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Abstract

Shown is a new method for estimating linear models with general time-varying structures
such as the State Space Model based on the idea that the models can be represented as a
classical regression model. The parameters are all estimated by OLS or GLS. An application
of the smoothing to a time-varying AR model is presented.

1 Introduction

The State Space Model has been familiar to researchers who study control theory and sig-
nal extraction in engineering since Kalman (1960) published a pioneering paper. In his
paper Kalman presented the estimation methods, which we call Kalman filtering, Kalman
smoothing and Kalman forecasting, to solve the problem of signal extraction for non sta-
tionary time series data; the problem had been regarded as too tough to solve since Wiener
(1949) and Kolmogorov (1941) had attacked. His methods, estimating states in each period
of the system iteratively, could implement accurate signal extraction subject to computers
in his days, with much poorer memory and MPU power than today. Kalman developed his
methods crucially on the State Space Model.

Few statisticians had contributed to theories based on the State Space Model from 1960
to early 1980’s: an exception, Duncan and Horn (1972)’s paper providing another proof of
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Kalman filtering in respect of ordinary linear regression theory. Sorenson (1970) reviews
filtering theories from Gauss to Kalman, pointing that any filtering theory has its root as
Gauss’s least square method applied to linear models. This article owes much to their works.

As to econometrics, few econometricians has developed the theory of Kalman filter so
as to be easy to use for economists. As an exception, Cooley and Prescott (1973), who
developed a model to depict continuous structural changes, applied a State Space Model 40
years ago.

One should never jump into conclusion that Kalman’s method based on the State Space
Model has been useless for most econometric analysis; econometricians could have used the
State Space Model in many situations since it is just an extended linear regression model.

The author lists the reasons why few applications of the State Space Model to econometric
analyses have been reported for long time as follow: (1)most economists have supposed that
structural changes in real economy are not gradual but discontinuous, (2)the statistical
model in which hypothesis tests are unavailable has no interest for most econometricians,
(3)economists have thought that Kalman smoothing, which corresponds to usual analysis in
econometrics, is relatively complex, (4) the assumption that covariance matrices are known
could be implausible in econometric analysis when the State Space Models were applied in
econometric analysis.

The author shows that Kalman smoothing is easy to apply to usual econometric analysis
because of the recent development of computers. He represents a class of general linear
models with time-varying structure, which includes the conventional State Space Models,
and shows that whether a time-varying structure is gradual or discontinuous, parameters in
such a model can be estimated by OLS or GLS. Since the essence of Kalman smoothing with
a fixed interval for the State Space Model is a orthogonal projection of observable variables
in observation equations to the data space (the sample space), which is interpreted as the
given information set, we naturally adopt OLS and GLS if it is possible.

The power of recent computers would change our traditional idea on the method for
smoothing; few econometricians have imagined that recent personal computers can compute
the inverse of a nonsigular matrix with 2000× 2000 components or the generalized inverse
of a matrix with several million components in a minute with practical precision. There
is no reason to adopt conventional iterative techniques such as Kalman smoothing with a
fixed interval or Levinson method in discrete signal extraction problems; the techniques have
helped researchers to save memory of their computers for over 40 years.

This article is organized as follows. In Section 2, the author illustrates how the State
Space Model, which we can interpret as a linear model with time-varying parameters, can
be transformed to a linear model. Furthermore, the author generalizes the linear regression
model so as to be one allowing more general time-varying structure than the usual State
Space Model. In Section 3, the author shows theorems guaranteeing the generality of our
model. Section 4 shows the power of our smoothing method for the usual State Space Model,
presenting an application of our method to estimate parameters of time-varying AR model.
Section 5 is located for conclusion.

2 Linear Model with Time-Varying Parameters

This section shows how we represent the State Space Model as a linear regression model with
time-varying parameters and introduces a linear model allowing more general time-varying
structures.

2.1 State Space Model and smoothing with a fixed interval

Kalman (1960) used the State Space Model to solve the tough problem of signal extraction,
which two great mathematicians in the twentieth century, Wiener and Kolmogorov, failed to
achieve a complete solution. Their approach by using Fourier analysis, a typical frequency-
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domain analysis, was inappropriate to the problem with non stationary data; Kalman’s one,
which was categorized as a time-domain analysis, could successfully treat non stationary
data by using the State Space Model.

The State Space Model consists of two equations as follows:

yt = Xtβt + ut, ut
iid∼ N (0, Rt) (1)

βt+1 = Φt+1,tβt + vt, vt
iid∼ N (0, Qt), (2)

where the supscript t expresses a period, each yt is n-dimensional vector, each βt is a m-
dimensional vector, and Xt is a n × m matrix. We call the equation (1) the observation
equation, and the equation (2) the transition equation or the state equation. The matrices,
Xt,Φt+1,t, Rt, Qt are assumed to be known. We assume

(∀t1)(∀t2) E[ut1v
′
t2 ] = O.

Kalman considered the problem of estimating the state variables, βτ , (τ = 1, 2, · · · , t), at
each period based on the information Yt and the prior distribution, β0

iid∼ N (β0, P0), both
of which are given, where Yt = σ({y1,y2, · · · ,yt}) is the σ-field generated by the stochastic
process, Yt = {y1,y2, · · · ,yt}.

We call this problem the State Space estimation. There are three kinds of the estima-
tion: (1) forecasting, (2) filtering and (3) smoothing. Each estimation corresponds to what
information is based for estimating βt: (1) Yτ , τ < t, (2) Yt and (3) YT , where T denotes
the terminal period.

The following remarks might be useful.

• the equations (1) and (2) generate a Gaussian process, {yt}, which is not always
stationary.

• The covariance matrices are time-varying in general.

• Under the assumption
(∀t)[Φt+1,t = I & vt = 0)],

the State Space estimation is just an OLS(ordinary least square) estimation for a
conventional linear regression model.

• When the signal is generated by the equations (1) and (2), the solution of the filtering
problem formulated by Wiener and Kolmogorov, st, is

ŷt|t = Xtβ̂t|t,

where β̂t|t is the solution of Kalman filtering, more generally, β̂t1|t2 denotes the optimal
estimator at period t1 based on the information available at period t2.

• Modified procedures are taken for forecasting and smoothing.

The author here gives a brief summary of Kalman’s theory. Kalman (1960) used the
orthogonal projection to solve the filtering problem in the same way as Wiener did; Wiener
did not consider the data generating process (DGP), corresponding to the equation (2).
Kalman successfully derived the famous iterative procedure, Kalman filtering.

One can derive the solution of filtering problem as follows. Since the orthogonal projec-
tion assures that the solution, β̂t|t, is a linear combination of the forecasting without using
the new information yt,

β̂t|t−1 = Φt,t−1β̂t−1|t−1 (3)

and the residual,
rt = yt −Xtβ̂t|t−1 = yt −XtΦt,t−1β̂t−1|t−1,
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we have
β̂t|t = Φt,t−1β̂t−1|t−1 +Kt(yt −XtΦt,t−1β̂t−1|t−1). (4)

The matrix Kt, Kalman gain, is chosen in such a way as

E[(βt − β̂t|t)
′(βt − β̂t|t)]

is minimized. Through tedious algebraic operations, one derives

Kt = Pt|t−1X
′
t(XtPt|t−1X

′
t +Rt)−1, (5)

where Pt|t−1 is the covariance matrix of β̂t|t−1, that is,

Pt|t−1 := E[(βt − β̂t|t−1)(βt − β̂t|t−1)
′].

By using the equation (3) we derive

Pt|t−1 = Φt|t−1Pt−1|t−1Φ′
t|t−1 +Qt−1. (6)

Pt|t denotes the covariance matrix of β̂t|t;

Pt|t := E[(βt − β̂t|t−1)(βt − β̂t|t−1)
′].

Finally, we have an equation, which we intreprete as a revising procedure:

Pt|t = Pt|t−1 −KtXtPt|t−1. (7)

The Kalman filter is the revising algorithm which consists of (4), (5), (6), (7).
There are few cases where Kalman filtering is solely needed for econometric analysis.

Since most estimations of parameters of the statistical model in the usual econometric anal-
yses correspond to the smoothing, in the sense that any estimation is made on the base of
the observation, YT = {y0,y1, · · · ,yT } in a sample period, T = {0, 1, · · · , T}, that is, the
estimation of β̂t, (t < T ), the smoothing for a fixed interval. If we use familiar notations in
the filtering theory, β̂t = β̂t|T .

For the readers’ convenience, we present the Kalman smoothing algorithm for a fixed
interval. It consists of the following two steps:

1. Derive the estimates, by Kalman filtering, β̂t|t−1, β̂t|t and each of the estimates of
their covariance matrices, Pt|t−1, Pt|t for t ∈ {0, 1, · · · , T}.

2. Derive β̂T−1|T , · · · , β̂0|T from β̂T |T , in the reverse direction, by iterative substitutions
in the following way:

β̂t|T = β̂t|t +Ct(β̂t+1|T − β̂t+1|t) (8)

Ct = Pt|tΦt+1|tP
−1
t+1|t (9)

Pt|T = Pt|t + Ct(Pt+1|T − Pt+1|t)C ′
T (10)

We stress that one must assume the covariance matrices, Rt and Qt in each period, are
known when one applies the above smoothing algorithm. However, such an assumption
has been supposed implausible in real econometric analyses. The assumption as well as the
complex procedure above of the Kalman smoothing makes the State Space Model unfamiliar
to economists. A practical smoothing method is needed, if possible, on the basis of the
classical regression theory.
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2.2 Smoothing as a regression: Durbin-Koopman Regression

Following Durbin and Koopman (2001), we show a smoothing method for the State Space
Model, (1) and (2), They expand the equations in each period to a linear equation with a
matrix of huge size. All the matrices Xt,Φt+1,t, Rt, Qt are assumed to be known as before.
We assume

(∀t1)(∀t2) E[ut1v
′
t2
] = O.

The sample periods are T = {0, 1, · · · , T} and the state variables at the initial period, β0,
follow a normal distribution given:

β0
iid∼ N (β̄0, P0).

For the convenience, we summarize the dimensions of the vectors and matrices in our
State Space Model in Table 1.

Table 1: dimensions of State Space Model

vector matrix
yt n Xt n×m
βt m Φt+1,t m×m
ut n Rt n× n
vt m Qt m×m
β0 m P0 m×m

By defining the following matrices and vectors, we represent a linear equation with a
matrix of huge size in place of the equation (1).

y =




y0
...

yT


 , X =



X0 · · · O O
...

. . .
...

...
O · · · XT O


 , β =




β0
...

βT

βT+1


 ,

u =




u0

...
uT


 , R =



R0 · · · O
...

. . .
...

O · · · RT




The observation equation (1) can be expressed as follows:

y = Xβ + u, u
iid∼ N (0, R). (11)

We can represent the transition equation, (2), as a single linear equation by defining the
matrices and the vectors as follows:

Φ =




I O O O O O
Φ1,0 I O O O O

Φ2,1Φ1,0 Φ2,1 I O O O
Φ3,2Φ2,1Φ1,0 Φ3,2Φ2,1 Φ3,2 I O O

...
...

...
...

. . .
...

ΦT,T−1 · · ·Φ1,0 ΦT,T−1 · · ·Φ2,1 ΦT,T−1 · · ·Φ3,2 ΦT,T−1 · · ·Φ4,3 · · · ΦT,T−1 I



,

β∗
0 =




β0

0
...
0


 , J =




O O · · · O
I O · · · O
O I · · · O
...

...
. . .

...
O O · · · I



,
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v =




v0

...
vT


 , Q =



Q0 · · · O
...

. . .
...

O · · · QT




We have a linear equation with a huge matrix:

β = Φ(β∗
0 + Jv), v

iid∼ N (0, Q) (12)

in place of (2).
Durbin and Koopman derive

y = XΦβ∗
0 +XΦJv + u (13)

from (12) and (11). This equation shows that the observation vector y is a linear function
of the initial vector β∗

0 and the disturbance vectors, v and u. After cumbersome algebraic
operations, they derive two fundamental equations:

E[y] = XΦβ̄
∗
0

and
V ar[y] = XΦ(P ∗

0 + JQJ ′)Φ′X ′ +R,

where

β̄
∗
0 =




β̄0

0
...
0


 , P ∗

0 =



P0 O · · · O
O O · · · O
...

...
. . .

...
O O · · · O


 .

The author calls the equation (11) Durbin-Koopman Regression. Durbin-Koopman suc-
cessfully derived the smoother β̂ by thoroughly examining their matrix representation of
the State Space Model. However, we cannot compute β̂ by using the observation y di-
rectly, while Durbin-Koopman Regression (11) apparently has the conventional regression
form. This is because they assume that the covariance matrices of both the transition equa-
tion and the observation equation are known. Thus, we conclude that Durbin-Koopman
Regression cannot give a practical smoothing procedure for most econometric analyses.

2.3 Direct Method of Smoothing in the State Space Model: Ito
Regression

In this subsection, we translate the State Space Model, (1) and (2), to a linear equation, in
which we can estimate the state vector β without any knowledge of the covariance matrices,
Rt, Qt, (t = 1, 2, · · · , T ). We assume that the matrices Xt,Φt+1,t are known and that

(∀t1)(∀t2) E[ut1v
′
t2 ] = O.

However, we do not assume that the matrices, Rt, Qt, are known.
The sample periods T = {0, 1, · · · , T} and the state vector at the initial period, β0,

follows a normal distribution:
β0

iid∼ N (β̄0, P0).

Note that y denotes the stacked vector with y1,y2, · · · ,yT .
Our representation is simple and straightforward: (1) for the observation equation is the

same as Durbin-Koopman Regression, we have



y1

y2
...

yT


 =



X1 O

X2

. . .
O XT







β1

β2
...

βT


 +




u1

u2

...
uT


 (14)
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and (2) for the transition equation, we have



−Φ1,0β̄0

0
...
0


 =




−I O
Φ2,1 −I

. . . . . .
O ΦT,T−1 −I







β1

β2
...

βT


+




v1

v2

...
vT


 . (15)

Now we show that these equations (14) and (15) enable us to treat the State Space Model
as the usual classical regression one under the assumptions that the matrices, X1,X2, · · · ,Xt,
Φ1,0,Φ2,1, · · · ,ΦT,T−1 and the prior vector β̄0 are all known.

We have the following equation (16), which we call Ito regression of the State Space
Model, by simply gathering (14) and (15).




y1

y2
...

yT

−Φ1,0β̄0

0
...
0




=




X1 O
X2

. . .
O XT

−I O
Φ2,1 −I

. . . . . .
O ΦT,T−1 −I







β1
...

βT


+




u1

u2

...
uT

v1

v2

...
vT




(16)

When we estimate the state vectors β1,β2, · · · ,βT at one time based on the observa-
tion y1,y2, · · · ,yT by OLS or GLS, familiar with economists, we can regard this estimate
β̂1, β̂2, · · · , β̂T as the the smoother with a fixed interval of the original State Space Model. If
we use usual notations in the theory of Kalman filter, β̂t = βt|T . This is because the Aitken
theorem in the theory of linear regression assures that the estimator of OLS or GLS is always
an unbiased estimator based on the data YT = {y0,y1, · · · ,yT}. (See Ruud (2000)[p.432].)
Note here that this unbiasedness of the estimator by linear regressions is independent of the
covariance structure of the State Space Model.

When the Gauss-Markov theorem holds, that is, when any column vector of the regressor,

Z =




X1 O
X2

. . .
O XT

−I O
Φ2,1 −I

. . . . . .
O ΦT,T−1 −I




is statistically independent of y, one can use conventional hypothesis tests such as t-test,
F -test and so on. However, note that there is no consistent estimator of β since the number
of parameters in the State Space Model goes to infinity as the sample size goes to inifinity.

Our estimator of the state vector β̂ is a linear function of the data y. When we use OLS,
for example, the estimator is expressed as

β̂ = (Z ′Z)−1Z ′y. (17)

Note that each column of the matrix (Z ′Z)−1Z ′ in RHS of the above equation (17) is jut the
filter gain of the smoother. Specifically, τ ’th row of the matrix signifies the weights of yt’s
in calculating the estimate β̂τ at a sepecific period τ . When n = 1, by plotting t’th row of
the matrix as time series data, we know how the observation yt in each period contributes
to the estimate of β̂τ in a specific period as will be illustrated in Section 4.
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Our smoothing method have several advantages while the basic idea is quite simple and
straightforward. The main concern with our method is whether it is practical or not because
the regressor Z is of huge size in most cases. In fact, few researchers have attempt to use
this method for smoothing for a fixed interval and most researchers have never imagined
that the newest personal computers in 2007 with more than 2GB main memory are capable
of calculating the inverse of a nonsigular matrix of its size, 8000× 8000, in several minutes.

So far, we know that methods for classical linear regression models are useful for smooth-
ing for a fixed interval in the State Space Model, which one can interprete as a linear model
with time-varying parameters. However, when we suppose the normal distribution for the
disturbance terms in the State Space Model, the structural changes should be gradual. In the
following subsection, the author shows an extended linear model, called a random parameter
regression model, to handle more general time-varying structure.

2.4 An Extension of Ito Regression

In this section, we extend the State Space Model as a linear regression model with gradual
time-varying parameters to more general regression models, which we call random param-
eter regression models. Such models can treat many kinds of structures of time-varying
parameters. Furthermore, we can regard the usual random effects model for panel data as
a typical example of our model.

We first reexamine the structure of the State Space Model as a linear regression model,
the equations (14) and (15), which we called Ito regression. One regards the equation (14)
as an ordinary linear regression model; the author regards the equation (15) as the one
specifying a time-varying structure of parameters. We can regard the equation (15) as an
difference equation with disturbance terms.

In respect of the regression theory, the equation (15) illustrates how randomized are the
parameters within the model. Now we rewrite the equation (15) as follows:

α = Φβ + v. (18)

To simplify the discussion, we temporally assume that the matrix Φ is non-singular. Thus,
we have

β = Φ−1α −Φ−1v. (19)

We regard the first term of RHS in the equation (19) as the expected values of the randomized
parameters and the second one the random effects of the disturbance terms.

Considering the case where some parameters might not be random or the one where the
disturbance terms affect the parameters in degenerated ways, we generalize the equation
(15) in the following simple form:

β = β̄ +Dw, (20)

where D is a matrix with the size of N × �, � ≤ N,N := nT and

w
iid∼ N (0,Σw), (21)

where w might have smaller dimension than that of v.
We assumes that the rank of D is � > 0 and that β̄ is known. Note that when rank D =

� = 0, the model (20) has no parameter to estimate. The author stresses that the matrix D
reflects the time-varying structure in place of Φ. This random parameter regression model
can treat the following extended the State Space Model:

yt = Xtβt + ut, ut
iid∼ N (0, Rt) (22)

βt+1 = Φt+1,tβt +Gtwt, wt
iid∼ N (0,Σw), (23)

where the equation (22) is identical with (1) and the matrix Gt in (23) has the size m×�, � ≤
m and its rank is �. It is natural to assume that Σw = I because this assumption implies
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Cov(Gtwt) = GtG
′
t and thus Gt has all information about the covariance matrix of the

state equation. The author makes additional remark that the class of the random parameter
regression model defined above covers quite wide range of linear models such as linear models
for panel data.

In the next section, the author give a necessary and sufficient condition assuring that
the conventional least square methods such as OLS or GLS bring us the MMSLE(minimum
mean square linear estimator).

3 Random Parameter Regression

In this section the author shows that methods based on OLS or GLS assure the MMSLE
estimator in random parameter regression model defined above. For convenience of the
readers, we rewrite the random parameter regression model. Note that we suppose the
number of unknown parameters in M and the dimension of observation vector y is N for
simplicity since we consider static linear model.

y = Xβ + ε, (24)

and
β̄ = β −Dw, (25)

where D is a matrix known with the size of M × �, � ≤M,

w
iid∼ N (0,Σw), (26)

and β̄ is known.
We pose the following assumption.

Assumption 1

rank D = � > 0

and there is a generalized inverse D− of D such that

D−D = I.

This assumption excludes the case where there is no parameter to be estimated.
We stack the equations (24) and a translated equation of (25) by D−.

Y = Xβ + ξ (27)

for [
D−β̄

y

]
=

[
D−

X

]
β +

[
−w
ε

]
.

The equation (27) can be written as

(Y − Xβ) ∼ N (0,Σξ), (28)

where

Σξ =
(

Σw O
O Σε

)
. (29)

In Table 2, we summarize the dimensions of the vectors and matrices in this section.
The above framework enables us to cope with the random parameter regression theory

as we do with the familiar regression theory. In the usual regression theory, an important
estimator is the WLSE(weighted least squares estimator) of β. The rest of this section owes
to the main result of Duncan and Horn (1972); they did not concern the case where the
probabilistic relation between w and β be degenerated. This article extends their framework
to the one in which we can treat more general randomization of the parameters.
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Table 2: dimensions of Random Parameter Regression Model

vector matrix
y N X (N + �)×M
β M Σw �× �
ε N Σε N ×N
w � Σξ (N + �)× (N + �)
Y N + � D M × �

Definition 1 (WLSE(weighted least squares estimator)) b is the WLSE of β for (28)
if and only if

(Y − X β̂)′Σ−1

ξ
(Y − X β̂) (30)

is minimized when b = β̂, that is,

b = argmin{(Y − X β̂)′Σ−1

ξ
(Y −X β̂) : β̂ ∈ RM}

The following theorem is easy to prove.

Theorem 1 (Normal Equation) The WLSE of β is given as the solution of the normal
equation

(X ′Σ−1

ξ
X )′b = X ′Σ−1

ξ
Y (31)

Proof: Since the quadratic form (31) to be minimized has the same form as that in the
usual linear regression, the minimum is given by the solution of (31). ✷

We could express the WLSE estimation, β, based on the givens in (24) and (25) through
simple algebraic operations.

b = V [D−′ΣwD
−β̄ +X ′Σεy], (32)

where
V = [D−′ΣwD

− +X ′ΣεX]−1. (33)

Since the estimation β in our random parameter regression theory is of our interest, our
main concern is how the distribution of b− β is. The following lemma is useful for the rest
of this section.

Lemma 1 (the distribution of b − β) If

(Y − Xβ) ∼ N (0,Σξ)

and
b = (X ′Σ−1

ξ
X )−1X ′Σ−1

ξ
y

then

(1) (b − β) ∼ N (0, (X ′Σ−1

ξ
X )−1)

(2) E(b − β)(Y −Xβ)′ = 0

(3) E(b − β)y′ = 0

Proof: We first note that

b − β = (X ′Σ−1

ξ
X )−1XΣ−1

ξ
(Y − Xβ).
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Since Y = Xβ + ξ,
b − β = (X ′Σ−1

ξ
X )−1XΣ−1

ξ
ξ. (34)

On the other hand,

Y − Xβ = (I − X (X ′Σ−1

ξ
X )−1X ′Σ−1

ξ
)Y

= (I − X (X ′Σ−1

ξ
X )−1X ′Σ−1

ξ
)(Xβ + ξ) (35)

= (I − X (X ′Σ−1

ξ
X )−1X ′Σ−1

ξ
)ξ

Thus the assertions (1) and (2) follow directly.
Considering (24) and (25),

y = Xβ + ε = Xβ̄ +XDw + ε. (36)

From (34) and (36),

E(b − β)y′ = (X ′Σ−1

ξ
X )−1 · E

[(
−w
ε

)
D−′β̄′

X ′ +
(

−w
ε

)
(w′D′X ′ + ε′)

]

= 0+ (X ′Σ−1

ξ
X )−1(−Σ−1

w ΣwX
′ +X ′Σ−1

ε Σε)

= 0.

Since E(b − β)β̄ = 0 also, (3) follows. ✷

Now we define several properties of an estimator of β relative to a matrix to characterize
the condition under which β is the MMSLE (minimum mean square linear estimator).

Definition 2 Let C be a q ×M matrix and γ̂ be a linear function of β such that γ = Cβ,

1. γ̂ is linear if and only if γ̂ = A1β̄ + A2y for some matrices A1 and A2.
2. γ̂ is unbiased if and only if E(γ̂ − γ) = 0.
3. γ̂ is minimum mean square if and only if (∀i)E(γ̂i − γi)2is minimized.
4. γ̂ is minimum variance if and only if (∀i)V ar(γ̂i − γi)is minimized.
5. γ̂ is the MVLUE (minimum variance linear unbiased estimator) if and only if (i) γ̂ is

linear and unbiased and (ii) (∀i)(∀γ′) [γ′ is linear and unbiased =⇒ V ar(γ′i − γi) ≥ V ar(γ̂i − γi)] .
6. γ̂ is the MMSLE (minimum mean square linear estimator) if and only if (i) γ̂ is linear

and (ii) (∀i)(∀γ′)
[
γ′ is linear =⇒ E(γ′i − γi)2 ≥ E(γ̂i − γi)2

]
.

Remark 1 A linear estimator γ of β is linear in β̄ and y.

Irrespective of the rank condition of the matrix D, the following lemma by Duncan and
Horn (1972) [Lemma 2.6] holds.

Lemma 2 (Equivalence of MVLUE and MMSLE in random parameter regression)
Assume

(Y − Xβ) ∼ N (0,Σξ).

Then the MVLUE of γ = Cβ of β for some C is the MMSLE of γ.

The next theorem completely characterizes the MMSLE estimator based on the obser-
vation y, the prior β̄ and the matrix D reflecting the time-varying structure; it corresponds
to the classical Gauss-Markov theorem in a sense.

Theorem 2 (Modified Gauss-Markov theorem) Assume

(Y − Xβ) ∼ N (0,Σξ),

and that γ̂ is the MMSLE based on Y =
[
D−β̄

y

]
of any linear vector function γ = Cβ of

β for some C if and only if

11



(1) γ̂ is unbiased estimator of γ,

(2) γ̂ is linear vector function such that

γ̂ =Mg,

where

g = X ′ΣξY = [D−′β̄;X]
(

Σw O
O Σε

)−1 [
D−β̄

y

]
.

Proof: [Necessity] The necessity of the condition (1) follows from Lemma 2. For the
condition (2) one can easily prove it by contradiction.

[Sufficiency] Assume that the conditions (1) and (2) hold. To prove the sufficiency of
them, it is sufficient to show that γ̂ satisfying (1) and (2) is the unique MVLUE of γ, since
the MVLUE is the MMSLE from Lemma 2. Assume that

γ∗ = AY = [A1;A2]
[
D−β̄

y

]
= A1D

−β̂ + A2y

for some A = [A1;A2] is an unbiased estimator of γ and γ∗ �= γ̂. Then

E[γ∗] = E[γ] = E[γ],

since
E[γ∗]− E[γ] = 0

and
E[γ̂]−E[γ] = 0.

Thus, considering E(β) = β̄,

AX β̄ = Cβ̄ =MX ′Σ−1

ξ
β̄. (37)

Since (37) is identity in β̄, we have

AX −MX ′Σ−1

ξ
X = 0 (38)

and
AX − C = 0. (39)

Then
MX ′Σ−1

ξ
X −C = 0. (40)

From (39) we have

V ar(γ∗ − γ) = V ar(AY − Cβ)
= V ar(A(Xβ + ξ)− Cβ)
= V ar(A{X (β̄ +Dw) + ξ} − Cβ)
= V ar(AX β̄ + AXDw + Aξ − Cβ̄ −CDw)
= V ar((AX − C)Dw + (AX −C)β̄ +Aξ)
= V ar((AX − C)Dw + Aξ)
= V ar(Aξ)
= AΣξA

′

12



From (40) similarly, by replacing A with MX ′Σ−1

ξ
, we have

V ar(γ̂ − γ) = V ar(MX ′Σ−1

ξ
Y −Cβ)

= V ar(MX ′Σ−1

ξ
(Xβ + ξ)− Cβ)

= V ar(MX ′Σ−1

ξ
{X (β̄ +Dw) + ξ} − Cβ)

= V ar(MX ′Σ−1

ξ
X β̄ +MX ′Σ−1

ξ
XDw +MX ′Σ−1

ξ
ξ −Cβ̄ − CDw)

= V ar((MX ′Σ−1

ξ
X − C)Dw + (MX ′Σ−1

ξ
X − C)β̄ +MX ′Σ−1

ξ
ξ)

= V ar((MX ′Σ−1

ξ
X − C)Dw +MX ′Σ−1

ξ
ξ)

= V ar(MX ′Σ−1

ξ
ξ)

= MX ′Σ−1

ξ
Σξ(MX ′Σ−1

ξ
)′

= MX ′Σ−1

ξ
XM.

Using the equation (38) with a tricky operation, we have

V ar(γ∗ − γ) = (A−MX ′Σ−1

ξ
+MX ′Σ−1

ξ
)Σξ(A

′ − Σ−1

ξ
M ′ + Σ−1

ξ
M ′)

= (A−MX ′Σ−1

ξ
)Σξ(A

′ − Σ−1

ξ
M ′) + 2(A−MX ′Σ−1

ξ
)XM ′ +MX ′ΣξXM

′

= (A−MX ′Σ−1

ξ
)Σξ(A

′ − Σ−1

ξ
M ′) + V ar(γ̂ − γ). (41)

Since the diagonal components of the first term in RHS of (41) are non-negative,

(∀i) V ar(γ∗i − γi) ≥ V ar(γ̂i − γi).

Thus γ̂ is a MVLUE of γ. Uniqueness follows from (41), for if V ar(γ∗ − γ) = V ar(γ̂ − γ)
we necessarily have γ∗ = γ̂, which contradicts our premises. This completes the proof of
sufficiency. ✷

The following corollary of Theorem 2 guarantees good properties of our method such as
Ito Regression.

Corollary 1 (MMSLE of β in random parameter regression) Assume

(Y − Xβ) ∼ N (0,Σξ).

Then
b = (X ′Σ−1

ξ
X )−1X ′Σ−1

ξ
Y.

Proof: From Lemma 1
E(b − β) = 0

and
b =Mg,

where
M = (X ′Σ−1

ξ
X )−1, g = X ′Σ−1

ξ
Y.

The conclusion follows directly from Theorem 2. ✷

The above Theorem 2 and Corollary 1 assures that usual least square methods take
crucial roles even in our random parameter regression theory.

In the next section, we give an application of Ito Regression, a typical example of the
random parameter regression.
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4 An Application

This section shows an application of the method in Section 2 to a time-varying AR model.
The model is useful for treating non-stationary time series; it cope with such time series as
locally stationary ones. The coefficients estimated in each period would be used to analyze
local behavior of the time series. This section owes much to Ito and Sugiyama (2007).

Since the model is a linear time series model, it has a representation as the State Space
Model. At first, we represent a time-varying AR model as the State Space Model as follows:

observation equation

xt =
(
xt−1 xt−2 · · · xt−k

)


β1,t

β2,t

...
βk,t


 + ut, ut ∼ N (0, σ2

ut
) (42)

state equation



β1,t

β2,t

...
βk,t


 =




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1






β1,t−1

β2,t−1

...
βk,t−1


+



v1,t

v2,t

...
vk,t


 , vt ∼ Nk(0, σ2

vt
I) (43)

Note vt ≡ (v1,t v2,t · · · vk,t )
′ in (43).

Next, we have to derive Ito Regression Model as in the equation (16). Applying Ito
Regression to time-varying AR(k) model, we can rewrite the model,

y = Zβ + ε (44)

where

y ≡




x1
x2
...
xT

−β1,0

−β2,0

...
−βk,0

0
0
...
0
...
0
0
...
0




, β ≡




β1,1

β1,2

...
β1,T

β2,1

β2,2

...
β2,T

...
βk,1

βk,2

...
βk,T




, ε ≡




u1

u2

...
uT

v1,1

v2,1

...
vk,1

v1,2

v2,2

...
vk,2

...
v1,T

v2,T

...
vk,T
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Z ≡




x0 x−1 x−k

x1 x0 . . . x−k+1

. . . . . . . . .
xT−1 xT−2 xT−k

−1
−1 . . .

nbsp;
−1

1 −1
1 −1 . . .

1 −1
...

...
. . .

...
1 −1

1 −1 . . .
nbsp;

1 −1




(Blanks are all 0 in Z.)

Note that the matrix presented above is essentially the same as the one shown in Section
2.3 althogh several rows and columns are exchanged.

(44) is nothing but a linear regression model. Note that, in Ito Regression, a dynamic
model represented by the State Space Model apparently becomes a static model with no
subscript t indicating time and that Ito Regression requires no filtering step unlike Kalman
smoothing. Notice that (β1,0, · · · , βk,0) is the initial values of the state variable.

Note that the size of the regressor Z is (Tk)× (T (k+1)) in case of a time-varying AR(k)
with the sample periods T . Thus, the compute we use should compute the inverse of Z ′Z,
of which size is (Tk) × (Tk). For example, The author’s personal computer with 512MB
main memory and 1.5GHz MPU (Pentium) can compute the inverse of 2500× 2500 matrix
in about 150 seconds when he uses the statistical package R (ver.2.3.).

We can estimate state variables by OLS or GLS in Ito Regression. Furthermore. We
do not have to assume normality on a disturbance, as maximum likelihood method do.
Of course, you can do hypothesis testing such as Wald to see if the estimation result is
statistically significant.

The estimation result which we derive when applying Ito Regression to a time-varying
AR(k) model in case k = 1 with the monthly data of rate of return ( NIKKEI225 (1955/1 -
2006/2)) is illustrated in Figure 1.

Moreover, as suggested in Section 2.3, Ito Regression method allows us to see how wide
the range on which a estimation in each period t depends is by plotting the each row of a
matrix (Z ′Z)−1Z ′, corresponding to the filter gain, since

β̂ = (Z ′Z)−1Z ′y

is the OLS estimator of β in (44). For example, we plot 300th row of (Z′Z)−1Z ′ in Figure
2 using full sample of NIKKEI225. Note that columns from 1 to 610 are only related to
calculating AR coefficients, since sample size of the data is 610. This Figure shows that to
compute the state β300, we only need data from about t = 200 to t = 400.

For practical usage, some researchers use Moving-Window method, in which they slide
subsamples of the data just like windows. One needs to decide a window width a pri-
ori in Moving-Window method; the model itself decides the optimal window width in Ito
Regression.

15



NIKKEI225

Time

A
R

 C
oe

ffi
ci

en
t

1960 1970 1980 1990 2000

0.
0

0.
1

0.
2

0.
3

0.
4

AR1
0

Figure 1: Time Varying AR(1) Coefficient: (rate of return of NIKKEI225 monthly)
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Figure 2: Nikkei225，Weights Used in Smoothing

5 Conclusion

This article presented a linear model which the author call the random parameter regression
model. This model covers fairly wide range of linear ones from the State Space Model in time
series analysis to a random effects model for panel data analysis. As a linear model allowing
flexible time-varying structure, it gives us more general framework to estimate time-varying
parameters than the State Space Model.

As shown in Section 3, methods of least square, OLS or GLS, would be still useful for
econometric analysis if researchers studied and developed more flexible linear model based
on a random parameter regression model here.

The advantages of our model crucially depend on the fact that computers these days are

16



much more powerful than past ones. Who imagined ten years ago that personal computers
in 2007 are capable of computing the inverse of 5000×5000 matrix with practical speed and
accuracy? A number of ecnometricians are likely to use the method of maximum likelihood
even when they estimate parameters in a linear model. They could more depend on recent
computer power than they had imagined.

Data Appendix

Monthly data of NIKKEI225 were all downloaded from NIKKEI NEEDS. The author used
a statistical package, R (ver. 2.3.1). All scripts of R he used are available for the readers.
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