {0,α, 2α, · · · } s.t. Eq(ℓ) ∩ Qµ ̸= ∅ for sufficiently
large ℓ > 0. Consider the case µ = β.

Let Dβ be the Dehn twist along β. Fix X ∈ T (S).

Consider a sequence in P(S) ∼= ML(S)× T (S)

(
2π

n
Dn
β(α), X

) n Dβ(α)
n

which converges to (2πβ, X ) ∈ Qβ as n → ∞.

Thus (2πn Dn
β(α), X ) ∈ Qβ for large n.

Apply D−n
β , then (2πn α, D−n

β (X )) ∈ Qβ for large n.

But if we let ℓ = ℓα(D
−n
β (X )), (2πn α, D−n

β (X )) ∈ Eq(ℓ).
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Final Remarks

ℓα(D
−n
β (X )) is getting longer as n → ∞, but ℓβ(D

−n
β (X )) is

constant. Thus the Fenchel-Nielsen twist of D−n
β (X ) w.r.t. α is

relatively small. So Qβ is near the origin (probably with ‘bumping’).

For k ∈ N, we can show Eq(ℓ) ∩ Qk·β ̸= ∅ similarly for large ℓ by
considering

(
2πk

n
Dn
β(α), X

)
n→∞−−−→ (2πkβ, X ) ∈ Qk·β .

ℓ = 10.0

Moreover we can use µ ∈ ML(S)Z instead of β provided i(µ,α) ̸= 0.
If µ = pα+ β, Qpα+β is near (−pℓ, 0) by the above argument.

23 / 25



Final Remarks
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Final Remarks
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Final Remarks
The intersection Eq(ℓ) ∩ Qµ may consist of more than one component.

Moreover, the non-local connectivity of AH(S) (Bromberg) implies there
may be infinitely many.
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