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Abstract

This paper applies a tractable two-regime macro-�nance a�ne term structure

model to empirically investigate macroeconomic e�ects on Japanese government

bond (JGB) yields in and out of a zero interest rate environment. The estimated

results qualitatively assess how di�erently de�ation and low growth contribute to

lowering longer-term JGB yields between the normal and zero rate regimes.

1 Introduction

In light of more-than-a-decade of lasting low Japanese government bond (JGB) yields

in and out of a zero rate environment with prolonged de�ation and low growth, this

paper empirically investigates macroeconomic e�ects on JGB yields by applying a no-

arbitrage a�ne term structure model (ATSM) with macro structure. To date little work

has applied such a framework to a zero rate environment due to complications arising

from the zero lower bound of nominal interest rates. This paper attempts to �ll this gap

by incorporating a regime-dependent monetary policy rule into an ATSM with macro

structure.
�I thank Kazuo Ueda and seminar participants at the Graduate School of International Corporate

Strategy of Hitotsubashi University, Institute for Monetary and Economic Studies of Bank of Japan,

the University of Tokyo, and Yokohama National University for their helpful comments.
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The Japanese policy interest rate process (Figure 1) appears to have at least two

regimes: a regime during which the policy interest rate is near zero and �at (the zero rate

regime) and the other regime consisting of the remaining periods (the normal regime).

I thus construct a model with two regimes. Exploiting information from Bank of Japan

public policy announcements, I treat the regime as observable.1 In short, this paper

considers a two-regime process of the short-term interest rate (the policy interest rate),

with the regime de�ned by an observable monetary policy regime.

Figure 1. Uncollateralized overnight call rate (annualized rate in  percent).
 

How can one model a regime dependent monetary policy rule in and out of a zero

rate environment? One satisfactory approach is to directly impose a non-negativity

constraint on the standard monetary policy rule, or the Taylor rule. This approach,

however, cannot be handled by ATSM, and thereby the existing macro�nance term

structure models applied to the Japanese zero rate environment mostly lie outside of

the a�ne family (e.g., Oda and Ueda (2007) and Ichiue and Ueno (2006)).23 This paper’s

model, on the other hand, lies within the a�ne family where a regime dependent rule
1Another approach to model the regime process is to treat it as unobservable. For example, see

Fujiwara (2006) and Inoue and Okimoto (2008) for Markov-switcing models applied to the Japanese

policy interest rate process.
2An exception is Bernanke, Reinhart, and Sack (2005) who use an ATSM that does not involve

modeling of a zero lower bound.
3For more applications of ATSMs with no macro structure, see for example, Singleton and Kim
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is modeled using a Markov chain with two regimes.

The use of tractable ATSMs with a zero lower bound is gaining more attention in

light of the continued zero rate environment in Japan and the United States. Hamilton

and Wu (2011, HW henceforth) examine US yield curves using a two-regime ATSM

with a zero lower bound. Their model features include (i) the two regimes–the zero

rate and the normal regimes–treated as observable to the econometrician, unlike the

existing regime switching ATSMs (e.g., Bansal and Zhou (2002), Dai, Singleton, and

Yang (2007), Ang, Bekaert, and Wei (2008)), (ii) regime dependent coe�cients in the

short rate dynamics ensuring that the short end of the yield curve is non-negative, and

(iii) a constant probability of exiting the zero rate regime.

I extend HW in three directions. First, I introduce macro structure into HW’s model

given the importance of macro factors in explaining yield curve dynamics discussed in

the literature (e.g., Ang and Piazessi (2003), Hördahl, Tristani, and Vestin (2006), and

Rudebush and Wu (2008)). Speci�cally, I extend the Ang and Piazessi (2003) macro

structure by allowing the short-term interest rate to follow a regime-dependent monetary

policy rule and letting the dynamics of macro variables depend on the lagged short term

interest rate. Second, given that Japan has experienced a zero rate environment more

than once, I introduce a Markov chain to allow regimes to shift repeatedly. The model

can thus explain shifts from the normal to the zero rate regime, as well as shifts in the

other direction. Third, to intuitively interpret the probability measures in the model, I

solve the model under the physical measure instead of under the risk-neutral measure.4

This paper’s estimated results quantitatively assess how much prolonged de�ation

or low growth contributes to lowering longer-term JGB yields. The results also indicate

that such macroeconomic e�ects weaken under the zero rate environment due to the

invariability of the short-term interest rate to macroeconomic �uctuations with a high

zero rate commitment. Furthermore, the term premium component of bond yield is

estimated via two-regime three-variable VAR forecasting: the estimated component

(2010). They investigate JGB yield curves using the model of Cox, Ingersoll, and Ross (1985, CIR

henceforth) with the intention of comparing its performance with those under non-a�ne models.
4For details, see Appendix A.
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drove �uctuations in long term yields under the zero rate regime and contributed to a

decline in long term yields in the late 1990s. Lastly, the paper’s results are consistent

with the previous �ndings that a zero-rate commitment e�ectively brings down the

market participants’ expectations of future policy rates and the yield curves �atten on

average in the zero rate environment (e.g., Okina and Shiratsuka (2004), Baba et. al.

(2005), Oda and Ueda (2007), and Nakazono and Ueda (2011)).5

This paper proceeds as follows. Section 2 describes the macro-�nance term structure

model. Section 3 sets out the estimation strategy, and Section 4 discusses estimated

results and robustness checks. Section 5 concludes.

2 The Model

I consider a discrete-time a�ne term structure model of the sort employed by Ang and

Piazzesi (2003) as a point of departure and generalize it in two directions. First, I allow

the short-term interest rate to follow a regime dependent monetary policy rule. Thus the

model can consider changes in yield dynamics in and out of the zero rate environment.

Second, I allow the dynamics of macro variables to depend on the lagged short term

interest rate as well as their own lagged variables, in a spirit similar to Ang, Piazzesi,

and Wei (2006) and Hördahl, Tristani, and Vestin (2006). Thus the policy interest rate

can directly in�uence future macro variables. In the next estimation-strategy section,

similar to Koeda and Kato (2010), I will explain that the inclusion of the lagged short

term interest rate requires modifying the Ang and Piazzesi-type speci�cation of the

system of equations.

2.1 The Markov chain

I consider an observable Markov chain with two regimes: the zero rate regime (dt = 0)

and the normal regime (dt = 1). The i, j element of the 2× 2 transition matrix is given
5See Ugai (2007) for a comprehensive survey on the empirical work on the e�ects of quantitative

easing policy in Japan.
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by �ij = Pr (dt = j|dt�1 = i). Thus, �00 (�11) is the probability that the zero rate regime
(the normal regime) continues on to the next period.

This Markov chain is more general than HW’s, as it allows regimes to shift repeatedly.

In HW, a two-regime setting is introduced only when the current regime is the zero rate

regime; shifts from the normal to the zero rate regime are, then, not explained.

2.2 Short-term interest rate and macro-variable dynamics

While HW omit macro variables from the state vector, I include them in the vector to-

gether with the short-term interest rate. I employ the standard Taylor rule that includes

the lagged short-term interest rate. The baseline dynamics of short-term interest rate

and macro variables are given by

r1,t = �
dt
0

1×1
+ �dt1
1×1
r1,t�1 + �dt2

1×2
Xt + �

dt
r �t, (1)

Xt = �0
2×1
+ �1
2×1
r1,t�1 + �

2×2
Xt�1 + �

2×2
�t, (2)

Xt = [x1t, x2t]
0 . (3)

where r1 is the short rate and X is the 2×1 vector of in�ation (x1) and output gap (x2)
following an autoregressive process.6 The Taylor-rule coe�cients are regime dependent,

and those coe�cients under the zero rate regime are restricted to being �00 = c, �
0
1 = 0,

�02 = [0, 0]; thus, the short-term interest rate under the zero rate regime is close to a

near-zero positive constant, c,7 if �0r is su�ciently small. A scalar random shock � and

a 2× 1 random shock vector � are assumed to be standard normal and independent to

each other and over time. � is an upper triangular matrix.

6This two-regime speci�cation allows short-rate volatility to be time dependent. For a discussion

on the role of short rate volatility in macro-�nance term structure models, see for example, Koeda and

Kato (2010).
7A positive value of c is supported theoretically, for example, see the optimal monetary policy rule

proposed by Jung, Teranishi, and Watanabe (2005).
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Substituting (2) into (1) to obtain

r1,t = �
dt
0 + �

dt
1 r1,t�1 + �

dt
2 Xt + �

dt
r �t,

= �dt0 + �
dt
1 r1,t�1 + �

dt
2 (�0 + �1r1,t�1 + �Xt�1 +��t) + �

dt
r �t,

=
¡
�dt0 + �

dt
2 �0

¢
| {z }

�
dt
0

+
¡
�dt1 + �

dt
2 �1

¢
| {z }

�
dt
1

r1,t�1 +
¡
�dt2 �

¢
| {z }
�̄
dt
2

Xt�1 + �dtr �t + �
dt
2 ��t. (4)

where �dt0 � �dt0 + �dt2 �0, �dt1 � �dt1 + �dt2 �1, and �̄dt2 � �dt2 �.
The above short-term interest rate and macro-variable dynamics can be rewritten in

more concise form�
� r1,t
Xt

�
�

| {z }
ft

=

�
� �̄dt0
�0

�
�

| {z }
c
dt
f

+

�
� �̄dt1
�1

�̄dt2

�

�
�

| {z }
�
dt
f

ft�1 +

�
� �dtr �dt2 �

0 �

�
�

| {z }
�
dt
f

�
� �t
�t

�
�

| {z }
et

, (5)

or, ft = cdtf
3×1
+ �dtf
3×3
ft�1 +�dtf

3×3
et. (6)

2.3 The pricing kernel and the prices of risk

With the state (d, f), the no-arbitrage condition under the physical measure is given by

E

�
Mt+1P

n�1
t+1

Pnt

¯̄̄
¯ dt, ft

¸
� 1 = 0, (7)

where P n is the n-period bond price andM is the pricing kernel. Following the conven-

tion in the ATSM literature, the pricing kernel is assumed to be

Mt+1 = exp

μ
�r1,t � 1

2
	0t�

dt+1
f �dt+10f 	t � 	0t�dt+1f et+1

¶
, (8)

thus the stochastic discount factor depends on d as well as f . The prices of risk (	) are

an a�ne function of the factors and the regime

	t = 	
dt
0

3×1
+ 	dt1
3×3
ft, (9)
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thus the stocastic discount factor depends on d as well as f . By the law of iterated

expectation, the LHS of (7) can be rewritten as

E

½
E

�
Mt+1P

n�1
t+1

Pnt
� 1
¯̄̄
¯ dt+1, dt, ft

¸¯̄̄
¯ dt, ft

¾
(10)

= �dt1

½
E

�
Mt+1P

n�1
t+1

P nt
� 1
¯̄̄
¯ dt+1 = 1, dt, ft

¸¾
+ �dt0

½
E

�
Mt+1P

n�1
t+1

P nt
� 1
¯̄̄
¯ dt+1 = 0, dt, ft

¸¾
,

with the Markov chain being independent of f in the sense that the transition probability

does not depend on f . Using the approximation used by Hamilton andWu (2011), I show

that the n-period, zero-coupon bond yield is given by (see Appendix A for derivation)

rn,t = adtn
1×1
+ bdtn
1×1
r1,t + c

dt
n

1×2
Xt, (11)

= adtn +
£
bdtn , c

dt
n

¤
ft,

adt1 = 0, bdt1 = 1, c
dt
1 = [0, 0]. (12)

with the yield-equation coe�cients (adtn , b
dt
n , c

dt
n ) derived recursively by

ādtn =
X
j=0,1

�dtj

μ
ājn�1 + b̄

j
n�1�̄

j
0 + c̄

j
n�1�0 +

1

2
Kj
n�1K

j0
n�1 �Kj

n�1�
j0
f 	

dt
0

¶
, (13)

£
b̄dtn , c̄

dt
n

¤
=
X
j=0,1

�dtj
£

jn�1 �Kj

n�1�
j0
f 	

dt
1

¤
, (14)

where

adtn = �ādtn /n, bdtn = �b̄dtn /n, cdtn = �c̄dtn /n, (15)


jn�1 =
£
b̄jn�1�̄

j
1 + c̄

j
n�1�1 � 1, b̄jn�1�̄j2 + c̄jn�1�

¤
, (16)

Kj
n�1 =

£
b̄jn�1�

dt
r , b̄

j
n�1�

j
2�+c̄

j
n�1�

¤
. (17)

The recursive equations reduce to those derived by HW if (i) the dt process is a

Markov chain under the risk-neutral measure, (ii) the prices of risk coe�cients do not

vary across regimes (i.e., setting 	10 = 	
0
0 and 	

1
1 = 	

0
1), and (iii) the restrictions on the

short-end yield equation coe�cients (i.e., adt1 , b
dt
1 , c

dt
1 ) di�er across regimes.
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3 Estimation strategy

I use quarterly data on interest rates and macro variables of in�ation and output gap

from 1985Q1 to 2008Q2. I use quarterly data because readily available monthly real

activity measures in Japan, for example, industrial production, unemployment, the ma-

chinery orders, may not re�ect the overall economic activity. The sample period starts

from 1985Q1 in the benchmark estimation because reliable zero coupon bond yield data

are available from that quarter; it ends in 2008Q2 examining the period prior to the

Lehman shock. In Section 4.3, I discuss estimated results with alternative sample peri-

ods and monthly data frequency.

The 1-quarter zero coupon bond yields are used for the short-term interest rate

and zero coupon bond yields of 2, 8, 20, and 40 quarter maturities are used for longer

maturities; These bond yields are obtained from Wright’s (2011) dataset. All bond

yields are expressed at annualized rates in percent.

Regarding the macro variables, in�ation is measured by quarterly percentage change

in the seasonally adjusted GDP de�ator from the main economic indicators of the Orga-

nization for Economic Cooperation and Development (OECD); real activity is measured

by output gap estimated by applying the Hodrik-Prescott �lter on the logs of the sea-

sonally adjusted GDP at 2000 prices from the Japan Cabinet o�ce. Output gap is

expressed in percentage points.

The regime series is constructed based on public announcements. It takes value

0 under the so-called zero interest rate policy (ZIRP) in the period 1999Q2—2000Q3

and under the quantitative monetary easing policy (QMEP) including a short zero rate

period that followed in the period 2001Q2—2006Q2.

The model consists of macro dynamics and static yield equations. The macro dy-

namics are summarized by equation (5) and the static yield equations are as follows:

Rt = A
dt +

£
Bdt,Cdt

¤
ft +�

m�mt ,

where Rt = [r2t , r
8
t , r

20
t , r

40
t ]

0 is a 4×1 vector of bond yields with maturities corresponding
to the superscript numbers (in months). The yield equations are an a�ne function of the

state variables with 4×1 coe�cient vectors of Adt and Bdt and a 4×2 coe�cient matrix
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of Cdt corresponding to (i) the constant term, (ii) the short-term interest rate term,

and (iii) the macro-variable term, respectively. The subscript numbers in Adt , Bdt , and

Cdt correspond to maturities (i.e., Adt =
£
adt2 , a

dt
8 , a

dt
20, a

dt
40

¤0
, Bdt =

£
bdt2 , b

dt
8 , b

dt
20, b

dt
40

¤0
and

Cdt =
£
cdt2 , c

dt
8 , c

dt
20, c

dt
40

¤0
.) The elements in Adt, Bdt , and Cdt are derived from the recur-

sive equations with the subscript numbers corresponding to maturities. Measurement

errors �m are assumed to have constant variance and �m is a diagonal matrix.

The system of equations to be estimated can be summarized as follows:

�
� ft

Rt�1

�
�

| {z }
Yt

=

�
� cdtf

Adt�1

�
�

| {z }
A
dt�1dt
Y

+

�
� �dtf£
Bdt�1,Cdt�1

¤
�
�

| {z }
B
dt�1dt
Y

ft�1 +

�
� �dtf 0

0 �m

�
�

| {z }
�
dt
Y

�
� et

�mt�1

�
� , (18)

where e and �m are iid standard normal and et and �ms are independent for all (t, s).

Thus, the observation equation linking Rt�1 to the state (ft) is appended to the VAR

equations describing the state dynamics. I estimate this system using the maximum

likelihood method (for details, see Appendix B).8

4 Estimation results

4.1 Benchmark estimation

The parameter estimates of the model are reported in Table 1. The Taylor rule coe�-

cients are statistically signi�cant with the correct signs. Short-rate volatility under the

zero-rate regime is notably less than that under the normal regime (i.e., �0r > �
1
r). The

term-structure risks arise from the short-term interest rate, in�ation, and real activity,

and they are regime dependent. The prices of risk coe�cients other than the constant

term of the prices of risk equation are set to zero (i.e., 	11 = 	
0
1 = 0) as they have very

8The sample here is (y1, ..., yT ) = (r1,1,X1, R0; r1,2,X2, R1; ..., r1,T ,XT , RT�1). It may appear more

natural to consider the sample (r1,1,X1, R1; r1,2,X2, R2; ..., r1,T ,XT , RT ), but the usual factorization

argument can be more readily applied to the former. If the sample size T is large, the choice of the

sample would not matter for the point estimation.
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large standard errors. Thus the term structure risks a�ect only the recursive equations

of adtn through the constant term of the prices of risk equation.

 
 

 
 

 
 
Table 1. Estimated Parameters. This table reports estimated coefficients in the benchmark 
estimation. Numbers in parenthesis indicate standard errors. Measurement error is the estimated 
standard error of measurement error corresponding to each maturity.
 

The probability that the zero rate regime continues into the next period (�00) cap-

tures the e�ect of the zero rate commitment on market participants’ expectations of
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future policy rate; it is estimated to be relatively close to 1 (0.965).9 The high value of

�00 implies that interest rate expectations are e�ectively brought down to a low level. I

also discuss estimated results allowing �00 to be time dependent on Section 4.2.

Figure 2. Factor weights against maturity in the benchmark estimation. This figure plots the 
coefficients of the yield equation against maturity (in quarters). 
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Figure 2 shows how the yield-equation coe�cients change against maturity under the

normal regime (dashed lines) and the zero rate regime (red solid lines). The constant,

short-term interest rate, in�ation, and real activity terms correspond to adtn , b
dt
n , and

cdtn respectively with the model implied yields (given by eq(11)) are expressed at the

annualized rate in percent. The upward slopes of a1n and a
0
n represent the shapes of

average yield curves under the normal and zero rate regimes. They imply that yield

curves �atten on average under the zero rate regime. The downward slopes of b1n and b
0
n

imply that an increase in the short-term interest rate has a more positive impact on the

shorter-end of yield curves. The shape of b0n implies that under the zero rate regime, the

9Dai, Singleton, and Yang (2006) �nd that constant regime-shift probabilities under the physical

measure lead to high regime persistency. Their conclusion, however, is not readily applicable to the

model, because the model allows (i) the factor coe�cients in the short rate dynamics to vary across

regimes and (ii) the factor dynamics depends on the Markov process governing regime changes.
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short-rate level itself has little impact on the long end of yield curves. The shapes of c1n

and c0n capture the positive impact of macro variables on yield curves. The �atter shape

of c0n implies that macroeconomic e�ects on JGB yields weaken under the zero rate

regime. A closer look at the recursive equations for cdtn
10 indicates that this delinkage

under the benchmark estimation is caused largely by the short rate’s invariability to

macroeconomic variables with a high value of �00.

The bottom two charts in Figure 2 thus demonstrate how di�erently de�ation and

low growth contribute to lowering longer-term JGB yields between the normal and zero

rate regimes. Under the normal regime, 1-percent de�ation lowers 2- and 10-year JGB

yields by 28 and 15 basis points, respectively, and 1-percent output gap increase raises 2-

and 10-year JGB yields by 2 and 6 basis points, respectively. On the other hand, under

the zero rate regime, the macroeconomic e�ects on the JGB yields are not apparent

with wide standard deviation bands (Figure AC-1).

4.2 Term premia

The long term bond yields can be decomposed into the expectations and term premium

components. I de�ne the term premium of n-period bond yield as the actual n-period

bond yield minus the average of the expected future short-term interest rates (i.e.,
1
n
Et
nPn�1

j=0 r1,t+j
o
), and calculate the expectations components via two-regime three-

variable VAR (eq. (6)) forecasting. Figure 3 reports the model implied term premia of 5-

year bonds, the corresponding averages of expected future short-term interest rates, and

the actual yields. It indicates that a large bond yield decline in early 1990s was driven by

the expectations components; whereas that in late 1990s was driven by both expectations

and term premium components. It also suggests that the long rate �uctuations under

the zero rate regime were driven by term-premium dynamics which declined after the

10In the benchmark estimation, the recursive equations of b̄dtn and c̄dtn are simpli�ed as b̄dtn =X
j=0,1

�dtj

h
b̄jn�1�̄

j
1 + c̄

j
n�1�1 � 1

i
and c̄dtn =

X
j=0,1

�dtj

h
b̄jn�1�̄

j
2 + c̄

j
n�1�

i
.
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QMEP introduction.

 

Figure 3. Estimation of expectations and term premium components of 5 year bond yields
(in annualized rate in percent).
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4.3 Robustness checks

The robustness checks of these benchmark results are three fold aiming at testing (i) dif-

ferent degrees of zero rate commitment (�00) across zero rate periods, (ii) monthly data,

and (iii) alternative sample periods. The estimated results discussed in this subsection

are available upon request.

Allowing �00 to be time dependent So far, as in HW, �00 is assumed to be constant

in our model. However, some may wonder if such a degree of commitment changes across

di�erent zero rate periods. To address this concern, I reestimate the model allowing �00

to take two di�erent values, p1 and p2; market participants are assumed to use p1 as the

basis of their bond yield projections for the period 1985Q1—2001Q1, and p2 thereafter.

Thus this speci�cation of �00 assumes that the �00 perceived by market participants

will not be updated with a new value until the next zero rate period begins. The

estimated p1 is smaller than p2 (0.95 and 0.97 respectively). Accordingly, after the
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QMEP introduction, the estimated degree of zero rate commitment increased and the

e�ect of macroeconomic variables on JGB yield curves weakened (Figure AC-2).

Monthly data Some may be interested in examining results using monthly data. I

thus reestimate the model with monthly data replacing the macro variables with the

consumer price index (excluding food and energy) from the Japan Statistics Bureau and

industrial production from the Ministry of Economy, Trade and Industry. These macro

variables are expressed as the year-on-year di�erence in logs of the original series. The

key results from the benchmark estimation remain broadly unchanged.

Alternative sample periods Some may be concerned about possible structural

breaks, for example a structural break in mid-90s suggested by several researchers (e.g.,

Miyao (2000), Fujiwara (2006), and Inoue and Okimoto (2008)). I thus reestimated the

model choosing 1995Q1 as the new starting date. Given this shorter sample periods, I

estimated the model using both monthly and quarterly data. The magnitude of macro-

economic e�ects on the bond yields under the normal regime is unchanged on the short

and middle part of yield curves, but it declines on the long end of yield curve (Figure

AC-3). Other main results from the benchmark estimation remain broadly unchanged

with this shorter sample period.

Next, I extend the sample period to 2010Q411 to include the recent global �nancial

crisis. In December 2008, the Bank of Japan announced a policy to induce the uncol-

lateralized overnight call rate to 0.1 percent. Since then the call rate has remained at

around 0.1 percent. I thus set dt = 0 from 2009Q1 and re-estimate the model using

the extended sample period. The key results from the benchmark estimation remain

broadly unchanged.

11Wright’s (2011) bond yield data ends in May 2009. We thus extend his data by estimating zero-

coupon bond yields using data on bond prices, coupon rates, and issue and redemption dates for all

available 5, 10, and 20 year government bonds outstanding on the given date; these data were taken

from e-AURORA database from the Nomura Research Institute. A cubic spline is �tted each month

to the yields on all sample bonds with maturities up to 20 years. All bond yields are continuously

compounded and expressed at annualized rates in percent.
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5 Conclusion

This paper applies a standard macro�nance ATSM with a two-regime setting to a zero

rate environment, providing formal empirical evidence on Japan’s experience with zero

interest rates. The estimated results quantitatively assess how de�ation and low growth

contribute to lowering longer-term JGB yields, revealing how di�erently macroeconomic

variables a�ect the JGB yields across regimes. Furthermore, the results suggest that

the time-varying term premium component of bond yields played an important role

particularly in the late 1990s and under the zero rate regime.

Looking forward, when Japan �nally emerges from a zero rate environment, the

increased macro�nance linkage under the normal regime will imply that channels that

can steeply raise macroeconomic variables could pose a risk to the JGB markets.
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A Recursive bond prices under the physical mea-

sure

Recall that the no-arbitrage condition under the P measure is given by12

E

�
Mt+1P

n�1
t+1
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¯̄̄
¯ dt, ft

¸
� 1 = 0, (A-1)

By the law of iterated expectation, the LHS of (A-1) can be rewritten as
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(A-2)

with the Markov chain being independent of f in the sense that the transition probabil-

ity does not depend on f . Using the basic relationship between bond yields and prices

12The no-arbitrage condition under the Q measure is given by EQ
½
Pn�1
t+1

Pn
t

¯̄̄
¯ dt, ft

¾
� 1 = 0.
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(i.e., rnt = � logPnt ), (2), (4), (8), and (11), J1 can be rewritten as
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If the expression inside exponential form in (19) is small enough,13 using the approxi-

mation used by Hamilton and Wu (2011) (i.e., x ' exp (x)�1), J1 can be approximately
13In benchmark estimation, the absolute value of this expression varies between 1.37E-07 and 0.146.
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rewritten as
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Thus the bond price equation can be approximately rewritten as
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ādtn +

£
b̄dtn , c̄

dt
n

¤
ft
¢

where
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B The log likelihood function

In preparation for the following discussion, de�ne Zt = [dt, Yt] and recall that the model

can be summarized as (18). I wish to describe the joint density of (Zt, Zt�1, ..., Z1) given

Z0 with the parameters to be estimated given by14
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¤
.

The joint density of observations 1 through t conditioned on Z0 satis�es

f (Zt, Zt�1, ..., Z1|Z0; �) (B—1)

= f (Zt�1, ..., Z1|Z0; �)× f (Zt|Zt�1, ..., Z0; �) ,
= f (Zt�1, ..., Z1|Z0; �)× f (Zt|Zt�1; �) ,

14The short rate level under the zero rate regime (c) is set to the corresponding sample average.

20



where the last equality holds by Markov property. Through the usual sequential substi-

tution, the joint density satis�es
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where the second last equality hold by Markov property. Now since
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The log likelihood is the log of (B-2),
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which can be rewritten as
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where 1(., .) is the indicator function.
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C Robustness checks on the factor weights

Figure AC-1 reports one standard deviation bands corresponding to Figure 1. The

red solid lines plot the yield-equation equation against maturity (in months) under the

normal regime (left column) and the zero rate regime (right column). The dashed green

lines show one standard deviation bands. The lower bands of c1n lie above zero, indicating

that in�ation and growth have a positive impact on JGB bond yields under the normal

regime. On the other hand, the lower bands of c0n lie around or below zero, indicating

that the macroeconomic e�ects on the JGB yields are not apparent under the zero rate

regime.

Figure AC-2 reports the factor weights with time dependent �00 discussed in Section

4.3. The dash-dot, dash, and solid lines correspond to the factor weights under the

ZIRP (i.e., when �00 = p1), those under the QMEP (i.e., when �00 = p2), and those

under the normal regime. The �gure indicates that the higher the �00 under the zero

rate regime, the �atter the yield curves, and the weaker the macroeconomic e�ects on

yield curves become.

Figure AC-3 reports the factor weights with a shorter sampler period (January 1995—

August 2008) taking into account a possible structural break in 1995. Given the shorter

sample, I report estimated results using monthly data described in Section 4.3. The

in�ation e�ect on the bond yields under the normal regime somewhat declines on the

longer end of yield curve.
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Figure AC-1. Factor weights against maturity with one standard deviation bands. This figure 
plots the coefficients of the yield equation against maturity (quarters) in the benchmark estimation.
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Figure AC-2. Factor weights against maturity with time dependent 00� . This figure plots the 
coefficients of the yield equation against maturity (quarters) under the normal regime (solid lines) 
and under the zero rate regime (red dotted lines correspond to the period before the QMEP 
introduction and blue dashed lines correspond to the period thereafter.) 
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Figure AC-3. Factor weights against maturity with a shorter sample period using monthly 
data. This figure plots the coefficients of the yield equation against maturity (quarters) with the 
sample period of January 1995 – August 2008. 
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