Exotic components in linear slices of quasi-Fuchsian groups

Yuichi Kabaya

Kyoto University

Nara, October 29 2015

Outline

$$S : \text{ ori. surface with } \chi(S) < 0$$

$$X(S) = \{\rho : \pi_1(S) \to \mathsf{PSL}_2\mathbb{C}\} / \{\sim \text{ conjugation}\} \quad \text{(character variety)}$$

$$\cup$$

$$AH(S) = \{[\rho] \in X(S) \mid \rho : \text{faithful, discrete}\}$$

By the celebrated Ending Lamination Theorem, AH(S) is completely classified (\exists explicit parametrization).

But the shape of AH(S) in X(S) is complicated (cf. bumping phenomena, non-local connectivity).

AH(S) (shaded) in some slice of X(S)

Outline

AH(S) (shaded) in some slice of X(S)

Aim of this talk

- Try to understand the shape AH(S) in X(S) by taking slices.
- In particular, in terms of exotic projective structures.

Quick overview of Kleinian surface groups

 \mathbb{H}^3 : 3-dim hyperbolic space

 $\mathsf{PSL}_2\mathbb{C}$ is isomorphic to the ori. pres. isometry group of $\mathbb{H}^3.$

For a surface S with $\chi(S) < 0$, let $X(S) = \{\rho : \pi_1(S) \to \mathsf{PSL}_2\mathbb{C}\}/\{\sim \operatorname{conj.} \text{ by } \mathsf{PSL}_2\mathbb{C}\}$ (character variety) IJ $AH(S) = \{ [\rho] \in X(S) \mid \text{faithful}, \rho(\pi_1(S)) \text{ is discrete} \}$ (If S has punctures, we assume that reps are 'type-preserving'.) If $\rho \in AH(S)$, $\mathbb{H}^3/\rho(\pi_1(S))$ is a hyp 3-mfd homotopy equiv. to S. (Moreover, $\mathbb{H}^3/\rho(\pi_1(S))$ is homeo to $S \times (-1,1)$ (Bonahon).) Simple example : $\rho : \pi_1(S) \xrightarrow{\cong} \Gamma < \mathsf{PSL}_2(\mathbb{R})$ (Γ : Fuchsian group)

Quick overview of Kleinian surface groups

Simple example : $\rho : \pi_1(S) \xrightarrow{\cong} \Gamma < \mathsf{PSL}_2(\mathbb{R})$ (Γ : Fuchsian group)

In this case, the limit set

 $\Lambda = \{ \text{accumulation pts of } \rho(\pi_1(S)) \cdot p \text{ at } \infty \} \subset \mathbb{C}P^1 \quad (\text{for some } p \in \mathbb{H}^3) \\ \text{is a round circle.} \end{cases}$

 $\rho \in AH(S)$ is called quasi-Fuchsian if the limit set Λ is homeo to a circle. $QF(S) = \{\rho \in AH(S) \mid \text{quasi-Fuchsian}\}$

Anyway, known that

QF(S) = Int(AH(S)).

Moreover,

$$\overline{QF(S)} = AH(S)$$

(Density Theorem).

Quick overview of Kleinian surface groups

By Ahlfors-Bers theorem,

 $QF(S) \cong T(S) \times T(S)$

where T(S) is the Teichmüller space of S.

In particular, QF(S) is homeo to $\mathbb{R}^{2(6g-6)}$ if S is closed, genus g.

$$\begin{split} X(S) &= \{\rho : \pi_1(S) \to \mathsf{PSL}_2\mathbb{C}\}/\{\sim \operatorname{conj.} \text{ by } \mathsf{PSL}_2\mathbb{C}\} \\ & \cup \\ AH(S) &= \{[\rho] \in X(S) \mid \mathsf{faithful}, \ \rho(\pi_1(S)) \text{ is discrete}\} \\ & \cup \text{ open, dense} \\ QF(S) &= \{[\rho] \in AH(S) \mid \mathsf{quasi-Fuchsian}\} \\ & \wr \mathbb{I} \\ T(S) \times T(S) &\cong \mathbb{R}^{2(6g-6)} \end{split}$$

Complex projective structures S : surface ($\chi(S) < 0$)

Definition

A complex projective structure or $\mathbb{C}P^1$ -structure on S is a geometric structure locally modelled on $\mathbb{C}P^1$ with transition functions in $PSL_2\mathbb{C}$.

(If S has punctures, assume some boundary conditions.) By analytic continuation, we have a pair of maps

 $D: \widetilde{S} \to \mathbb{C}P^1$ (developing map), $\rho: \pi_1(S) \to \mathsf{PSL}_2\mathbb{C}$ (holonomy) s.t. $D(\gamma \cdot x) = \rho(\gamma) \cdot D(x)$ ($\gamma \in \pi_1(S), x \in \widetilde{S}$).

Conversely, the pair determines the $\mathbb{C}P^1$ -str (mod $(D, \rho) \sim (gD, g\rho g^{-1}))$.

Complex projective structures

Example (Fuchsian uniformization)

A hyperbolic str on S gives an identification $\widetilde{S} \cong \mathbb{H}^2$. Since $\mathbb{H}^2 \subset \mathbb{C}P^1$, this gives a $\mathbb{C}P^1$ -str.

Similarly as Teichmüller space, we can define

$$P(S) = \{ \text{marked } \mathbb{C}P^1 \text{-structures on } S \}.$$

Two important maps :

• The holonomy gives a map

 $\mathsf{hol}: P(S) \to X(S) = \mathsf{Hom}(\pi_1(S), \mathsf{PSL}_2\mathbb{C})/\mathsf{conj.}: (D, \rho) \mapsto \rho$

• Since Möbius transformations are holomorphic, a $\mathbb{C}P^1$ -str defines a hol str (and the hyp. str. conformally equiv. to that).

$$P(S) \rightarrow T(S) = \text{Teichmüller space}$$

Bers slice

Each fiber of $P(S) \to T(S)$ is parametrized by $H^0(X, K_X^2) = \{\text{hol. quad. differentials}\}$

via Schwarzian derivatives. In particular, if S is closed, genus g,

$$\dim_{\mathbb{R}} P(S) = \dim_{\mathbb{R}} T(S) + \dim_{\mathbb{R}} H^0(X, K_X^2) = 2(6g - 6)$$

The set of $\mathbb{C}P^1$ -strs with q-F holonomy in $H^0(X, K_X^2)$ is open.

Image by Y. Yamashita

- 0 ∈ H⁰(X, K_X²) corresponds to the Fuchsian uniformization of X.
- The comp \ni 0 parametrizes T(S). (This gives $T \times T \cong QF$.)

But there are many other components : exotic components.

We are interested in similar phenomena in another slice.

Goldman's classification

Let

 $Q_0 = \{ \mathbb{C} P^1 ext{-strs} ext{ with q-F holonomy with inj. dev. map } \} \subset P(\mathcal{S}).$

 Q_0 is a conn. comp. of hol⁻¹(QF(S)) = { $\mathbb{C}P^1$ -strs with q-F holonomy}.

2π -grafting

 $c \subset S$: a simple closed curve For $(D, \rho) \in Q_0$, we can change $D : \widetilde{S} \to \mathbb{C}P^1$ by inserting $\mathbb{C}P^1$ along each lift of c. This dose not change the holonomy ρ .

$$Q_c = \{2\pi$$
-grafting of $(D, \rho) \in Q_0\} \subset P(S)$

 $\mathcal{ML}_{\mathbb{Z}}(S) = \{ \text{disjoint union of scc's with } \mathbb{Z}_{\geq 0} \text{ weight} \}$

The above operation can be generalized for $\mu \in \mathcal{ML}_{\mathbb{Z}}(S)$.

Theorem (Goldman (1987))

$$\operatorname{hol}^{-1}(QF(S)) = \bigsqcup_{\mu \in \mathcal{ML}_{\mathbb{Z}}(S)} Q_{\mu} \quad (Q_0: \ standard, \ Q_{\mu} \ (\mu \neq 0): \ exotic)$$

More on 2π -grafting

We have defined 2π -grafting for Q_0 . This gives

$$\mathcal{Q}_0 \xrightarrow{\cong} \mathcal{Q}_\mu$$

We can also define 2π -grafting for Q_{α} along β $(\alpha, \beta \in \mathcal{ML}_{\mathbb{Z}}(S))$.

But if the intersection number $i(\alpha, \beta) \neq 0$, it depends on the choice of β in its isotopy class.

$$\begin{array}{c|c} Q_{\alpha} \xrightarrow{\cong} Q_{(\alpha,\beta)_{\sharp}} \text{ or } Q_{(\alpha,\beta)_{\flat}} \\ & & & \\ \hline \\ \alpha & & & \\ \hline \\ & & \\ \end{array} \xrightarrow{\beta} & & \\ \hline \\ & & \\ \end{array}$$

(Kentaro Ito (2007), Calsamiglia-Deroin-Francaviglia (2014))

Linear slice

For $\gamma \in \pi_1(S)$ and $\rho \in X(S)$, $\rho(\gamma) \in \mathsf{PSL}_2\mathbb{C}$ acts on \mathbb{H}^3 .

Define the complex length $X(S) o \mathbb{C}/2\pi \sqrt{-1}\mathbb{Z}$ by

 $\lambda_{\gamma}(\rho) = (\text{translation length of } \rho(\gamma)) + \sqrt{-1} (\text{rotation angle of } \rho(\gamma)).$

This is characterized by

$${\sf tr}(
ho(\gamma))=2\cosh\left(rac{\lambda_\gamma(
ho)}{2}
ight).$$

From now on, we assume that S is a once punctured torus.

For convenience, fix $\alpha, \beta \in \pi_1(S)$ as in the figure.

In this case, dim_{\mathbb{C}} X(S) = 2. For $\ell > 0$, define the linear slice by

$$X(\ell) = \{
ho \in X(S) \mid \lambda_{lpha}(
ho) \equiv \ell \}$$

Then dim_{\mathbb{C}} $X(\ell) = 1$, so easy to visualize.

Complex Fenchel-Nielsen coordinates

The complex Fenchel-Nielsen coordinates give a parametrization

$$\{\tau \in \mathbb{C} \mid -\pi < \operatorname{Im}(\tau) \leq \pi\} \xrightarrow{\cong} X(\ell)$$

QF(S) in the linear slice X(18.0).

Geometrically speaking, if we let $\tau = t + \sqrt{-1}b$, the representation is obtained by twisting distance t and bending with angle b along α .

Linear slices of QF(S)

For each $\ell > 0$, we are interested in the shape of

 $QF(\ell) := QF(S) \cap X(\ell) \subset X(\ell)$

• The Dehn twist along lpha acts on $X(\ell)$ as

 $\tau \mapsto \tau + \ell$. (translation)

- The real line $\{\tau \mid \text{Im}(\tau) = 0\}$ corresponds to the Fuchsian representations satisfying $\lambda_{\alpha} = \ell$.
- By McMullen's disk convexity of QF(S), QF(ℓ) is a union of (open) disks.

Linear slices of QF(S)

For each $\ell > 0$, we are interested in the shape of

 $QF(\ell) := QF(S) \cap X(\ell) \subset X(\ell)$

• The Dehn twist along lpha acts on $X(\ell)$ as

 $\tau \mapsto \tau + \ell$. (translation)

- The real line $\{\tau \mid \text{Im}(\tau) = 0\}$ corresponds to the Fuchsian representations satisfying $\lambda_{\alpha} = \ell$.
- By McMullen's disk convexity of QF(S), QF(ℓ) is a union of (open) disks.

Linear slices of QF(S)

For any $\ell > 0$, there exists a unique standard component containing Fuchsian representations. As pictures suggest;

Theorem (Komori-Yamashita, 2012)

 $QF(\ell)$ has only one component if ℓ is sufficiently small, has more than one component if ℓ is sufficiently large.

We will give another proof for the latter part. In fact, we characterize other components in terms of Goldman's classification.

We lift the slice $X(\ell) \subset X(S)$ to P(S) by complex earthquake.

Grafting

(Remark : "grafting" here is similar but different from 2π -grafting before. In fact, "grafting" here changes the holonomy.)

We can construct another $\mathbb{C}P^1$ -str from a Fuchsian uniformization.

X: a hyp str on S, $\alpha \subset X$: a simple closed geodesic.

Let $\operatorname{Gr}_{b \cdot \alpha}(X)$ be the $\mathbb{C}P^1$ -str obtained from X by inserting a height b annulus along α .

In the universal cover \widetilde{X} , the local picture looks like:

(By construction, $\operatorname{Gr}_{2\pi \cdot \alpha}(X)$ is obtained from X by 2π -grafting along α .)

Grafting

The grafting operation $\operatorname{Gr}_{b \cdot \alpha} : T(S) \to P(S)$ can be generalized for measured laminations. Let $\mathcal{ML}(S)$ be the set of measured laminations.

Theorem (Thurston, Kamishima-Tan)

is a homeomorphism (Thurston coordinates).

Complex Earthquake

Let
$$\overline{\mathbb{H}} = \{ \tau = t + \sqrt{-1}b \in \mathbb{C} \mid b \ge 0 \}.$$
 Fix $\ell > 0$.

Let
$$\operatorname{tw}_{t \cdot \alpha}(X_{\ell}) = \left(\begin{array}{c} \alpha \\ \end{array} \right) \in T(S).$$

Define Eq : $\overline{\mathbb{H}} \to P(S)$ by

$$\mathsf{Eq}(t+\sqrt{-1}b)=\mathsf{Gr}_{b\cdotlpha}(\mathsf{tw}_{t\cdotlpha}(X_\ell))\in P(S)$$

By Thurston coordinates, we can regard $\overline{\mathbb{H}} \subset P(S)$.

Simply denote the image of $\overline{\mathbb{H}}$ by Eq(ℓ).

Complex Earthquake

By construction, hol is the natural projection:

$$\begin{array}{cccc}
P(S) & \xrightarrow{hol} & X(S) \\
\cup & & \cup \\
Eq(\ell) & \rightarrow & X(\ell) \\
\parallel & & \parallel \\
\{\tau \mid Im(\tau) \ge 0\} & \{\tau \mid -\pi < Im(\tau) \le \pi\} \\
\cup & & & \\
\tau & \mapsto & \tau \mod 2\pi \sqrt{-1}
\end{array}$$

We are interested in

$$QF(\ell) := QF(S) \cap X(\ell) \subset X(\ell),$$

so consider

$$\begin{aligned} \mathsf{hol}^{-1}(QF(\ell)) &= \mathsf{hol}^{-1}(X(\ell) \cap QF(S)) \\ &= \mathsf{Eq}(\ell) \cap \mathsf{hol}^{-1}(QF(S)). \end{aligned}$$

Complex Earthquake

hol maps each component of $Eq(\ell) \cap Q_{\mu}$ into a comp of $QF(\ell)$. Thus if

$$\mathsf{Eq}(\ell) \cap \mathit{Q}_{\mu} \neq \emptyset$$

for some $\mu \notin \{0, \alpha, 2\alpha, \cdots\}$, $QF(\ell)$ has a comp other than the standard one. Moreover,

Prop (K.)

$${\it Eq}(\ell)\cap {\sf hol}^{-1}({\sf std}\;{\sf comp}) = \bigsqcup_{k\geq 0}{\it Eq}(\ell)\cap Q_{k\cdotlpha}$$

for any $\ell > 0$.

Existence of exotic components in $Eq(\ell)$

We need to find $\mu \notin \{0, \alpha, 2\alpha, \cdots\}$ s.t. $Eq(\ell) \cap Q_{\mu} \neq \emptyset$ for sufficiently large $\ell > 0$. Consider the case $\mu = \beta$.

Let D_{β} be the Dehn twist along β . Fix $X \in \mathcal{T}(S)$.

Consider a sequence in $P(S) \cong \mathcal{ML}(S) \times \mathcal{T}(S)$

which converges to $(2\pi\beta, X) \in Q_{\beta}$ as $n \to \infty$.

Thus $(\frac{2\pi}{n}D_{\beta}^{n}(\alpha), X) \in Q_{\beta}$ for large *n*.

Apply D_{β}^{-n} , then $(\frac{2\pi}{n}\alpha, D_{\beta}^{-n}(X)) \in Q_{\beta}$ for large *n*.

But if we let $\ell = \ell_{\alpha}(D_{\beta}^{-n}(X)), (\frac{2\pi}{n}\alpha, D_{\beta}^{-n}(X)) \in Eq(\ell).$

- ℓ_α(D⁻ⁿ_β(X)) is getting longer as n→∞, but ℓ_β(D⁻ⁿ_β(X)) is constant. Thus the Fenchel-Nielsen twist of D⁻ⁿ_β(X) w.r.t. α is relatively small. So Q_β is near the origin (probably with 'bumping').
- For k ∈ N, we can show Eq(ℓ) ∩ Q_{k⋅β} ≠ Ø similarly for large ℓ by considering

• Moreover we can use $\mu \in \mathcal{ML}(S)_{\mathbb{Z}}$ instead of β provided $i(\mu, \alpha) \neq 0$. If $\mu = p\alpha + \beta$, $Q_{p\alpha+\beta}$ is near $(-p\ell, 0)$ by the above argument.

24 / 25

The intersection $\mathsf{Eq}(\ell) \cap Q_\mu$ may consist of more than one component.

Moreover, the non-local connectivity of AH(S) (Bromberg) implies there may be infinitely many.

