
Can radiation-contaminated food be marketed?∗

Makoto SAITO† Masataka SUZUKI

November 2011

Abstract

This paper presents a simple theoretical model to explain consistently heteroge-

neous patterns in consumers’ valuation on radiation-contaminated milk by explicitly

incorporating a strong preference for zero radiation risks. In particular, it establishes

a rigorous condition under which contaminated milk is still traded at discount prices

even when contamination levels are relatively high. Using an internet-based ques-

tionnaire survey consisting of 7,600 respondents, we empirically explore whether the

above condition holds. According to estimation results, as milk contains more radi-

ation, a contaminated milk market disappears quickly among those who originally

perceive their own cancer risks to be rather low. Conversely, contaminated milk

is still traded at discount prices among those who are regarded as having already

carried considerable cancer risks.
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1 Motivation

Many kinds of food were contaminated by radiation which was released from the ex-

plosion at the Fukushima No. 1 nuclear plant in March 2011. Some of such radiation-

contaminated food immediately lost market liquidity even if they satisfied safety stan-

dards. Many researchers, including economists, interpreted such phenomena as heavily

driven by groundless and unscientific rumors, and as a consequence of irrational excessive

reaction to slight radiation possibility.

However, a particular consumer may be acutely sensitive to a possibility that food

is contaminated by slight radiation. Given such a strong aversion to low-level radiation

risks, his/her extreme reluctance to purchase slightly contaminated food can be inter-

preted as not irrational adverse reaction, but rational proper response. Thus, it may

not be interesting for us to ask ourselves whether a particular consumer’s reaction to

radiation-contaminated food is irrational or rational.

A more appealing question may be whether consumers’ attitudes toward radiation

risks are heterogeneous enough to sustain market liquidity for contaminated food. If

there emerges a market in which contaminated food is discounted to the extent that

food is contaminated, by risk-generous consumers, then shrinking demand among keenly

risk-averse consumers is replaced to some extent by steady demand from relatively risk-

generous consumers. We call such a discount transaction a ‘secondary’ market as opposed

to a ‘primary’ market in which food, considered as harmless, is traded without any

discount for radiation risks.

We usually interpret taking radiation risks by eating radiation-contaminated food as

taking additional cancer risks. According to the prospect theory, those who originally

perceive their own cancer risks to be rather low tend to overreact to additional cancer

risks, while those who are regarded as having already carried considerable cancer risks

are likely to be insensitive to a tiny increase in cancer risks. In other words, the former

(latter) type of consumers demonstrates a strong (weak) preference for zero cancer risks.

In this paper, we present a simple theoretical model to explain consistently hetero-

geneous patterns in consumers’ valuation on radiation-contaminated food by explicitly

incorporating varying degrees of preferences for zero radiation risks. For this purpose,

we construct as a structural model, a discrete/continuous choice model from a set of sim-
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ple assumptions of idiosyncratic preference shocks. From this simple theoretical model,

we can analytically derive, given a contamination level, how many consumers purchase

radiation-contaminated milk at a primary market, how many discount it at a secondary

market, and how many reveal a refusal to buy it. In addition, this model yields an

analytical form of a density function for prices quoted by those who discount contami-

nated milk. Consequently, we can define statistical likelihood functions rigorously, and

estimate this model by the maximum likelihood estimator.

As reasonably expected, both primary and secondary markets shrink rather quickly

among those who reveal a strong preference for zero radiation risks. Conversely, a

secondary market is expected to be active among those whose preference for zero risks

is fairly weak. In the above model, we theoretically explore when active secondary

markets are substituted for disappearing primary markets, and when even secondary

markets disappear rather quickly. If the former is a case, then a market mechanism

works to some extent to sustain liquidity for contaminated food markets.

Taking radiation-contaminated milk for example, we conducted an internet-based

questionnaire survey consisting of 7,600 consumers who were living in the Tokyo metropoli-

tan area in August 2011. We provided each respondent with a brief description about

how safety standards are set officially for radiation-contaminated milk. That is, follow-

ing the instruction issued by the International Commission on Radiological Protection

(ICRP), the Japanese government set 200 Becquerel (Bq) of cesium per kilogram of

milk as the upper limit, thereby reducing radiation-driven cancer risks to extremely low

levels.

We then asked them how they responded to milk contaminated at a level of 10 Bq

per kilogram, 50 Bq/kg, 100 Bq/kg, and 200 Bq/kg (corresponding to the upper limit).

Each responded by either purchasing it at a normal price (set at 200 yen per one liter

pack), discounting it below 200 yen, or refusing to purchase it at any price. We also

conducted a survey on the characteristics of the respondents, including their perception

about own cancer risks.

According to our estimation results, there are consumers whose degree of zero risk

preferences is on either side of the critical value below which a secondary market par-

tially substitutes for a primary market. More concretely, those who originally perceive

their own cancer risks to be rather low are unlikely to purchase contaminated milk at

even heavily discount prices. Conversely, those who are regarded as having already

carried considerable cancer risks, including heavy smokers and regular drinkers, are rel-
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atively generous to radiation-contaminated milk. Thus, there is still a possibility that a

secondary market works for such risk-generous consumers.

(to be completed)

2 A simple theoretical model

2.1 A basic setup

2.1.1 A case with/without a threshold

In this section, we construct as a structural form, a discrete/continuous choice model to

explain heterogeneous patterns in consumers’ valuation about radiation-contaminated

milk. We below formalize how the valuation of contaminated milk decreases with a

contamination level.

Suppose that one liter pack of milk is usually sold at 200 yen, and that it is evaluated

at vi by consumer i when it is possibly contaminated by radiation. As mentioned in the

introduction, the upper limit of a contamination level was set at 200 Bq of cesium per

kilogram for milk by the government. We thus consider several cases in which milk is

contaminated at D Bq per kilogram, where 0 < D ≤ 200.

Suppose that consumer i evaluates one liter pack of radiation-contaminated milk

according to the following equation:

vi = −pidi + 200(1 − pi), (1)

where pi represents a subjective evaluation about the probability that cancer risks are

realized, and di denotes a subjective assessment of a damage which would result from

the realization of cancer risks. As equation (1) implies, the valuation of contaminated

milk decreases with pi. We here define p̂i as the physical upper limit of pi where 0 =

−p̂idi + 200(1 − p̂i).

We consider cases with/without a threshold point. In a case without any threshold,

vi = 200 if pi = 0, 0 < vi < 200 if p̂i > pi > 0, and vi = 0 if pi = p̂i. As depicted

in Figure 1-1, the first (second, or third) case is called a case where a radiation risk is

considered as harmless (tolerable, or intolerable).

In a case with a threshold, consumer i lowers the admissible upper limit of pi from

p̂i to pi. We here define vi as the lower limit of vi where vi = −pidi + 200(1 − pi). As
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shown in Figure 1-2, the valuation of contaminated milk (vi) jumps from vi to zero once

a radiation risk reaches pi in terms of probability.

Here, we interpret p̂i

pi
as a risk-adjusted weight for the probability that an intolerable

cancer risk is realized. Once vi is available, we obtain the above risk-adjusted weight as

follows:
p̂i

pi

=
200

200 − vi

. (2)

In the estimation procedure, we indeed estimate vi.

2.1.2 Introducing idiosyncratic shocks

We below model the above individual valuation of radiation-contaminated milk by in-

troducing a set of idiosyncratic shocks. Because definite opinions about the potential

impact of radiation contamination may not be formed among consumers, we here for-

mulate idiosyncratic shocks such that there emerge large degrees of heterogeneity in risk

attitudes even among observationally equivalent consumers.

As described above, when a radiation risk is regarded as harmless, a consumer pur-

chases one liter pack of contaminated milk at a normal price or 200 yen. That is,

vi = 200. On the other hand, a consumer does not purchase contaminated milk at any

price when a radiation risk is regarded as intolerable. Consequently, vi = 0. As an in-

termediate case where a radiation risk is tolerable, a consumer purchases contaminated

milk, but discounts it. Accordingly, 0 < vi < 200 in a case without any threshold, and

vi < vi < 200 in a case with a threshold.

The above three cases are modeled as follows. The valuation vi revealed by consumer

i is characterized by two random variables, x and y, as idiosyncratic shocks. Here, x

is uniformly distributed between Di (≤ 0) and Di (≥ 200), while given x = X, y is

uniformly distributed between X and Di. That is,

x ∼ U
[
Di, Di

]
, (3)

y|x=X ∼ U
[
X, Di

]
, (4)

where U [., .] denotes the uniform distribution operator.

Figure 2 depicts a valuation function where vi is decreasing with D in a situation

where y is drawn from the uniform distribution given x = X. In Case 1, the consumer’s

valuation (vi) is equal to 200 yen when the contamination level (D) is lower than X (see
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Figure 3-1). In Case 2, vi is between vi (≥ 0) and 200 yen when X ≤ D ≤ y (see Figure

3-2). Here, the consumer’s valuation (vi) is assumed to decrease linearly with D as long

as D is below y, but v jumps from vi to zero at D = y in the presence of a threshold vi.

In Case 3, vi is equal to zero when D > y (see Figure 3-3).

Di, Di, and vi jointly parameterize the consumer’s attitude toward radiation risks.

More concretely, lower Di implies stronger preference for zero risks, when Di is given at

D (> 200). As discussed before, on the other hand, larger vi indicates a lower admissible

upper limit of the probability that a radiation risk is realized.

2.2 Computing the unconditional probability of the three cases

We below compute the unconditional probability that each of the three cases takes

place. From now on, we assume Di to be set at D (> 200) for all consumers, thereby

interpreting the value of Di relative to D as the degree of a preference for zero radiation

risks.

In Case 1, vi = 200 when D < X. Thus, how Case 1 is likely to occur corresponds

to the probability that x is between D and D.

Pr (D ≤ x) =
∫ D

D

1
D − Di

dx

=
D − D

D − Di

. (5)

In Case 2, vi < vi < 200 when D is between x and y. The conditional probability

that X < D < y given x = X is computed as follows:

Pr (D < y|x = X) =
∫ D

D

1
D − X

dy

=
D − D

D − X
. (6)

Thus, the unconditional probability for Case 2 is computed by integrating equation

(6) over Di < x < D:

Pr (x < D < y) =
∫ D

Di

(
D − D

D − x

1
D − Di

)
dx

=
D − D

D − Di

[
ln

(
D − Di

)
− ln

(
D − D

)]
. (7)
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In Case 3, vi = 0 when y ≤ D. The conditional probability of Case 3 given x = X is

computed as follows:

Pr (y ≤ D|x = X) = 1 − Pr (D < y|x = X)

=
D − X

D − X
. (8)

By integrating equation (8) over Di < x < D, the unconditional probability of Case

3 is computed as below:

Pr (y ≤ D) =
∫ D

Di

(
D − x

D − x

1
D − Di

)
dx

=
D − Di

D − Di

− D − D

D − Di

[
ln

(
D − Di

)
− ln

(
D − D

)]
. (9)

From equations (5), (7) and (9), we have Pr (D ≤ x)+Pr (x < D < y)+Pr (y ≤ D) =

1.

2.3 Derivation of the conditional density function of v for Case 2

2.3.1 The conditional density function

In Case 2, consumers purchase radiation-contaminated milk, but discount it when a

contamination level is tolerable. More concretely, 0 ≤ vi < vi < 200 when X < D < y

given x = X. As described before, the valuation function is linear with a discontinuous

valuation point where vi jumps from vi to zero at D = y. Note that vi = 0 in a case

without any threshold.

Thus, the function of vi for Case 2 is formulated as follows:

vi (y|x = X) = 200 − 200 − vi

y − X
(D − X) . (10)

Using a change of random variable technique, we below derive the conditional density

function for vi given X < D < y from equations (4) and (10).

φ (vi (y)|X < D < y) =
(200 − vi) (D − X)(
D − D

)
(200 − vi)

2 . (11)

Given vi, the lower limit of x is Dl (v) ≡ max
{

Di, D − 200−vi
vi−vi

(
D − D

)}
. Then, by

integrating over x, the conditional density function for vi given x = X < D < y is
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derived as follows:

φ (vi (y)|x < D < y) =
∫ D

Dl(v)

(200 − vi) (D − x)(
D − D

)
(200 − vi)

2

(
1

D − Di

)
dx

=
(200 − vi)

2
(
D − D

)
(D − Di) (200 − vi)

2 {D − Dl (v)}2

=


(200−vi)(D−Di)

2(D−D)(200−vi)
2 , vi ≤ vi < v̂i

(200−vi)(D−D)
2(D−Di)(vi−vi)

2 , v̂i ≤ vi < 200,

(12)

where:

v̂i = vi + (200 − vi)
D − D

D − Di

. (13)

2.3.2 Some statistics of the conditional distribution of v

As the appendix proves, the above-derived conditional density function of v yields the

identical median and mode at v̂i = vi + (200 − vi)
D−D
D−Di

.

On the other hand, the conditional expectation of v is calculated as follows:

E [vi|x < D < y] =
∫ 200

vi

vi · φ (vi(y)|x < D < y) dv

=
∫

bvi

vi

vi (200 − vi) (D − Di)
2

(
D − D

)
(200 − vi)

2 dv +
∫ 200

bvi

v (200 − vi)
(
D − D

)
2 (D − Di) (vi − vi)

2 dv

=
200 + vi

2
+

200 − vi

2

[
D − Di

D − D
ln

(
D − Di

D − Di

)
− D − D

D − Di

ln
(

D − D

D − Di

)]
.

(14)

We below present some properties of the above statistics. As reasonably expected, a

consumer discounts contaminated milk heavily as a contamination level (D) increases.

Thus, the mode (identical to the median) and the conditional average is expected to be

decreasing in D.

The mode (median) of vi, equal to v̂i, indeed decreases as D increases.

∂v̂i

∂D
= −

(
200 − vi

D − Di

)
≤ 0. (15)
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As shown below, the conditional expectation of v is also decreasing in D:

∂E [vi|x < D < y]
∂D

=
200 − vi

2

[
D − Di(
D − D

)2 ln
(

D − Di

D − Di

)
+

D − Di

(D − Di)
2 ln

(
D − D

D − Di

)
+

D − Di(
D − D

)
(D − Di)

]

≤ 200 − vi

2

[
D − Di(
D − D

)2

(
D − D

D − Di

)
+

D − Di

(D − Di)
2

(
Di − D

D − Di

)
+

D − Di(
D − D

)
(D − Di)

]
= 0, (16)

where we use the inequality lnx ≤ x − 1 in the second line of equation (16).

A consumer with lower Di relative to D is more sensitive to radiation risks, and

discounts contaminated milk more heavily. It is easy to show that both the mode (or

the median, v̂) and the conditional expectation (E [v|x < D < y]) is increasing in both

Di and vi.

2.4 A possibility that secondary markets substitute for primary mar-

kets

In this subsection, we explore whether secondary markets (Case 2) may substitute for

primary markets (Case 1) as contamination becomes serious, thereby preventing mar-

kets for contaminated milk from disappearing quickly (Case 3). That is, we examine

whether consumers trade contaminated milk actively at discount prices, even when a

contamination level increases.

As shown below, the unconditional probability that Case 1 emerges is monotonically

decreasing in a contamination level (D).

∂ Pr (vi = 200)
∂D

= − 1
D − Di

< 0. (17)

On the other hand, the unconditional probability that Case 3 emerges is monotoni-

cally increasing in D.

∂ Pr (vi = 0)
∂D

=
1

D − Di

ln
(

D − Di

D − D

)
> 0. (18)

Consequently, how the probability that Case 2 behaves as contamination levels in-

crease depends on whether a decrease in the probability of Case 1 is dominated by an

increase in the probability of Case 3.

From equation (7), the partial derivative of Pr (0 < vi < 200) with respect to D is
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calculated as follows:

∂ Pr (0 < vi < 200)
∂D

=
1

D − Di

(
1 + ln

D − D

D − Di

)
. (19)

From equation (19), if D ≤ Di +
(
D − Di

) (
1 − 1

exp(1)

)
, then ∂ Pr(0<v<200)

∂D ≥ 0.

Hence, if −Di

D−Di
≤ 1 − 1

exp(1) ≈ 0.632, ∂ Pr(0<v<200)
∂D can be positive when D is positive.1

In this case, a secondary market substitutes to some extent for a primary market, before

both markets shrink.

On the other hand, if −Di

D−Di
> 1 − 1

exp(1) ≈ 0.632, then ∂ Pr(0<v<200)
∂D is always neg-

ative. In this case, an increase in contamination levels necessarily dampens demand

in a secondary market where radiation-contaminated milk is discounted continuously

according to the contamination level.

As the above argument suggests, κi ≡ −Di

D−Di
can be interpreted as a key parameter

about the degree of zero risk preferences. As discussed before, the absolute value of Di

represents how strong a preference for zero radiation risks is. Thus, as a preference for

zero radiation risks is weaker, |Di| is smaller, and κi is lower. Thus, to the extent that

a preference for zero radiation risks is weak, a secondary market can be substituted for

a primary market.

Our empirical interest lies in how high κi is for a consumer with particular charac-

teristics. We want to infer from the estimated value of κi how milk markets are robust

(or fragile) with respect to radiation contamination.

11− 1
exp(1)

≈ 0.632 has the following interesting interpretation. Choose the population size q where a

rare catastrophic event with occurrence probability 1/q hits averagely on one person in the population.
Then, the probability that at least one person is hit by this rare event is computed as

1 − lim
q→∞

(1 − 1/q)q = 1 − 1

exp (1)
.

The fact that at least one person living in a society suffers from cancer due to radiation may trigger an
extremely adverse impact on a market transaction of contaminated food. In this sense, we may claim
that a market of contaminated food breaks down with probability of 0.632, when a substantial portion
of consumers in a society are extremely attentive to the realization of such infrequent events. On the
other hand, κi represents the probability that x is negative for consumer i. Thus, κi is interpreted as
the probability that consumer i has a strong preference for zero risks. Therefore, our proposition can
be interpreted as follows: if a consumer turns out to be keenly averse to such a rare catastrophic event
with probability of 63.2%, then a secondary market of contaminated food indeed fails to work effectively
with probability of 63.2%.
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2.4.1 Some numerical examples

As discussed above, κi (= −Di

D−Di
) plays a key role in determining how the probability of

Case 2 behaves. If κi is greater than 1 − 1
exp(1) (≈ 0.632), then primary and secondary

markets shrink simultaneously as D increases.

Figures 4-1 through 4-3 depict how the unconditional probability of each of the three

cases changes as contamination levels change. Figure 4-1 (4-2, 4-3) assumes that κi is

equal to 0.038 (0.167, 0.688). Since κi < 0.632 in the first two figures, the probability of

Case 2 is increasing in D unless D is fairly high. In these cases, secondary markets are

somewhat robust with respect to radiation contamination. In the last figure, however,

κi is greater than 0.632, and the probability of Case 2 is monotonically decreasing in

D. That is, primary and secondary markets shrink simultaneously in response to more

radiation-contaminated milk.

The above key parameter κi also plays a significant role in determining the shape

of the density functions for Case 2. As demonstrated in Figures 5-1 (κi = 0.4) and

5-2 (κi = 0.25), the mode (equivalently the median) of the density function shifts more

downward in response to an increase in D when κi is large.

3 A statistical model

In this section, we present a statistical model by introducing a linear specification into

the two systematic parts (Di and vi) in the discrete/continuous choice model of the

previous section. We thus define logarithmic likelihood functions depending on how a

consumer evaluate one liter pack of milk contaminated at D. With such preparation,

we estimate a set of structural parameters by the maximum likelihood estimation.

One potential complication here is that we may observe the individual valuation of

milk not at a single, but multiple contamination levels. In the questionnaire survey

conducted in this study, we indeed asked each respondent about his/her valuation of

milk contaminated at four levels, that is, 10 Bq, 50 Bq, 100 Bq, and 200 Bq.

In this section, we thus propose a statistical model first for a case with a single

contamination level, and then move to a case with multiple contamination levels.
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3.1 A case where the individual valuation is observed at a single con-

tamination level

In our theoretical model, there are three consumer-specific parameters Θ ≡
(
D,Di, vi

)
that determine how an individual consumer responds to radiation risks. We expect that

Di and vi are systemically correlated with individual characteristics such as gender, age,

income level, and so on. Given such systematic parts, the random variables x and y can

be interpreted as idiosyncratic preference shocks.

We thus assume the following linear specification for these systemic parts:

Di = ziβ + constD, (20)

vi = ziγ + constv, (21)

where zi is a 1 × K vector which represents individual characteristics, and β and γ are

respectively K × 1 coefficient vectors.

It is in principle possible to formulate Di = ziα + constD as well. But, we treat

D as a constant parameter to avoid potential identification problems in estimating Di

together with Di and vi.

Given the individual valuation (vi) of milk contaminated at D, we derive from equa-

tion (5), (7), (9), and (12), the following logarithmic likelihood functions:

lnL (v|Θ, D) =



ln
[

D−Di

D−Di
− D−D

D−Di
{ln

(
D − Di

)
− ln

(
D − D

)
}
]
, vi = 0

ln
[

(200−vi)(D−Di)

2(D−Di)(200−vi)
2 {ln

(
D − Di

)
− ln

(
D − D

)
}
]

, vi ≤ vi < v̂

ln
[

(200−vi)(D−D)2

2(D−Di)(D−Di)(vi−vi)
2 {ln

(
D − Di

)
− ln

(
D − D

)
}
]

, v̂ ≤ vi < 200

ln
[

D−D
D−Di

]
, vi = 200.

(22)

From equations (20) through (22), we can estimate coefficients (β, γ) by the maxi-

mum likelihood estimation. In this case, D cannot be pinned down without any infor-

mation about a slope of linear valuation through two or more observations included in

Case 2. Thus, D must be predetermined.
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3.2 A case where the individual valuation is observed at multiple con-

tamination levels

In this subsection, we consider a case where the individual valuation of contaminated

milk is observed at not a single level D, but multiple levels Dj where j = 1, 2, 3, and 4.

With more observations of the individual valuation, we can pin down more specifically

the range of two random variables x and y, thereby narrowing the range of integration

in deriving distribution (density) functions.

More concretely, we narrow the range of these random variables as follows. If Case

1 is observed for Dj , then the lower limit of x is not Di, but Dj . If Case 2 is observed

for Dj , then the upper limit of x is not D, but Dj , and the lower limit of y is not Di,

but Dj . If Case 3 is observed for Dj , then the upper limit of y is Dj .

When there are two or more observations in Case 2, the range of the valuation vi is

narrowed as well. Taking a case with two observations at both D2 and D3 included in

Case 2 for example, as shown in Figure 6-1, the upper limit of x reduces to D2 when

a threshold is absent (vi = 0). Consequently, the upper limit of vi at D3 becomes low

relative to 200 yen. As depicted in Figure 6-2, on the other hand, the lower limit of y

increases to D3. As a result, the lower limit of vi at D2 becomes high relative to zero

yen. The above argument suggests that D can be estimated from the information about

the distribution of discount prices, which are observed in Case 2.

In the presence of a threshold (vi > 0), the upper limit of vi is relaxed to some

extent. As shown in Figure 6-1, it increases from (a) to (b) at D3. On the other hand,

the lower limit of vi is restricted more with vi > 0. As shown in Figure 6-2, it increases

from (a) to (b) at D2.

Taking the above aspects into consideration, we below derive a set of logarithmic

likelihood functions in a case where the individual valuation of contaminated milk is

observed at multiple contamination levels Dj for j = 1, 2, 3, 4. In our questionnaire

survey,
(
D1, D2, D3, D4

)
= (10, 50, 100, 200). For each Dj , the valuation of radiation-

contaminated milk by consumer i is denoted by vj
i .

To simplify the notation, we define as follows Case ≡
(
k1, k2, k3, k4

)
where kj =

1, 2, 3. Each kj represents one of the three cases when a contamination level is Dj . For

example, if the valuation of contaminated milk by consumer i is observed as v1
i = v2

i =

200, vi < v3
i < 200, and v4

i = 0, then Case = (1, 1, 2, 3).

By construction, vj
i is non-increasing in Dj . Consequently, there are fifteen combina-
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tions in Case:
(
k1, k2, k3, k4

)
= (1, 1, 1, 1), (1, 1, 1, 2), (1, 1, 1, 3), (1, 1, 2, 2), (1, 1, 2, 3),

(1, 1, 3, 3), (1, 2, 2, 2), (1, 2, 2, 3), (1, 2, 3, 3), (1, 3, 3, 3), (2, 2, 2, 2), (2, 2, 2, 3), (2, 2, 3, 3),

(2, 3, 3, 3), and (3, 3, 3, 3).

Then, the unconditional probability of each combination is derived as follows:

Pr (case)

=



Pr
(
D4 ≤ x

)
= Di−D4
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(23)

Next, we derive the conditional density function for vj
i when kj = 2. With obser-

vations at multiple levels, the range of x and y is in general restricted to
[
Dx, Dx

)
and(

Dy, Dy

]
, where Di ≤ Dx ≤ Dx ≤ Dy ≤ Dy ≤ Di. Given vj

i , the possible range of x is

further restricted to
[
Dl

(
vj
i

)
, Dh

(
vj
i

))
, where:

Dl

(
vj
i

)
= max

{
Dx, Dj −

200 − vj
i

vj
i − vi

(
Dy − Dj

)}
, (24)

Dh

(
vj
i

)
= min

{
Dx, Dj −

200 − vj
i

vj
i − vi

(
Dy − Dj

)}
. (25)

Using equation (11) and considering narrower integration ranges, the conditional density
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function for vj
i is computed as follows:

φ
(

vj
i

∣∣∣Case
)

=
∫ Dh(vj

i )

Dl(vj
i )

(200 − vi)
(
Dj − x

)
(
Dy − Dy

) (
200 − vj

i

)2

(
1

Dx − Dx

)
dx (26)

=
200 − vi

2
(
Dx − Dx

) (
Dy − Dy

) (
200 − vj

i

)2

[{
Dj − Dl

(
vj
i

)}2
−

{
Dj − Dh

(
vj
i

)}2
]

.

When Case 2 is observed at multiple contamination levels, we use the conditional

density for vj
i at the highest Dj to compute the corresponding likelihood function. In

the estimation procedure, we thus use the following logarithmic likelihood function for

vi =
(
v1
i , v

2
i , v

3
i , v

4
i

)
:

lnL
(
vi|Θ, D1, D2, D3, D4

)
=

ln Pr (Case) , if kj ̸= 2 for j = 1, 2, 3, 4

ln Pr (Case) + lnφ
(

vj∗

i

∣∣∣Case
)

, otherwise,

(27)

where

j∗ = max
{

j| vi < vj
i < 200

}
. (28)

3.3 On measurement errors

In applying our statistical model with idiosyncratic shocks to the survey data for an

estimation purpose, we may face a serious measurement error problem. We have so

far assumed that when Case 2 is observed, the actual valuation by consumer i (vi) is

identical to the true valuation (v∗i ). As discussed above, however, with two or more

observations included in Case 2, the range of v∗i is restricted further from either the

above or the below. In addition, the range of v∗i is bounded from the below by the

presence of a threshold (vi). Consequently, the actual valuation vi may be outside the

theoretically consistent range of the true valuation v∗i .

The first type of measurement errors: To deal with these issues, we introduce

measurement errors in two ways; one is rather crude, and the other is relatively sophis-

ticated. Both types of measurement errors are applied to a case where the discounted

valuation at the highest contamination level is adopted. In this case, as mentioned

before, the range of v∗i is bounded from the above because the upper bound of x is

determined jointly by D and the lowest contamination level among those included in

Case 2, and it is bounded from the below due to the presence of a threshold vi (≥ 0).
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For the first type of measurement errors, it is assumed that not only D, but also

vi is exogenously given; that is, vi is set at v for all consumers. We then treat the

observed valuation as the true valuation when vi is between the upper limit of v∗i and

its lower limit. However, if vi is greater than the upper limit of v∗i , then vi is reset

at max(v∗i ), and if vi is smaller than the lower limit of v∗i , then vi is reset at v. It is

further assumed that the overvaluation (vi > max(v∗i )) takes place with probability π,

and that the undervaluation (vi < v) occurs with probability π. Consequently, vi is

observed without any measurement error with probability 1− π − π. The above way to

treat measurement errors is ad hoc, but operational in that the magnitude of errors is

independent of the true valuation v∗i .

The second type of measurement errors: As the second method, we specify a

simple density function for measurement errors (g1(vi | v∗i )) by two linear functions.

g1(vi | v∗i ) =


200−v∗

i

100v∗
i
2 vi, if vi ≤ v∗i ,

v∗
i

100(200−v∗
i )2

(200 − vi), otherwise.
(29)

By construction,
∫ 200
0 g1(v | v∗i )dv = 1 and

∫ 200
0 [vg1(v | v∗i )] dv = v∗i hold. Hence,

the above formulation of measurement errors does not yield any systematic bias. See

Figure 7-1 for a shape of the above density function.

An alternative, and even simpler density function for measurement errors (g2(vi | v∗i ))

is formulated by two uniform distributions.

g2(vi | v∗i ) =


200−v∗

i
100v∗

i
, if vi ≤ v∗i ,

v∗
i

100(200−v∗
i ) , otherwise.

(30)

By construction,
∫ 200
0 g2(v | v∗i )dv = 1 and

∫ 200
0 [vg2(v | v∗i )] dv = v∗i hold again.

Hence, the above formulation of measurement errors does not yield any systematic bias

either. See Figure 7-2 for a shape of the above density function.

Given the above type of measurement errors, the logarithmic likelihood is defined as

follows:

lnPr (Case) + ln
∫ max v∗

i

vi

[
φ (v|Case) gk(v

j∗

i | v)
]
dv, (31)

where k is 1 or 2. It is possible to compute analytically the integral in equation (31) in

both cases (k = 1 and 2).
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4 Questionnaire survey results

4.1 The way in which an internet-based questionnaire survey was con-

ducted

To investigate the consumers’ response to radiation-contaminated milk, we charged the

Survey Research Center (hereafter, SRC), a Tokyo-based private research institute, to

conduct an internet-based questionnaire survey in the second half of August, 2011. The

SRC had a large-scale panel of those who were currently living in the Tokyo metropolitan

area, and provided us with the sample consisting of 760 male and 760 female respondents

for each age group of twenties, thirties, forties, fifties, and sixty or older. Thus, the total

sample size amounts to 7,600.

As mentioned in the introduction, following the safety measure recommended by

the ICRP, the Japanese government set the upper limit of cesium contained in milk at

200 Bq/kg. Given this safety standard, the annual radiation exposure through drinking

contaminated milk every day amounts to at most 5 millisievert per year, and a life-time

probability of the incidence of cancer increases by only 0.025%.

After providing a brief description about the official safety standard of radiation

contamination, we asked each respondent which kind of preference he/she revealed in

response to one liter pack of milk which was supposed to be contaminated at the level

of 10 Bq/kg, 50 Bq/kg, 100 Bq/kg, or 200 Bq/kg, when he/she was assumed to pur-

chase such slightly radiation-contaminated milk for his/her own drinking purpose. Each

respondent chose either to purchase it at a normal price (assumed to be 200 yen), to

discount it below 200 yen, or to refuse to purchase it at any positive price.2 A respon-

dent who chose to discount it was further asked to write down a discount price up to

one digit between 0 yen and 200 yen; for example, a quoted discount price may be 121

yen or 98 yen.

Besides preferences for radiation-contaminated milk, we inquired about some of re-

spondents’ characteristics. With respect to annual income classes, 726 respondents (9.6%

of the entire sample) belonged to (i) less than two million yen, 2,685 (35.3%) to (ii) be-

tween two and five million yen, 3,042 (40.0%) to (iii) between five and ten million yen,

and 1,147 (15.1%) to (iv) ten million yen or more.

2A respondent who lived with children was given a set of the same questions in a case where he/she
purchased radiation-contaminated milk for his/her children. However, the corresponding responses are
not used in this study.
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In terms of household structure, 4,700 respondents out of 7,600 (61.8%) had a

spouse. 4,571 respondents (60.1%) did not live with any children, while 1,508 respon-

dents (19.8%) lived with one child, 1,231 (16.2%) with two children, 246 (3.2%) with

three children, and 44 (0.6%) with four or more children. The age of the youngest child

was between zero and two years old for 506 respondents (16.7%), between three and

five for 289 (9.5%), between six and ten for 368 (12.1%), between eleven and fifteen for

409 (13.5%), between sixteen and twenty for 454 (15.0%), and twenty or older for 1,003

(33.1%).

About a preference for luxury items, 1,546 respondent (20.3%) smoked regularly,

while 1,871 (24.6%) drank frequently. 363 respondents (4.8%) purchased organic veg-

etables regularly, 3,631 (47.8%) sometimes, and 3,606 (47.4%) never. In terms of other

health-related issues, 3,335 respondents (43.9%) participated in cancer insurance, and

4,071 (53.6%) had a checkup at least once a year.

As a somewhat delicate question, we asked each respondent about the possibility

that he/she would suffer from fatal cancer in the course of lifetime. 634 respondents

(8.3%) thought that they were unlikely to suffer from fatal cancer. On the other hand,

1,392 respondents (18.3%) considered the probability to be below the national average

(around thirty percent per life-time), 2,798 (36.8%) approximately equal to it, and 1,235

(16.3%) above it. 1,514 respondents (19.9%) answered that they could not judge about

the probability of cancer incidence, while 27 (0.4%) did not answer at all.

As to a preference for normal milk, which may have a substantial impact on the

valuation of radiation-contaminated milk, 2,594 respondents (34.1%) drank milk almost

every day, 3,496 (46.0%) sometimes, and 1,510 (19.9%) never.

4.2 The frequency of the three cases and the distribution of quoted

discount prices

As reported in Table 1, respondents are more and more averse toward contaminated

milk as the contamination level is higher. The share of Case 1 where a respondent

purchases contaminated milk without any discounting decreases as the contamination

level increases from 10 Bq/kg to 200 Bq/kg; it is 15.6% for 10 Bq/kg, 11.7% for 50

Bq/kg, 8.8% for 100 Bq/kg, and 5.6% for 200 Bq/kg. The proportion of Case 2 where

a respondent discounts contaminated milk also decreases with the contamination level;

it is 38.6% for 10 Bq/kg, 28.1% for 50 Bq/kg, 19.9% for 100 Bq/kg, and 13.2% for 200
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Bq/kg. On the other hand, the share of Case 3 where a respondent never purchases

contaminated milk at any positive price increases with the contamination level; it is

45.8% for 10 Bq/kg, 60.1% for 50 Bq/kg, 71.2% for 100 Bq/kg, and 81.2% for 200

Bq/kg.

We observe all possible fifteen patterns in the combination of the three cases which

emerges as a contamination level increases from 10 Bq/kg to 50 Bq/kg, 100 Bq/kg,

and 200 Bq/kg. Among 7,204 respondents whose valuation of contaminated milk is not

increasing in contamination levels, 382 (5.3%) evaluate contaminated milk at 200 yen

for the four levels (Case = (1, 1, 1, 1)), while 3,353 (46.5%) find zero valuation for all

levels (Case = (3, 3, 3, 3)).

Out of 7,204 respondents, 449 (6.2%) skip Case 2 as a contamination level increases,

or belong to Case = (1, 1, 1, 3), (1, 1, 3, 3), or (1, 3, 3, 3), while 1,185 (16.4%) include

Case 2 only once, or belong to Case = (1, 1, 1, 2), (1, 1, 2, 3), (1, 2, 3, 3), or (2, 3, 3, 3). On

the other hand, 1,142 (15.9%) individuals include Case 2 two or three times, or belong

to Case = (1, 1, 2, 2), (1, 2, 2, 2), (1, 2, 2, 3), (2, 2, 2, 3), or (2, 2, 3, 3). 693 respondents

(9.6%) quote discount prices for the four levels (Case = (2, 2, 2, 2)).

As mentioned above, those who were interested in purchasing contaminated milk at

discount prices were asked to write down a discount price up to one digit between zero

yen and 200 yen. As shown in Table 2, the average quoted price decreases with the

contamination level; it is 134.9 yen for 10 Bq/kg, 130.8 yen for 50 Bq/kg, 125.4 yen for

100 Bq/kg, and 119.9 for 200 Bq/kg.

As shown in Figure 8-1, a respondent tended to quote a discount price at 10-yen

intervals for a higher range, and at 50-yen intervals for a lower range. Accordingly, the

median of quoted prices is a round number; it is 150 yen for 10 Bq/kg, 150 yen for 50

Bq/kg, 140 yen for 100 Bq/kg, and 120 yen for 200 Bq/kg.

Figure 8-2 depicts the histogram of the quoted discount prices at 50-yen intervals. As

demonstrated by this figure, the overall frequency reduces, and the mode shift downward

as the contamination level increases.

4.3 Determinants of the respondents’ original perception of their own

cancer risks

In our questionnaire survey, each respondent was inquired about the risk perception

of cancer incidence. Here, we construct a dummy variable which takes one for those

19



who considered their own cancer risks to be lower than the national average (about

thirty percent per life-time), and otherwise zero. Then, using this dummy variable

as a dependent variable, we conduct the logit estimation. The summary statistics of

explanatory variables are documented in Table 3, while the estimation result is reported

in Table 4.

According to Table 4, the tendency for respondents to consider cancer risks to be

rather low is noticeable among those above the age of sixty, non-smokers, those with

a habit of eating organic vegetables and having a regular checkup, and non-holders of

cancer insurance. If older respondents might have thought that they had survived cancer

risks, the above estimation result may be subject to a sample selection bias. In the next

section, we use as an explanatory variable the predicted cancer risk perception which is

based on the logit estimation. The average of the predicted value is 26.8%.

5 Estimation results

5.1 A preliminary examination of the distribution of quoted discount

prices in Case 2

Before conducting estimation procedures, we examine with extreme care how quoted

discount prices are distributed in Case 2. First of all, we drop the observations in which

the valuation of radiation-contaminated milk increases with the contamination levels.

Consequently, the sample size reduces from 7,600 to 7,204.

As discussed before, when the discounted valuation at the highest level is adopted

among multiple observations included in Case 2, the range of the true valuation (v∗i ) is

restricted from the above, depending on the value of D. In the presence of a threshold

(vi), its range is further bounded from both the below and the above.

Let us first examine the case where a threshold is absent (vi = 0), and D is set at 500

Bq/kg.3 In Case = (k1, k2, k3, k4) = (1, 1, 2, 2) (Pattern 4), (1, 2, 2, 2) (Pattern 7),

(1, 2, 2, 3) (Pattern 8), (2, 2, 2, 2) (Pattern 11), (2, 2, 2, 3) (Pattern 12), and (2, 2, 3, 3)

(Pattern 13), among not a few respondents, the reported valuation vi is beyond the

theoretically consistent upper limit of v∗i . More precisely, 924 out of 1,835 respondents

included in the above six patterns violates the theoretical upper limit of v∗i . That is,

the number of the observations with violation is 20 out of 45 in Pattern 4, 13 out of 32

3As of November, 2011, there had been cases where the contamination level was reported to outside
the established standard (200 Bq/kg), but the reported level had never exceeded 500 Bq/kg.
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in Pattern 7, 15 out of 44 in Pattern 8, 317 out of 693 in Pattern 11, 238 out of 457 in

Pattern 12, and 321 out of 564 in Pattern 13.

In the presence of a threshold (vi > 0), two additional effects are generated. First,

the valuation of a discount price is bounded not only from the above, but also from

the below at vi in the above patterns. In addition to the six patterns, the lower bound

arises in the following four patterns: Case = (k1, k2, k3, k4) = (1, 1, 1, 2) (Pattern 2),

(1, 1, 2, 3) (Pattern 5), (1, 2, 3, 3) (Pattern 9), and (2, 3, 3, 3) (Pattern 14). Obviously,

the number of the observations which violate the lower bound of v∗i increases with vi.

Second, the theoretical upper bound of v∗i is relaxed due to a larger threshold vi. Ac-

cordingly, the number of the observations which violate the upper bound of v∗i decreases

with vi.

To see a change in the number of the observations with violation by an increase in a

threshold, we set D at 500, and raise v as a common value for a threshold from zero to

190 at 10-yen intervals. The number of the observations which violate the lower bound

increases from zero (v = 0) to 3,015 out of 3,020 (v = 190). On the other hand, the

number of the observations which violate the upper bound decreases from 924 out of

1,835 (v = 0) to 3 (v = 190). Consequently, the total number of the observations with

violation is smallest at v = 90.

We can observe more details about the above phenomena by Figures 9-1 and 9-2.

The six histograms in Figure 9-1 depict the distribution of quoted discount prices for

the patterns in which two or more observations are included in Case 2 (Patterns 4, 7, 8,

11, 12, and 13). In each histogram, two black (yellow or red) vertical lines represent the

theoretical range of vi given v = 0 (50 or 100). The four histograms in Figure 9-2, on

the other hand, depict the distribution of quoited prices for the patterns in which only

one observation is included in Case 2 (Pattern 2, 5, 9, and 14).

Given a large number of the observations with violation, the treatment of measure-

ment errors is quite important in estimation procedures.

5.2 Estimation results under the first type of measurement errors

Under the first type of measurement errors, once the observed valuation violates the the-

oretical range of the true valuation, it is replaced by the theoretical upper (lower) limit.

A major drawback of this adjustment method is that neither D nor vi can be estimated,

and both need to be predetermined. Given such a restrictive nature, estimation results
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under the first type of measurement errors have to be treated as tentative ones.

Table 5 reports the estimation results for Di in the cases with and without a threshold

(vi).4 In the absence of a threshold, it is assumed that D = 500 and vi = 0 for all

consumers. As reported in the first panel of Table 5, most individual characteristics

have significant impacts on the determinants of Di in the case without any threshold.

Recall that lower Di implies stronger preferences for zero radiation risks.

A preference for zero radiation risks is strong among younger females with infants,

while it is weak among older males without any child. An interesting observation is

that a preference for zero risks is strong among high income individuals. Probably due

to more restrictive budget constraints, individuals with more children tend to have a

weaker preference for zero risks.

As to cancer-risk-related variables, a preference for zero risks is weaker among regular

smokers and/or drinkers, those who are not interested in eating organic vegetables or

having a regular health checkup. Restating these results, a preference for zero radiation

risks is weak among those who are regarded as having already carried considerable cancer

risks.

When a set of the above cancer-risk-related variables are replaced by the prediction

of a cancer risk perception based on the logit estimation (Table 4), we find that a

preference for zero risks is strong among those who perceive their own cancer risks to

be small. That is, those who originally perceive their own cancer risks to be rather low

are unlikely to purchase contaminated milk at even heavily discount prices. Note that

those who never drink evaluate contaminated milk substantially downward.

The second panel of Table 5 reports the estimation results for the case with a thresh-

old (vi > 0). With D = 500, we assume vi = 90 for all consumers because the number

of the observations which violate the theoretical range of the true valuation is smallest

at vi = 90 ∀i.

The overall estimation results do not differ substantially between the cases with/without

a threshold. But, the significance level of estimated coefficients is lower in the case with

a threshold.

4It is assumed that the overvaluation, exact valuation, and undervaluation take place with equal
probability.
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5.3 Estimation results under the second type of measurement errors

Under the second type of measurement errors, we can estimate not only a systematic

part of Di, but also a systematic part of vi, and a parameter D, which is assumed to be

common among respondents. Accordingly, not only the degree of zero risk preferences

which is measured by κi = −Di

D−Di
, but also the risk-adjusted weight which is represented

by p̂i

pi
= 200

200−vi
or equation (2), can be inferred from such estimation results. Note that

lower Di implies stronger zero risk preferences, while higher vi (a threshold) indicates

larger risk-adjusted weights.

Table 6 reports estimation results in a case where a combination of two linear func-

tions is adopted as a density function of measurement errors. As shown in the estimation

about Di, the estimated effects of individual characteristics on zero risk preferences are

similar to those of Table 5. A preference for zero radiation risks is strong among younger

females with infants, while it is weak among older males without any child. However,

neither income class nor the number of children has any significant effect on a preference

for zero risks. As to cancer-risk-related variables, a preference for zero risks is weaker

among regular smokers and/or drinkers. In addition, those who never drink evaluate

contaminated milk downward.

In terms of the estimation of vi, females, the old, the rich, and those with infants,

but fewer children tend to apply larger risk-adjusted weights, thereby having higher

threshold points in valuation of radiation-contaminated milk. The estimated parameter

of D, significant at 260.8, is above 210 Bq/kg of cesium which was detected on March

20th, 2011.

Table 6 reports another specification where a set of the above cancer-risk-related

variables are replaced by the prediction of a cancer risk perception based on the logit

estimation (Table 4).5 As to a systematic part of vi, we also drop age dummies because

older respondents have both larger risk-adjusted weights and lower perception of cancer

risks. We find that those who perceive their own cancer risks to be small tend to have

a fairly strong preference for zero risks as well as a pretty large risk-adjusted weight.

More concretely, the estimated coefficient on the logit-fitted-value is −1003.8 in Di and

41.0 in vi.

5Rigorously, when we include the logit-fitted-value as an explanatory variable in a nonlinear system
in order to treat endogeneity, its coefficient may not be consistent. Here, we consider an endogeneity
problem in a somewhat ad hoc way at the expense of improper treatment of nonlinearity.
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5.4 On a possibility of secondary markets

As discussed in Section 2, the degree of zero risk preferences κi, defined as −Di

D−Di
, serves

as a key parameter in determining whether secondary markets are robust with respect to

radiation contamination. That is, if κi < 0.632, then a secondary market substitutes to

some extent for a primary market among those whose characteristics are similar to that of

consumer i. Conversely, if κi > 0.632, then both primary and secondary markets shrink

simultaneously among those resemble to consumer i in terms of individual characteristics.

In addition, we can infer from estimated vi, the risk-adjusted weight which is rep-

resented by p̂i
pi

= 200
200−vi

. This risk-adjusted weight implies the extent that a subjective

probability of cancer occurrence is augmented by extreme aversion to radiation risks.

Obviously, the higher vi is, the larger the risk-adjusted weight is.

Table 7 reports the value of κi is computed together with a 95% confidence interval

based on the estimation results reported by Table 5. Given that vi cannot be estimated

in this case, we do not have any inference about the risk-adjusted weight. According to

the first panel of Table 7, the computed value of κi for the case without any threshold

is on either side of 0.632, depending on individual characteristics. For example, a point

estimate of κi is 0.686 with a 95% confidence interval between 0.653 and 0.718 for a

female regular drinker of milk, of the age of twenties, with one infant, an annual income

between two and five million yen, uninterested in smoking or drinking, but interested in

eating organic vegetables and having a regular health checkup.

On the other hand, a point estimate of κi is 0.288 with a 95% confidence interval

between 0.202 and 0.374 for a male regular drinker of milk, sixty years old or older, not

living with any child, an annual income between two and five million yen, interested in

smoking and drinking, but uninterested in eating organic vegetables or having a regular

health checkup. As shown in the second panel of Table 7, the pattern observed in the

cases with thresholds is similar to that of those without any threshold, but the overall

valuation of κi increases in any case.

Table 8-1 reports the computed values of both κi and p̂i

pi
for the case where cancer-

risk-related variables are used as explanatory variables, while Table 8-2 briefs those

values for the case where they are replaced by the logit-fitted-value. According to the

first panel of Table 8-1, most point estimates of κi are above 0.632. The computed value

of κi is barely below 0.632 for a male regular drinker of milk, sixty years old or older,

not living with any child, and interested in smoking and drinking. As shown in the
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second panel of Table 8-1, the computed value of the risk-adjusted weight does not differ

substantially among respondents. For example, it is around two for young males and

about three for old females.

As reported in Table 8-2, on the other hand, the degree of zero risk preferences as

well as the risk-adjusted weight differ substantially among respondents, depending on

whether he/she perceives his/her own cancer risk to be rather low. For example, an old

male who perceives his cancer risk to be high carries κi = 0.466 much lower than 0.632,

and applies risk-adjusted weights around two times as large as his subjective probability.

On the other hand, a young female with an infant who perceives her cancer risk to be

low has κi = 0.895 much higher than 0.632, and applies risk-adjusted weights more than

five times as large as her subjective probability.

The overall results suggest that if the individual characteristics are conditioned by

respondents’ perception about cancer risks, then how a preference for zero risks is strong,

and how large the risk-adjusted weight is depend critically on whether a respondent per-

ceives his/her cancer risk to be low. Concretely, those who perceive their own cancer risk

to be rather low reveal strong preferences for zero risks in deciding whether they pur-

chase radiation-contaminated milk, and demonstrate extreme aversion toward radiation

risks in determining how much contaminated milk is discounted.

6 Conclusion

This paper presents a simple theoretical model to explain consistently heterogeneous

patterns in consumers’ valuation on radiation-contaminated milk by explicitly incorpo-

rating a strong preference for zero radiation risks. In particular, it establishes a rigorous

condition under which contaminated milk is still traded at discount prices even when

contamination levels are relatively high. Using an internet-based questionnaire survey

consisting of 7,600 respondents, we empirically explore whether the above condition

holds. According to estimation results, as milk contains more radiation, a contaminated

milk market disappears quickly among those who originally perceive their own cancer

risks to be rather low. Conversely, contaminated milk is still traded at discount prices

among those who are regarded as having already carried considerable cancer risks.

(to be completed)
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Appendix 1: Conditional distribution for v in Case 2

In this appendix, we prove two propositions about the conditional distribution for v in

Case 2.

Proposition 1 v̂ in equation (13) is the median of the conditional distribution for v

given vi ≤ v < 200.

Proof. From equation (12), the conditional density function φ (v (y)|x < D < y) is

continuous for v ∈ [vi, 200). And, the conditional probability of the event ‘vi ≤ v < v̂’

given vi ≤ v < 200 is calculated as follows:

Pr (vi ≤ v < v̂| vi ≤ v < 200) =
∫

bv

vi

(200 − vi) (D − Di)
2

(
D − D

)
(200 − v)2

dv

=
(200 − vi) (D − Di)

2
(
D − D

) [
1

200 − v

]
bv

vi

=
1
2
. (32)

Because φ (v (y)|x < D < y) is continuous for v ∈ [vi, 200), equation (32) means that

Pr ( v̂ ≤ v < 200| vi ≤ v < 200) = 1 − Pr (vi ≤ v < v̂| vi ≤ v < 200) = 1
2 . Therefore, v̂ is

the median of the conditional distribution for v given vi ≤ v < 200.

Proposition 2 v̂ in equation (13) is the mode of the conditional distribution for v given

vi ≤ v < 200.

Proof. From equation (12), the derivative of φ (v (y)|x < D < y) with respect to v is

calculated as follows:

∂φ (v (y)|x < D < y)
∂v

=


(200−vi)(D−Di)

2(D−D)(200−v)3
≥ 0, vi ≤ v < v̂

− (200−vi)(D−D)
2(D−Di)(v−vi)

3 ≤ 0, v̂ ≤ v < 200.

(33)

Further, φ (v (y)|x < D < y) is continuous at v = v̂. Therefore, φ (v (y)|x < D < y)

takes the largest value at v = v̂, and v̂ is the mode of the conditional distribution.
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Case 1: a
purchase

without any
discounting

Case 2: a
purchase with

discounting

Case 3: no
purchase at any

price
total

10 Bq 1,189 2,934 3,477 7,600
(15.6%) (38.6%) (45.8%)

50 Bq 892 2,137 4,571 7,600
(11.7%) (28.1%) (60.1%)

100 Bq 670 1,516 5,414 7,600
(8.8%) (19.9%) (71.2%)

200 Bq 428 1,000 6,172 7,600
(5.6%) (13.2%) (81.2%)

Table 1: The share of the respondents classified according to the
three cases

 
 

～19 20～39 40～59 60～79 80～99 100～119 120～139 140～159 160～179 180～199
10 Bq 2,934 20 33 99 11 72 595 323 1,010 540 231 134.9 150 4.15

(0.7%) (1.1%) (3.4%) (0.4%) (2.5%) (20.3%) (11.0%) (34.4%) (18.4%) (7.9%)
50 Bq 2,137 20 26 90 11 76 500 218 670 364 162 130.8 150 3.60

(0.9%) (1.2%) (4.2%) (0.5%) (3.6%) (23.4%) (10.2%) (31.4%) (17.0%) (7.6%)
100 Bq 1,516 21 32 90 23 63 370 145 437 231 104 125.4 140 3.10

(1.4%) (2.1%) (5.9%) (1.5%) (4.2%) (24.4%) (9.6%) (28.8%) (15.2%) (6.9%)
200 Bq 1,000 27 21 77 19 57 259 74 263 145 58 119.9 120 2.79

(2.7%) (2.1%) (7.7%) (1.9%) (5.7%) (25.9%) (7.4%) (26.3%) (14.5%) (5.8%)

Table 2: Distribution and statistics of discount prices quoted in Case 2

total
quoted discount prices (yen)

mean median kurtosisThe contamination
level (Bq)

 
 



ii 
 

 

Mean Standard
Deviation

male dummy 0.5
age dummy
     (twenties) 0.2
     (thirties) 0.2
     (fourties) 0.2
     (fifties) 0.2
income class 2.607 0.855
spouse dummy 0.618
the number of children 1.643 0.904
the age of the youngest child
     without any child 0.601
     younger than 3 years old 0.067
     between 3 and 10 0.086
     between 11 and 15 0.054
     between 16 and 20 0.060
     over 20 0.132
smoker dummy 0.203
drinker dummy 0.246
no habit of eating organic
vegetables 0.474

participation in cancer insurance 0.439
regular health checkup 0.536
no habit of drinking milk 0.199
the predicted cancer risks based
on the logit estimation 0.268

Table 3: Descriptive statistics of explanatory
variables
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Table 4: Estimation result of the logit model for respondents’ perception of cancer risks   

 

explanatory variables

Coefficient Marginal effect
male dummy 0.135 ** 0.026 **

(0.055) (0.011)
age dummy (twenties) -0.467 *** -0.085 ***

(0.086) (0.014)
(thirties) -0.481 *** -0.087 ***

(0.084) (0.014)
(fourties) -0.364 *** -0.067 ***

(0.082) (0.014)
(fifties) -0.068 -0.013

(0.079) (0.015)
smoker dummy -0.314 *** -0.058 ***

(0.071) (0.012)
drinker dummy -0.039 -0.008

(0.064) (0.012)
-0.137 ** -0.026 **
(0.054) (0.011)
-0.365 *** -0.070 ***
(0.056) (0.011)
0.046 0.009
(0.055) (0.011)

constant -0.545 ***
(0.075)

Number of observations 7573
Wald chi-squared 125.5

P-value of chi-square test 0.0000
Pseudo R squared 0.0143

Log likelihood -4335.5

regular health checkup

A dummy variable of those who perceive cancer
risks to be lower than the national average

no habit of eating organic
vegetables

participation in cancer insurance

 
Note 1: A dependent dummy variable takes one for a respondent who perceive life-time cancer risk to be lower 
than the national average. 
Note 2: *, **, and *** implies the significance level at 10%, 5% and 1% respectively. 
Note 3: Among 7600 respondents, 27 did not answer the question concerning the perception of cancer risks. 
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Table 5: Maximum likelihood estimation results for D  with 500D =   

under the first type of measurement errors  
v = 0 v = 90

Specification 1 Specification 2 Specification 1 Specification 2

male dummy 268.55 *** 309.87 *** 202.67 *** 248.14 ***
(29.39) (27.34) (39.30) (37.89)

age dummy (twenties) -160.32 *** -180.64 *** -272.36 *** -305.29 ***
(43.45) (47.78) (65.90) (75.01)

(thirties) -171.86 *** -203.62 *** -321.45 *** -368.66 ***
(44.90) (51.60) (52.35) (67.71)

(fourties) -160.48 *** -189.02 *** -283.18 *** -318.76 ***
(45.22) (50.30) (66.39) (76.43)

(fifties) -105.09 *** -96.12 ** -202.08 *** -198.49 ***
(39.68) (39.89) (49.12) (57.07)

income class -71.73 *** -79.02 *** -28.14 -37.66
(15.67) (15.07) (23.83) (23.14)

spouse dummy -28.36 -41.15 -22.21 -21.62
(32.82) (32.98) (44.68) (46.63)

the number of children 68.69 ** 74.24 *** 38.69 46.91
(33.78) (28.55) (43.57) (44.60)

youngest child age dummy -321.21 *** -327.43 *** -238.61 * -262.45 **
(between 0 and 2) (97.81) (90.66) (121.95) (124.01)
(between 3 and 10) -238.56 *** -249.19 *** -116.61 -130.20

(87.57) (81.59) (114.27) (114.34)
(between 11 and 15) -194.12 ** -205.49 ** -159.67 -173.90 **

(93.95) (88.61) (128.95) (82.11)
(between 16 and 20) -159.58 * -164.73 ** -87.62 -99.96

(83.90) (78.99) (114.95) (115.19)
(over 20) -153.34 ** -179.61 *** -97.48 -135.56

(66.41) (60.52) (73.18) (89.32)
smoker dummy 54.03 * 71.41

(29.40) (44.65)
drinker dummy 68.44 ** 102.95 **

(28.10) (42.43)
70.77 *** 45.34
(25.94) (37.82)
-17.82 -22.88
(26.37) (37.66)
-13.73 -9.36
(25.99) (38.35)
-635.01 *** -626.43 *** -791.24 *** -776.34 ***
(55.98) (56.00) (81.05) (81.16)

-496.89 * -534.53
(272.76) (425.57)

constant -492.52 *** -292.00 *** -748.26 *** -538.97 ***
(51.10) (102.23) (72.37) (159.30)

Number of observations 7204 7204 7204 7204
Wald chi-squared 420.1 441.6 232.0 210.7

P-value of chi-square test 0.0000 0.0000 0.0000 0.0000
Log likelihood -41720.4 -41728.5 -33711.5 -33717.4

The predicted cancer risks
based on the logit estimation

no habit of eating organic
vegetables

participation in cancer
insurance

regular health checkup

no habit of drinking milk

 
Note 1: *, **, and *** implies the significance level at 10%, 5% and 1% respectively. 
Note 2: The observations in which respondents who raise vi as the contamination level increases are dropped.  
Consequently, the number of observations reduces to 7204. 
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Table 6: Maximum likelihood estimation results for D , v  and D   

under the second type of measurement errors (linear density functions) 

361.24 *** -10.11 *** 412.81 *** -14.01 ***
(47.08) (1.28) (45.26) (1.09)
-124.55 * -28.89 *** -249.92 ***
(69.68) (2.19) (75.33)
-207.50 *** -30.69 *** -341.00 ***
(72.99) (2.07) (83.29)
-171.42 ** -25.91 *** -285.03 ***
(72.12) (2.36) (78.72)
-135.68 ** -17.11 *** -171.09 ***
(64.22) (1.44) (64.15)
-24.76 1.79 ** -23.29 0.67
(25.46) (0.72) (24.50) (0.65)
-55.06 -1.69 -80.77 11.38 ***
(54.03) (1.60) (53.48) (1.38)
52.03 -4.24 *** 53.40 -3.06 **

(55.33) (1.21) (55.43) (1.21)
-392.62 ** 22.98 *** -394.43 ** 8.84 ***
(155.25) (2.24) (157.40) (2.18)
-207.55 16.48 *** -189.61 0.70
(138.22) (4.02) (138.85) (3.35)
-192.77 21.81 *** -176.25 12.41 ***
(150.21) (4.02) (149.15) (4.21)
-237.26 * 15.31 *** -232.93 * 9.17 ***
(141.89) (3.09) (141.36) (2.94)
-192.70 * 10.18 *** -225.10 ** 19.75 ***
(109.01) (2.15) (108.71) (2.03)

81.59 * -0.48
(46.56) (1.43)
90.36 ** 1.39

(44.16) (1.34)
48.76 -1.29

(41.18) (1.17)
10.58 1.52

(42.08) (1.12)
-0.08 -0.13

(42.24) (1.11)
-1003.82 ** 40.98 ***
(450.00) (10.09)

-681.61 *** -1.26 -671.62 *** -1.90
(85.76) (1.82) (85.49) (1.64)
-913.90 *** 134.28 *** 260.84 *** -513.25 *** 100.98 *** 260.95 ***
(85.87) (2.31) (2.02) (166.03) (3.03) (2.04)

Number of observations 7204 7204
Wald chi-squared 215.6 218.3

P-value of chi-square test 0.0000 0.0000
Log Likelihood -29465.6 -29507.9

age dummy (twenties)

male dummy

drinker dummy

smoker dummy

(over 20)

(between 16 and 20)

(between 11 and 15)

(between 3 and 10)

spouse dummy

income class

(fifties)

(fourties)

(thirties)

the number of children

no habit of drinking milk

constant

regular health checkup

Specification 1
lower D lower v upper D

Specification 2

The predicted cancer risks
based on the logit estimation

lower v upper Dlower D

no habit of eating organic
vegetables

participation in cancer
insurance

youngest child age dummy
(between 0 and 2)

Note 1: *, **, and *** implies the significance level at 10%, 5% and 1% respectively. 
Note 2: The observations in which respondents who raise vi as the contamination level increases are dropped.  
Consequently, the number of observations reduces to 7204. 
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Table 7: Estimation of iκ for a consumer with particular characteristics based on the estimation results of Table 5  

Panel 1: 0v =  

gender age
income
level

marriage
number of
children

age of the
youngest child

smoking drinking

habit of
eating
organic

vegetables

participation
in cancer
insurance

having
regular
health

checkup

habit of
drinking milk

κ i

male 20-29 0-200 no 0 - no yes no no no yes 0.388 0.330 0.446

male 30-39 500-1000 yes 1 0-2 no no yes yes yes yes 0.649 0.609 0.688
male 40-49 500-1000 yes 2 16-20 no no yes yes yes yes 0.577 0.527 0.626
male over 60 200-500 yes 0 - yes yes no no no yes 0.288 0.202 0.374

female 20-29 200-500 yes 1 0-2 no no yes no yes yes 0.686 0.653 0.718
female 40-49 500-1000 yes 2 16-20 no no yes yes yes yes 0.655 0.623 0.687
female over 60 200-500 yes 3 over 20 no no no no yes yes 0.526 0.464 0.588

(95% interval)

 

Panel 2: 90v =  

gender age
income
level

marriage
number of
children

age of the
youngest child

smoking drinking

habit of
eating
organic

vegetables

participation
in cancer
insurance

having
regular
health

checkup

habit of
drinking milk

κ i

male 20-29 0-200 no 0 - no yes no no no yes 0.583 0.538 0.627

male 30-39 500-1000 yes 1 0-2 no no yes yes yes yes 0.707 0.670 0.744
male 40-49 500-1000 yes 2 16-20 no no yes yes yes yes 0.662 0.616 0.707
male over 60 200-500 yes 0 - yes yes no no no yes 0.447 0.374 0.520

female 20-29 200-500 yes 1 0-2 no no yes no yes yes 0.724 0.689 0.758
female 40-49 500-1000 yes 2 16-20 no no yes yes yes yes 0.702 0.668 0.737
female over 60 200-500 yes 3 over 20 no no no no yes yes 0.607 0.546 0.668

(95% interval)

Note 1: 95% confidence intervals for estimated iκ  are computed by the delta method. 
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Table 8-1: Estimation of iκ and risk-adjusted weights for a consumer with particular characteristics based on the estimation results of Table 6  

Panel 1: Estimation of iκ  

gender age
income
level

marriage
number of
children

age of the
youngest child

smoking drinking

habit of
eating
organic

vegetables

participation
in cancer
insurance

having
regular
health

checkup

habit of
drinking milk

κ i

male 20-29 0-200 no 0 - no yes no no no yes 0.683 0.635 0.732

male 30-39 500-1000 yes 1 0-2 no no yes yes yes yes 0.824 0.793 0.855
male 40-49 500-1000 yes 2 16-20 no no yes yes yes yes 0.789 0.750 0.828
male over 60 200-500 yes 0 - yes yes no no no yes 0.626 0.553 0.699

female 20-29 200-500 yes 1 0-2 no no yes no yes yes 0.850 0.827 0.874
female 40-49 500-1000 yes 2 16-20 no no yes yes yes yes 0.837 0.813 0.860
female over 60 200-500 yes 3 over 20 no no no no no yes 0.794 0.757 0.832

(95% interval)

 
 
 
Panel 2: Estimation of risk-adjusted weights 

gender age
income
level

marriage
number of
children

age of the
youngest child

smoking drinking

habit of
eating
organic

vegetables

participation
in cancer
insurance

having
regular
health

checkup

habit of
drinking milk

risk-
adjusted
weight

male 20-29 0-200 no 0 - no yes no no no yes 1.95 1.87 2.03

male 30-39 500-1000 yes 1 0-2 no no yes yes yes yes 2.42 2.30 2.54
male 40-49 500-1000 yes 2 16-20 no no yes yes yes yes 2.23 2.08 2.38
male over 60 200-500 yes 0 - yes yes no no no yes 2.69 2.54 2.85

female 20-29 200-500 yes 1 0-2 no no yes no yes yes 2.70 2.53 2.88
female 40-49 500-1000 yes 2 16-20 no no yes yes yes yes 2.51 2.32 2.70
female over 60 200-500 yes 3 over 20 no no no no no yes 2.96 2.74 3.18

(95% interval)

 

Note 1: 95% confidence intervals are computed for estimated iκ  by the delta method, and for estimated risk-adjusted weights by one million times simulation.   
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Table 8-2: Estimation of iκ and risk-adjusted weights for a consumer with particular characteristics based on the estimation results of Table 6  

Panel 1: Estimation of iκ  

gender age
income
level

marriage
number of
children

age of the
youngest child

perception
of cancer

risk

habit of
drinking milk

κ i

male 20-29 0-200 no 0 - high yes 0.589 0.429 0.749

male 30-39 500-1000 yes 1 0-2 low yes 0.881 0.842 0.920
male 40-49 500-1000 yes 2 16-20 low yes 0.865 0.815 0.914
male over 60 200-500 yes 0 - high yes 0.466 0.145 0.787

female 20-29 200-500 yes 1 0-2 low yes 0.895 0.865 0.925
female 40-49 500-1000 yes 2 16-20 low yes 0.888 0.854 0.922
female over 60 200-500 yes 3 over 20 high yes 0.730 0.634 0.826

(95% interval)

 
 
 
Panel 2: Estimation of risk-adjusted weights 

gender
income
level

marriage
number of
children

age of the
youngest child

perception
of cancer

risk

habit of
drinking milk

risk-
adjusted
weight

male 0-200 no 0 - high yes 1.78 1.70 1.87

male 500-1000 yes 1 0-2 low yes 3.88 2.61 5.14
male 500-1000 yes 2 16-20 low yes 3.66 2.66 4.66
male 200-500 yes 0 - high yes 2.00 1.88 2.11

female 200-500 yes 1 0-2 low yes 5.31 2.69 7.92
female 500-1000 yes 2 16-20 low yes 4.96 3.09 6.84
female 200-500 yes 3 over 20 high yes 2.65 2.38 2.91

(95% interval)

 

Note 1: 95% confidence intervals are computed for estimated iκ  by the delta method, and for estimated risk-adjusted weights by one million times simulation.  
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Figure 1-1: A case without any threshold 

 
 
 

Figure 1-2: A case with a threshold 
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Figure 2: A pattern in a consumer’s valuation of radiation-contaminated milk 
 

 
 
 

Figure 3-1: Case 1, vi = 200 
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Figure 3-2: Case 2, 0 < vi < 200 
 

 
 
 

Figure 3-3: Case 3, vi = 0 
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Figure 4-1: Numerical examples 
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Figure 4-2: 
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Figure 4-3: 
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Figure 5-1: 
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Figure 6-1:  Lower upper limit of the valuation (vi) with two observations included in Case 2 

 
 
 
 
Figure 6-2: Higher lower limit of the valuation (vi) with two observations included in Case 2 
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Figure 7-1: A shape of a density function of measurement errors (linear functions) 
 

 
 
 

Figure 7-2: A shape of a density function of measurement errors (uniform distributions) 
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Figure 8-1: Histograms of the distribution of quoted discount prices at 10-yen intervals 

 
 
 

Figure 8-2: Histograms of the distribution of quoted discount prices at 50-yen intervals 
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Figure 9-1: Histograms of the distribution of quoted discount prices at the highest contamination 
level in Pattern 4, 7, 8, 11, 12, and 13 

 
 
Figure 9-2: Histograms of the distribution of quoted discount prices in Pattern 2, 5, 9, and 14 
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