Exotic components in linear slices of quasi-Fuchsian groups

Yuichi Kabaya

Kyoto University

Nara, October 292015

Outline

S : ori. surface with $\chi(S)<0$

$$
\begin{aligned}
X(S) & =\left\{\rho: \pi_{1}(S) \rightarrow \mathrm{PSL}_{2} \mathbb{C}\right\} /\{\sim \text { conjugation }\} \quad \text { (character variety) } \\
\cup & \\
A H(S) & =\{[\rho] \in X(S) \mid \rho: \text { faithful, discrete }\}
\end{aligned}
$$

By the celebrated Ending Lamination Theorem, $A H(S)$ is completely classified (\exists explicit parametrization).

But the shape of $A H(S)$ in $X(S)$ is complicated (cf. bumping phenomena, non-local connectivity).

$A H(S)$ (shaded) in some slice of $X(S)$

Outline

$A H(S)$ (shaded) in some slice of $X(S)$

Aim of this talk

- Try to understand the shape $A H(S)$ in $X(S)$ by taking slices.
- In particular, in terms of exotic projective structures.

Quick overview of Kleinian surface groups

\mathbb{H}^{3} : 3-dim hyperbolic space
$\mathrm{PSL}_{2} \mathbb{C}$ is isomorphic to the ori. pres. isometry group of \mathbb{H}^{3}.
For a surface S with $\chi(S)<0$, let

$$
X(S)=\left\{\rho: \pi_{1}(S) \rightarrow \mathrm{PSL}_{2} \mathbb{C}\right\} /\left\{\sim \text { conj. by } \mathrm{PSL}_{2} \mathbb{C}\right\} \quad \text { (character variety) }
$$

$A H(S)=\left\{[\rho] \in X(S) \mid\right.$ faithful, $\rho\left(\pi_{1}(S)\right)$ is discrete $\}$ (If S has punctures, we assume that reps are 'type-preserving'.) If $\rho \in A H(S), \quad \mathbb{H}^{3} / \rho\left(\pi_{1}(S)\right)$ is a hyp 3 -mfd homotopy equiv. to S. (Moreover, $\mathbb{H}^{3} / \rho\left(\pi_{1}(S)\right)$ is homeo to $S \times(-1,1) \quad$ (Bonahon).)

Simple example : $\rho: \pi_{1}(S) \xrightarrow{\cong} \Gamma<\operatorname{PSL}_{2}(\mathbb{R}) \quad(\Gamma:$ Fuchsian group $)$

Quick overview of Kleinian surface groups

Simple example : $\rho: \pi_{1}(S) \xrightarrow{\cong} \Gamma<\operatorname{PSL}_{2}(\mathbb{R}) \quad(\Gamma:$ Fuchsian group $)$

In this case, the limit set
$\Lambda=\left\{\right.$ accumulation pts of $\rho\left(\pi_{1}(S)\right) \cdot p$ at $\left.\infty\right\} \subset \mathbb{C} P^{1} \quad\left(\right.$ for some $\left.p \in \mathbb{H}^{3}\right)$ is a round circle.
$\rho \in A H(S)$ is called quasi-Fuchsian if the limit set Λ is homeo to a circle.

$$
Q F(S)=\{\rho \in A H(S) \mid \text { quasi-Fuchsian }\}
$$

Anyway, known that

$$
Q F(S)=\operatorname{lnt}(A H(S))
$$

Moreover,

$$
\overline{Q F(S)}=A H(S)
$$

(Density Theorem).

Quick overview of Kleinian surface groups

By Ahlfors-Bers theorem,

$$
Q F(S) \cong T(S) \times T(S)
$$

where $T(S)$ is the Teichmüller space of S.
In particular, $Q F(S)$ is homeo to $\mathbb{R}^{2(6 g-6)}$ if S is closed, genus g.

$$
\begin{aligned}
& X(S)=\left\{\rho: \pi_{1}(S) \rightarrow \mathrm{PSL}_{2} \mathbb{C}\right\} /\left\{\sim \text { conj. by } \mathrm{PSL}_{2} \mathbb{C}\right\} \\
& \cup \\
& A H(S)=\left\{[\rho] \in X(S) \mid \text { faithful, } \rho\left(\pi_{1}(S)\right) \text { is discrete }\right\} \\
& \quad \cup \text { open, dense } \\
& Q F(S)=\{[\rho] \in A H(S) \mid \text { quasi-Fuchsian }\} \\
& \quad 2 \| \\
& T(S) \times T(S) \cong \mathbb{R}^{2(6 g-6)}
\end{aligned}
$$

Complex projective structures

S : surface $(\chi(S)<0)$

Definition

A complex projective structure or $\mathbb{C} P^{1}$-structure on S is a geometric structure locally modelled on $\mathbb{C} P^{1}$ with transition functions in $\mathrm{PSL}_{2} \mathbb{C}$.
(If S has punctures, assume some boundary conditions.)
By analytic continuation, we have a pair of maps
$D: \widetilde{S} \rightarrow \mathbb{C} P^{1}$ (developing map), $\quad \rho: \pi_{1}(S) \rightarrow \mathrm{PSL}_{2} \mathbb{C}$ (holonomy)
s.t. $D(\gamma \cdot x)=\rho(\gamma) \cdot D(x)\left(\gamma \in \pi_{1}(S), x \in \widetilde{S}\right)$.

Conversely, the pair determines the $\mathbb{C} P^{1}-\operatorname{str}\left(\bmod (D, \rho) \sim\left(g D, g \rho g^{-1}\right)\right)$.

Complex projective structures

Example (Fuchsian uniformization)

A hyperbolic str on S gives an identification $\widetilde{S} \cong \mathbb{H}^{2}$. Since $\mathbb{H}^{2} \subset \mathbb{C} P^{1}$, this gives a $\mathbb{C} P^{1}$-str.

Similarly as Teichmüller space, we can define

$$
P(S)=\left\{\text { marked } \mathbb{C} P^{1} \text {-structures on } S\right\} .
$$

Two important maps :

- The holonomy gives a map

$$
\text { hol }: P(S) \rightarrow X(S)=\operatorname{Hom}\left(\pi_{1}(S), \mathrm{PSL}_{2} \mathbb{C}\right) / \text { conj. }:(D, \rho) \mapsto \rho
$$

- Since Möbius transformations are holomorphic, a $\mathbb{C} P^{1}$-str defines a hol str (and the hyp. str. conformally equiv. to that).

$$
P(S) \rightarrow T(S)=\text { Teichmüller space }
$$

Bers slice

Each fiber of $P(S) \rightarrow T(S)$ is parametrized by

$$
H^{0}\left(X, K_{X}^{2}\right)=\{\text { hol. quad. differentials }\}
$$

via Schwarzian derivatives. In particular, if S is closed, genus g,

$$
\operatorname{dim}_{\mathbb{R}} P(S)=\operatorname{dim}_{\mathbb{R}} T(S)+\operatorname{dim}_{\mathbb{R}} H^{0}\left(X, K_{X}^{2}\right)=2(6 g-6)
$$

The set of $\mathbb{C} P^{1}$-strs with q-F holonomy in $H^{0}\left(X, K_{X}^{2}\right)$ is open.

- $0 \in H^{0}\left(X, K_{X}^{2}\right)$ corresponds to the Fuchsian uniformization of X.
- The comp $\ni 0$ parametrizes $T(S)$.
(This gives $T \times T \cong Q F$.)
Image by Y. Yamashita
But there are many other components: exotic components.
We are interested in similar phenomena in another slice.

Goldman's classification

Let

$$
Q_{0}=\left\{\mathbb{C} P^{1} \text {-strs with q-F holonomy with inj. dev. map }\right\} \subset P(S)
$$

Q_{0} is a conn. comp. of hol $^{-1}(Q F(S))=\left\{\mathbb{C} P^{1}\right.$-strs with q-F holonomy $\}$.

2π-grafting

$c \subset S$: a simple closed curve For $(D, \rho) \in Q_{0}$, we can change $D: \widetilde{S} \rightarrow \mathbb{C} P^{1}$ by inserting $\mathbb{C} P^{1}$ along each lift of c. This dose not change the holonomy ρ.

$$
Q_{c}=\left\{2 \pi \text {-grafting of }(D, \rho) \in Q_{0}\right\} \subset P(S)
$$

$$
\mathcal{M} \mathcal{L}_{\mathbb{Z}}(S)=\left\{\text { disjoint union of scc's with } \mathbb{Z}_{\geq 0} \text { weight }\right\}
$$

The above operation can be generalized for $\mu \in \mathcal{M} \mathcal{L}_{\mathbb{Z}}(S)$.
Theorem (Goldman (1987))

$$
\operatorname{hol}^{-1}(Q F(S))=\bigsqcup_{\mu \in \mathcal{M} \mathcal{L}_{\mathbb{Z}}(S)} Q_{\mu} \quad\left(Q_{0}: \text { standard, } Q_{\mu}(\mu \neq 0) \text { : exotic }\right)
$$

More on 2π-grafting

We have defined 2π-grafting for Q_{0}. This gives

$$
Q_{0} \stackrel{\cong}{\rightrightarrows} Q_{\mu}
$$

We can also define 2π-grafting for Q_{α} along $\beta\left(\alpha, \beta \in \mathcal{M}_{\mathbb{Z}}(S)\right)$.
But if the intersection number $i(\alpha, \beta) \neq 0$, it depends on the choice of β in its isotopy class.

$$
Q_{\alpha} \cong Q_{(\alpha, \beta)_{\sharp}} \text { or } Q_{(\alpha, \beta)_{b}}
$$

(Kentaro Ito (2007), Calsamiglia-Deroin-Francaviglia (2014))

Linear slice

For $\gamma \in \pi_{1}(S)$ and $\rho \in X(S), \quad \rho(\gamma) \in \mathrm{PSL}_{2} \mathbb{C}$ acts on \mathbb{H}^{3}.
Define the complex length $X(S) \rightarrow \mathbb{C} / 2 \pi \sqrt{-1} \mathbb{Z}$ by
$\lambda_{\gamma}(\rho)=($ translation length of $\rho(\gamma))+\sqrt{-1}($ rotation angle of $\rho(\gamma))$.
This is characterized by

$$
\operatorname{tr}(\rho(\gamma))=2 \cosh \left(\frac{\lambda_{\gamma}(\rho)}{2}\right)
$$

From now on, we assume that S is a once punctured torus.
For convenience, fix $\alpha, \beta \in \pi_{1}(S)$ as in the figure.

In this case, $\operatorname{dim}_{\mathbb{C}} X(S)=2$. For $\ell>0$, define the linear slice by

$$
X(\ell)=\left\{\rho \in X(S) \mid \lambda_{\alpha}(\rho) \equiv \ell\right\}
$$

Then $\operatorname{dim}_{\mathbb{C}} X(\ell)=1$, so easy to visualize.

Complex Fenchel-Nielsen coordinates

The complex Fenchel-Nielsen coordinates give a parametrization

$$
\{\tau \in \mathbb{C} \mid-\pi<\operatorname{lm}(\tau) \leq \pi\} \xrightarrow{\cong} X(\ell)
$$

$Q F(S)$ in the linear slice $X(18.0)$.

Geometrically speaking, if we let $\tau=t+\sqrt{-1} b$, the representation is obtained by twisting distance t and bending with angle b along α.

Linear slices of $Q F(S)$

For each $\ell>0$, we are interested in the shape of

$$
Q F(\ell):=Q F(S) \cap X(\ell) \subset X(\ell)
$$

- The Dehn twist along α acts on $X(\ell)$ as

$$
\tau \mapsto \tau+\ell . \quad \text { (translation) }
$$

- The real line $\{\tau \mid \operatorname{Im}(\tau)=0\}$ corresponds to the Fuchsian representations satisfying $\lambda_{\alpha}=\ell$.
- By McMullen's disk convexity of $Q F(S)$, $Q F(\ell)$ is a union of (open) disks.

Linear slices of $Q F(S)$

For each $\ell>0$, we are interested in the shape of

$$
Q F(\ell):=Q F(S) \cap X(\ell) \subset X(\ell)
$$

$$
Q F(6.0)
$$

- The Dehn twist along α acts on $X(\ell)$ as

$$
\tau \mapsto \tau+\ell . \quad \text { (translation) }
$$

- The real line $\{\tau \mid \operatorname{Im}(\tau)=0\}$ corresponds to the Fuchsian representations satisfying $\lambda_{\alpha}=\ell$.
- By McMullen's disk convexity of $Q F(S)$, $Q F(\ell)$ is a union of (open) disks.

Linear slices of $Q F(S)$

For any $\ell>0$, there exists a unique standard component containing Fuchsian representations. As pictures suggest;

Theorem (Komori-Yamashita, 2012)
$Q F(\ell)$ has only one component if ℓ is sufficiently small, has more than one component if ℓ is sufficiently large.

We will give another proof for the latter part. In fact, we characterize other components in terms of Goldman's classification.

We lift the slice $X(\ell) \subset X(S)$ to $P(S)$ by complex earthquake.

Grafting

(Remark: "grafting" here is similar but different from 2π-grafting before. In fact, "grafting" here changes the holonomy.)

We can construct another $\mathbb{C} P^{1}$-str from a Fuchsian uniformization.
$X:$ a hyp str on $S, \quad \alpha \subset X:$ a simple closed geodesic.

Let $\operatorname{Gr}_{b \cdot \alpha}(X)$ be the $\mathbb{C} P^{1}$-str obtained from X by inserting a height b annulus along α.

In the universal cover \widetilde{X}, the local picture looks like:

(By construction, $\operatorname{Gr}_{2 \pi \cdot \alpha}(X)$ is obtained from X by 2π-grafting along α.)

Grafting

The grafting operation $\mathrm{Gr}_{b \cdot \alpha}: T(S) \rightarrow P(S)$ can be generalized for measured laminations. Let $\mathcal{M} \mathcal{L}(S)$ be the set of measured laminations.

Theorem (Thurston, Kamishima-Tan)

$$
\begin{aligned}
\mathrm{Gr}: \mathcal{M L}(S) \times T(S) & \rightarrow P(S) \\
(\mu, X) & \mapsto
\end{aligned} \operatorname{Gr}_{\mu}(X)
$$

is a homeomorphism (Thurston coordinates).

Complex Earthquake

Let $\quad \overline{\mathbb{H}}=\{\tau=t+\sqrt{-1} b \in \mathbb{C} \mid b \geq 0\} . \quad$ Fix $\ell>0$.

Let $\operatorname{tw}_{t \cdot \alpha}\left(X_{\ell}\right)=(\alpha$ (
Define Eq : $\overline{\mathbb{H}} \rightarrow P(S)$ by

$$
\mathrm{Eq}(t+\sqrt{-1} b)=\mathrm{Gr}_{b \cdot \alpha}\left(\mathrm{tw}_{t \cdot \alpha}\left(X_{\ell}\right)\right) \in P(S)
$$

By Thurston coordinates, we can regard $\overline{\mathbb{H}} \subset P(S)$.
Simply denote the image of $\overline{\mathbb{H}}$ by $\mathrm{Eq}(\ell)$.

Complex Earthquake

By construction, hol is the natural projection:

We are interested in

$$
Q F(\ell):=Q F(S) \cap X(\ell) \subset X(\ell)
$$

so consider

$$
\begin{aligned}
\operatorname{hol}^{-1}(Q F(\ell)) & =\operatorname{hol}^{-1}(X(\ell) \cap Q F(S)) \\
& =\mathrm{Eq}(\ell) \cap \mathrm{hol}^{-1}(Q F(S)) .
\end{aligned}
$$

$\mathrm{hol}^{-1}(Q F(S))$ in $\mathrm{Eq}(\ell)$

By Goldman's Theorem, we have

$$
\mathrm{Eq}(\ell) \cap \mathrm{hol}^{-1}(Q F(S))=\bigsqcup_{\mu \in \mathcal{M} \mathcal{L}_{\mathbb{Z}}(S)} \mathrm{Eq}(\ell) \cap Q_{\mu} .
$$

Eq (6.0)

Each component belongs to some Q_{μ}.

Complex Earthquake

hol maps each component of $\mathrm{Eq}(\ell) \cap Q_{\mu}$ into a comp of $Q F(\ell)$. Thus if

$$
\mathrm{Eq}(\ell) \cap Q_{\mu} \neq \emptyset
$$

for some $\mu \notin\{0, \alpha, 2 \alpha, \cdots\}, Q F(\ell)$ has a comp other than the standard one.
Moreover,

Prop (K.)

$$
E q(\ell) \cap \mathrm{hol}^{-1}(\text { std comp })=\bigsqcup_{k \geq 0} E q(\ell) \cap Q_{k \cdot \alpha}
$$

for any $\ell>0$.

Existence of exotic components in $\mathrm{Eq}(\ell)$

We need to find $\mu \notin\{0, \alpha, 2 \alpha, \cdots\}$ s.t. $\mathrm{Eq}(\ell) \cap Q_{\mu} \neq \emptyset$ for sufficiently large $\ell>0$. Consider the case $\mu=\beta$.

Let D_{β} be the Dehn twist along β. Fix $X \in \mathcal{T}(S)$.
Consider a sequence in $P(S) \cong \mathcal{M} \mathcal{L}(S) \times \mathcal{T}(S)$

$$
\left(\frac{2 \pi}{n} D_{\beta}^{n}(\alpha), X\right)
$$

which converges to $(2 \pi \beta, X) \in Q_{\beta}$ as $n \rightarrow \infty$.
Thus $\left(\frac{2 \pi}{n} D_{\beta}^{n}(\alpha), X\right) \in Q_{\beta}$ for large n.
Apply D_{β}^{-n}, then $\left(\frac{2 \pi}{n} \alpha, D_{\beta}^{-n}(X)\right) \in Q_{\beta}$ for large n.
But if we let $\ell=\ell_{\alpha}\left(D_{\beta}^{-n}(X)\right),\left(\frac{2 \pi}{n} \alpha, D_{\beta}^{-n}(X)\right) \in \mathrm{Eq}(\ell)$.

Final Remarks

- $\ell_{\alpha}\left(D_{\beta}^{-n}(X)\right)$ is getting longer as $n \rightarrow \infty$, but $\ell_{\beta}\left(D_{\beta}^{-n}(X)\right)$ is constant. Thus the Fenchel-Nielsen twist of $D_{\beta}^{-n}(X)$ w.r.t. α is relatively small. So Q_{β} is near the origin (probably with 'bumping').
- For $k \in \mathbb{N}$, we can show $\mathrm{Eq}(\ell) \cap Q_{k \cdot \beta} \neq \emptyset$ similarly for large ℓ by considering

- Moreover we can use $\mu \in \mathcal{M} \mathcal{L}(S)_{\mathbb{Z}}$ instead of β provided $i(\mu, \alpha) \neq 0$. If $\mu=p \alpha+\beta, Q_{p \alpha+\beta}$ is near $(-p \ell, 0)$ by the above argument.

Final Remarks

Final Remarks

Final Remarks

The intersection $\mathrm{Eq}(\ell) \cap Q_{\mu}$ may consist of more than one component. Moreover, the non-local connectivity of $A H(S)$ (Bromberg) implies there may be infinitely many.

